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Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that 
while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging 
process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several 
age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of 
cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the dif-
ferentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive 
Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral 
tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological pro-
cesses, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits 
autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes exces-
sive sphingolipid synthesis, and disturbs energy metabolism by catabolizing  NAD+ degradation. The antagonistic pleiotropy 
of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent 
manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and 
non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, 
and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also 
the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
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Introduction

The aryl hydrocarbon receptor (AhR) is an evolutionarily 
conserved transcription factor which first appeared over 600 
million years ago [1]. The AhR factor is a ligand-regulated 
transcription factor which is an ancient member of the basic-
helix/loop/helix per Arnt-sim (bHLH/PAS) family [2]. 
Originally, the AhR factor was studied as an environmental 
sensor for many xenobiotics, such as 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocar-
bons (PAH). Currently, it is known that the AhR factor is not 
only involved in chemical defence, but it has also a crucial 

role in developmental biology and in the function of the 
immune system [3–5]. For instance, AhR signaling regulates 
the pluripotency of embryonic stem cells and affects their 
differentiation into diverse tissue types (Fig. 1). Moreover, 
Ahr signaling controls the differentiation of immune cells, 
especially enhancing the generation of immunosuppressive 
phenotypes (see below). On the other hand, with aging, 
AhR signaling increases cellular senescence and osteopo-
rosis, inhibits autophagy, and disturbs vascular homeostasis 
(Fig. 1). Interestingly, the function of the AhR factor is a 
good example of antagonistic pleiotropy, i.e., a particular 
gene has crucial functions during development, but its activ-
ity evokes detrimental responses later in the life [6]. Here, I 
will shortly introduce the theory of antagonistic pleiotropy 
and then describe in detail many important functions of 
the AhR factor during embryogenesis and for comparison, 
examine its role as an enhancer of age-related degenerative 
processes.

Cellular and Molecular Life Sciences

 * Antero Salminen 
 antero.salminen@uef.fi

1 Department of Neurology, Institute of Clinical 
Medicine, University of Eastern Finland, P.O. Box 1627, 
70211 Kuopio, Finland

http://orcid.org/0000-0001-6691-6909
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04520-x&domain=pdf


 A. Salminen 

1 3

489 Page 2 of 22

AhR‑driven antagonistic pleiotropy 
in development and aging process

The antagonistic pleiotropy hypothesis is a well-known 
evolutionary theory explaining the aging process, origi-
nally proposed by George Williams in 1957 [6, 7]. The 
antagonistic pleiotropy theory postulates that a particular 
gene regulates several functional traits which support the 
developmental process, but which exert detrimental effects 
during the aging process. The theory predicts that natural 
selection favors the vigor of youth over the frailty of old 
age. Those genes revealing characteristics of antagonistic 
pleiotropy enhance reproduction and growth at a young 
age, but these same genes have deleterious effects later 
in life promoting the aging process. The theoretical basis 
underpinning the antagonistic pleiotropy and its functional 
explanations in the aging process have been reviewed 
elsewhere in detail [6, 8]. The disposable soma theory, 
adapted from the antagonistic pleiotropy theory, suggests 
that organisms have a limited amount of resources which 
are allocated to reproduction and growth at the cost of 
repair processes during the aging process [9]. Subsequent 
studies on genetics, e.g., on the long-lived mutants, have 
provided novel insights into the evolutionary mechanisms 
controlling the aging process [8, 10]. For instance, the 
age-1 and daf-2 mutants in Caenorhabditis elegans as 
well as the chico and Inr mutants in Drosophila increased 
lifespan, but correspondingly, they exhibited a strongly 

reduced reproduction or sterility in C. elegans and Dros-
ophila [8]. These genes are driving the insulin/insulin-
like growth factor (IGF) receptor signaling pathway. In 
mammals, this pathway activates the mammalian target 
of rapamycin (mTOR) pathway which is known to dis-
play antagonistic pleiotropy in the regulation of the aging 
process [11, 12]. The insulin/IGF-1/TOR axis undertakes 
several crucial functions during reproduction and the 
growth of the organism, whereas the same pathway has 
many detrimental effects during the aging process. For 
instance, the inhibition of autophagy with aging increases 
the accumulation of garbage into aged cells [12]. Inter-
estingly, there is clear indication that AhR signaling also 
inhibits autophagy, but it seems that it is mediated through 
the E2F1 signaling rather than the insulin/IGF1/mTOR 
signaling pathway (see below).

AhR stimulates developmental processes

Across the evolution from single-cell organisms to multi-
cellular animals, AhR signaling has undertaken functions 
far beyond its role as an environmental sensor (Fig. 1). For 
instance, it is known that AhR signaling is important in many 
developmental processes and in the immune defence of the 
organism [5, 13, 14]. During embryogenesis, the expression 
of the AhR gene displays significant stage-specific alterations 
[14–16]. The AhR gene was strongly expressed in mouse 
fertilized eggs and up to the four-cell morula stage, but after-
wards the expression level disappeared during the cleavage 

AhR

Age-related pathologyDevelopment

• enhances the differentiation of embryonal 
stem cells and cell-fate decisions.

• controls the pluripotency of stem cells.
• regulates the stemness of cancer stem cells.
• modulates the differentiation of hematopoietic

stem and progenitor cells.
• stimulates the differentiation of Tregs, Bregs, 

and M2 macrophages, whereas it inhibits the 
differentiation of B, DC, and NK cells.

• controls the differentiation of peripheral tissues

• promotes generation of ROS compounds
• decreases the level of NAD+

• stimulates ceramide and sphingolipid synthesis
• inhibits autophagic activity
• increases cellular senescence
• disturbs extracellular matrix
• enhances osteoporosis
• disturbs vascular homeostasis
• increases immunosuppression
• activates retrotransposition

Possible cons for the theory

AhR knockout mice are viable and display premature senescence.
AhR agonist indole increases healthspan

Fig. 1  AhR signaling represents an example of antagonistic plei-
otropy in the regulation of the developmental and aging processes. 
Major beneficial developmental and harmful age-related properties 

have been listed for comparison. There are some cons for the theory 
which have been discussed in the text
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phase until it became evident again in the early blastocyst. 
After implantation, the expression of the AhR gene increased 
although it displayed cell type- and tissue-specific expres-
sion levels. Interestingly, a global decline in the expression 
of mouse AhR gene during the morula and early blastula 
phase coincided with a decrease in the DNA methylation 
state during increased proliferation [14]. Studies conducted 
in the AhR-knockout mice have revealed significant devel-
opmental perturbations in some tissues, especially in liver, 
spleen, and cardiac muscle, as well as some crucial impair-
ments in their immune system [17–19]. Fernandez-Salguero 
et al. [20] reported that the AhR-null (AhR−/−) mice were 
viable and fertile, but had a 45% mortality and displayed 
clearly a sick phenotype by 13 months of age. Intriguingly, 
the constitutively active AhR gene (CA-AhR) expressed in 
transgenic mice also impaired the developmental processes 
of liver and kidney [21], disturbed neurogenesis [22], and 
increased the risk of cancers, e.g., in stomach [23]. It is clear 
that the AhR gene performs many homeostatic functions in 
the developmental processes that explain why its expression 
is stringently regulated.

Currently, there is convincing evidence that AhR factor 
has an important role in the regulation of pluripotency of 
embryonal stem (ES) cells since it promotes their differ-
entiation into diverse cell lineages (Fig. 1). Ko et al. [24] 
demonstrated that several pluripotency factors, i.e., OCT4, 
NANOG, and SOX2, were able to inhibit the expression 
of AhR gene in mouse ES cells by binding to the silencer 
domain of the AhR gene. Several other investigators have 
also revealed that the AhR gene needs to be repressed so that 
ES cells can maintain their mitotic progression and pluri-
potency [16, 25]. For instance, OCT4 and NANOG factors 
displayed an overexpression in the mouse AhR−/− embryos 
inhibiting their differentiation process [16]. On the other 
hand, an increased activation of AhR factor inhibited the 
expression of OCT4 and NANOG and consequently pro-
moted the differentiation of mouse ES cells [5, 14, 16]. 
Recently, Gonzalez-Rico et al. [26] demonstrated that AhR 
factor was able to bind to two Alu elements flanking the 
human NANOG gene thus assembling a chromatin loop 
which inhibited the expression of the NANOG gene. This 
AhR-driven retrotransposon-mediated chromatin modifica-
tion inhibited the expression of human NANOG factor and 
subsequently induced the differentiation of human NTERA-2 
cells. Moreover, Cheng et al. [27] demonstrated that the acti-
vation of AhR factor induced the binding of AhR factor to 
the promoter of human OCT4 gene, inhibited its expres-
sion, and consequently induced the differentiation of sev-
eral cancer stem-like cells, thus reducing their tumorigenic 
potential. However, several studies have indicated that the 
expression of AhR maintained and enhanced the stemness of 
cancer stem cells. For instance, Stanford et al. [28] revealed 
that an increased expression of AhR factor augmented the 

development of human cells with cancer stem-like properties 
which enhanced tumorigenesis by increasing their migration 
and invasion. Yan et al. [29] also reported that the activa-
tion of AhR signaling in the radioresistant human epithelial 
cancer cells induced the expression of genes associated with 
the stem-like phenotype, e.g., ABCG2, c-MYC, and CXCR4 
genes. They also revealed that nuclear IKKα protein was 
involved in the AhR-mediated regulation of stemness in 
human epithelial cancer cells.

AhR factor has a crucial role in the maintenance of 
hematopoietic stem cells (HSC) and progenitor cells and 
subsequently it is involved in their differentiation to a diverse 
set of immune cells in a cell-specific manner [4, 30, 31]. 
There is clear evidence that the activation of AhR factor is a 
negative regulator of hematopoiesis inhibiting excessive pro-
liferation and thus it maintains homeostasis in the immune 
system [30, 32, 33]. Vaughan et al. [33] demonstrated that 
the inhibition of AhR signaling in mice through its knock-
out or the antagonist treatments induced a myeloid-biased 
increase in HSCs and progenitor cells. There also appeared 
an increase in the frequency of progenitors committed to 
pregranulocyte/premonocyte lineages. The role of AhR 
signaling has been elucidated in the differentiation of the 
progenitor cells into effector and regulatory immune cells. 
For instance, Li et al. [34] revealed that an increased AhR 
signaling impaired the human B cell lymphopoiesis from 
hematopoietic stem cells to early-B and pro-B cells. AhR 
signaling also disturbed the differentiation of human natu-
ral killer (NK) cells [35] and mouse dendritic cells (DC) 
[36]. Interestingly, Tousif et al. [37] demonstrated that AhR 
signaling promoted the differentiation of B cells into the 
regulatory B (Breg) cells in a mouse model of lung cancer. 
In addition, there is convincing evidence that an activation of 
AhR signaling induced the differentiation of mouse T cells 
into regulatory T (Treg) cells [38, 39] (Fig. 1). It seems that 
an increase in AhR signaling disturbs the function of effec-
tor immune cells, whereas it augments immunosuppressive 
phenotypes.

The developmental regulation of AhR signaling is not lim-
ited to the embryonal differentiation or the hematopoiesis, but 
it also affects the terminal differentiation and the growth of 
several tissues, e.g., neurogenesis, cardiovascular develop-
ment, and osteogenesis [40–42]. In this respect, it seems that 
AhR signaling has both beneficial and detrimental effects in a 
context-dependent manner during development. It is also evi-
dent that different models, i.e., the knockout/antagonist or the 
overexpression/agonist treatments, generate non-physiological 
responses in long-term experiments. Neurogenesis has been 
frequently studied with the aim of clarifying the role of AhR 
signaling during development of the brain. Latchney et al. 
[40] reported that both the deletion and the activation of AhR 
signaling disturbed neurogenesis and impaired memory and 
cognition in growing mice. The 3-month-old AhR-deficient 
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mice experienced an abnormal neuronal differentiation and 
a reduced cell survival. The AhR-null mice also revealed 
a reduced myelination of neurons [43]. On the other hand, 
Kimura et al. [22] reported that the long-term activation of 
AhR (CA-AhR) impaired the dendritic growth and the posi-
tioning of cortical mouse pyramidal neurons. Recently, Wei 
et al. [44] demonstrated that certain tryptophan-metabolizing 
microbes in the gut were able to enhance mouse hippocampal 
neurogenesis by promoting synaptic maturation and activity 
via AhR signaling. These studies indicate that AhR signaling 
is crucial for neurogenesis although the overexpression of AhR 
factor disturbs the programmed development of brain.

There is clear evidence that AhR signaling affects the 
development of peripheral tissues. For instance, studies on 
cardiovascular development have revealed that there is an 
abnormal morphogenesis induced by either AhR ablation or 
agonist treatments [41]. Disturbances involved alterations, 
e.g., in tissue structures, cellular metabolism, and cardiac 
functions leading to defects similar to those encountered 
in congenital heart disease (CHD). Pulignani et al. [45] 
reported that the presence of the genetic variant Arg554Lys 
in the AhR protein was associated with an increased risk 
of CHD. It is known that an AhR-deficiency can induce 
cardiac hypertrophy and increase arterial blood pressure in 
mice [46]. The activation of AhR signaling also regulates 
the development of bones and kidneys. Osteogenesis of the 
bones involves a balance between the activities of osteo-
blasts and osteoclasts during the developmental phase and 
this continues to ensure the maintenance of bone homeosta-
sis later in the life. There is abundant evidence indicating 
that AhR signaling suppresses osteoblastogenesis, whereas 
it increases osteoclastogenesis during the development and 
remodeling of the bone [42, 47]. Izawa et al. [42] demon-
strated that the overexpression of AhR signaling in mice 
enhanced osteoclastogenesis which promoted osteoporosis 
with aging. On the other hand, treatments with antagonists 
of AhR signaling, e.g., isopsoralen, stimulated the differ-
entiation of osteoblasts and subsequently increased bone 
mineralization [48]. Falahatpisheh et al. [49] demonstrated 
that the expression of AhR was crucial for the development 
of mouse kidneys. They reported that AhR signaling regu-
lated signaling via the Wilms’ tumor suppressor 1 (WT1) 
during nephrogenesis, especially affecting the development 
of kidney glomeruli. In conclusion, it seems that a constant 
activity of AhR signaling maintains developmental homeo-
stasis in the tissues, and thus either a decline or an excessive 
activation of AhR signaling impairs embryogenesis.

AhR promotes the age‑related degenerative 
processes

Several aging studies have revealed that AhR signaling is 
associated with many age-related degenerative processes 

[50, 51] (Fig. 1). It appears that some of the properties 
driven by AhR are crucial in the early growth of embryos, 
but subsequently become harmful during the aging process, 
e.g., the repression of autophagy enhances the growth of 
tissues during embryogenesis, but it disturbs cellular home-
ostasis with aging [52]. Moreover, apoptosis and cellular 
senescence are important tissue remodeling mechanisms 
during development, but the accumulation of senescent cells 
with aging enhances the aging process [53, 54]. The expres-
sion of matrix-degrading metalloproteinases (MMP), a func-
tion controlled by AhR signaling, has an important role in 
the development of tissues during embryogenesis, but with 
aging, an increased expression of MMPs has many harmful 
effects on tissue integrity [55]. The increased inflammatory 
microenvironment with aging enhances the activity of AhR 
signaling which might promote the age-related remodeling 
of the immune system (see below). It seems that certain 
properties of AhR factor are driving the growth of organism, 
but they have detrimental effects with aging.

It has been difficult to obtain direct evidence on the role of 
AhR activity in the aging process because both the depletion 
and overexpression of mammalian AhR factor disturb the 
physiological functions of AhR signaling causing pathologi-
cal consequences and leading to premature aging. One rea-
son might be the fact that the expression of the AhR gene is 
stringently regulated in a context-dependent manner. In addi-
tion, it is not only the expression level of AhR factor since a 
number of endogenous and exogenous ligands, either ago-
nists or antagonists, regulate the context-dependent activity 
of AhR factor. However, the genetic models of Caenorhab-
ditis elegans have been exploited in the lifespan studies on 
the mutants of the ahr-1 gene. For instance, Eckers et al. [56] 
demonstrated that the ahr-1 (ju 145) mutants displayed an 
increased mean lifespan as well as they revealed an improved 
motility and heat resistance. However, Sonowal et al. [57] 
reported that certain indoles, AhR agonists, from commensal 
bacteria extended the healthspan of many organisms, e.g., 
C. elegans, Drosophila, and mice, although indoles did not 
affect maximum lifespan (Fig. 1). On the other hand, the 
extrinsic activation of AhR factor in mouse skin promoted 
the aging process [50]. It is known that chronic UV radiation 
(UVR) can induce the AhR-mediated photoaging in the skin 
[58]. Next, I will examine the properties of AhR signaling 
which are able to generate the essential hallmarks of the 
aging process.

AhR signaling generates diverse cellular stresses

Increased AhR signaling can induce many cellular stresses, 
such as oxidative stress, sphingolipid accumulation, and 
the depletion  NAD+, all of which disturb cellular functions 
and enhance the aging process (Fig. 1). Interestingly, it is 
known that oxidative stress is a potent enhancer of the aging 
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process, but it is an important mechanism during the embry-
onic development phase [59]. Particularly, redox regulation 
has a crucial role in the self-renewal and lineage commit-
ment of stem cells [60, 61]. ROS compounds can control 
the activity of many key transcription factors associated 
with both the developmental and the aging processes, e.g., 
NF-κB, HIF-1α, and NRF2. ROS compounds regulate not 
only the development of stem cells, but also organismal 
aging in a concentration-dependent manner [62]. Low con-
centrations induce adaptive responses, whereas higher con-
centrations trigger pathological changes. There is convincing 
evidence that the activation of AhR signaling generates ROS 
compounds [63]. Certain target genes of AhR transcription 
factor are associated with the generation of ROS/oxidative 
stress, e.g., cytochrome P450 family 1 subfamily A member 
1 (CYP1A1) and the p40phox component of NADPH oxi-
dase [63, 64] (Fig. 2). CYP1A1, a member of cytochrome 
P450 family, is located in mitochondria and is involved in 
the production of superoxide in mitochondria [63]. The 

p40phox component has an important role in the ROS pro-
duction by NADPH oxidase [64]. AhR signaling promotes 
many age-related processes via the generation of ROS com-
pounds, e.g., inflammatory responses, cellular senescence, 
and remodeling of ECM (see below). As a pleiotropic factor, 
AhR can also activate the antioxidant pathways which have 
an important role in the maintenance of the cellular redox 
status [65]. In fact, the AhR-NRF2 signaling is the best char-
acterized of the antioxidant pathways driven by AhR signal-
ing (Fig. 2). It is known that ROS compounds can control 
both the developmental and the aging processes through an 
epigenetic regulation of the chromatin landscape [66].

Sphingolipids are important membrane components, 
but they also have many signaling functions, e.g., they are 
involved in the regulation of cell proliferation, adhesion, 
autophagy, apoptosis, and many immune functions [67]. 
Sphingolipids have a crucial role in the developmental pro-
cesses including brain development and stem cell differentia-
tion [68, 69]. On the other hand, sphingolipids, especially 

IDO1

KYN/KYNA

UVR/ROS

FICZ

FoxP3, SOCS3

Rb, E2F1

Src-FAK-integrinNRF2, p40phox

Immunosuppression

Cellular senescenceRedox status

Cell cycle, cellular senescence PARP, TiPARP Energy metabolism

Microbiota ligands

SPTSSA, S1PLSphingolipid synthesis

Alu, LINE-1 Retroransposon activation

NF-κB, NLRP3Inflammation

Environmental
toxins

Dietary ligands

Heme

Bilirubin
Biliverdin

RelB, STAT3 Epigenetic regulation

TGF-β, MMP ECM metabolism

AhR

Inflammation

Fig. 2  Age-related properties induced by the ligand-activated AhR 
signaling. A large variety of endogenous and exogenous ligands 
activate AhR signaling which promotes the aging process in a 
context-dependent manner. Certain dietary, environmental, and 
microbiota ligands can be antagonists for AhR activation (see text). 
E2F1 E2F transcription factor 1, FAK focal adhesion kinase, FICZ 
6-formylindolo[3,2-b]carbazole, FoxP3 forkhead box P3, IDO1 
indoleamine 2,3-dioxygenase, KYNA kynurenic acid, KYN kynure-
nine, MMP matrix metalloproteinase, NF-κB nuclear factor-κB, 

NLRP3 NOD- LRR- and pyrin domain-containing protein 3, NRF2 
nuclear factor-erythroid factor 2-related factor 2, p40phox p40 com-
ponent of NADPH oxidase, PARP poly(ADP-ribose) polymerase, Rb 
retinoblastoma, RelB RELB proto-oncogene, ROS reactive oxygen 
species, SOCS3 suppressor of cytokine signaling 3, SPTSSA ser-
ine palmitoyltransferase small subunit A, Src SRC proto-oncogene, 
STAT3 signal transducer and activator of transcription 3, TiPARP 
TCDD-inducible poly(ADP-ribose) polymerase, TGF-β transforming 
growth factor-β, UVR ultraviolet radiation
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ceramide, regulates cellular senescence and the aging pro-
cess [70, 71]. Majumder et al. [72] utilized a genome-wide 
CRISPR/Cas9 screening to demonstrated that AhR factor 
increased the levels of several sphingolipids in mouse liver 
and lung. AhR factor induced the transcription of mouse 
serine palmitoyltransferase small subunit A (SPTSSA) 
gene. The SPT complex is the first and rate-limiting step 
in the synthesis of sphingolipids (Fig. 2). Moreover, Wang 
et al. [73] reported that AhR factor inhibited the expression 
of human sphingosine-1-phosphate lyase (S1PL) enzyme 
which controls the degradation of S1P to phosphoethanola-
mine. This means that the activation of AhR signaling is 
able not only to enhance the synthesis of sphingolipids, but 
also to inhibit their degradation. Ceramide and S1P are the 
most important signaling components of sphingolipids and 
they have many opposing functions, called the sphingolipid 
rheostat. For instance, ceramides induce cell-cycle arrest, 
cellular senescence, apoptosis, and neurodegeneration, 
whereas S1P has many beneficial properties, e.g., it controls 
lymphocyte differentiation and trafficking as well as it pro-
motes neuroprotection [74, 75]. Different approaches have 
revealed that the level of ceramides increases with aging, 
thus probably promoting senescence and the aging process 
[70, 71]. Interestingly, Huang et al. [76] demonstrated that 
the inhibition of SPT reduced sphingolipid synthesis and 
significantly extended the lifespan of yeast. Given that AhR 
signaling stimulated the expression of SPT, this might accel-
erate the aging process of mammals. Currently, it is known 
that the AhR-induced activation of SPT is associated with 
the appearance of many age-related diseases, e.g., hepatic 
lipid accumulation in mice [77].

The maintenance of energy homeostasis is crucial for 
both developmental processes and healthspan extension. 
 NAD+ is a coenzyme which not only controls energy sta-
tus, but it also supplies the  NAD+-consuming enzymes, 
e.g., poly(ADP-ribose)polymerases (PARP) and sirtuins 
(SIRT1-7) [78]. Interestingly, the activation of AhR factor 
can disturb energy balance by reducing the cellular level 
of  NAD+. Ma [79] was the first investigator who demon-
strated that TCDD induced the AhR-mediated expression of 
a novel PARP enzyme, called TiPARP (ARTD14/PARP7). 
Subsequently, MacPherson et al. [80] revealed that human 
TiPARP enzyme was a mono-ADP-ribosyltransferase 
which also inhibited the transactivation of the AhR gene. 
This shows a negative feedback loop in AhR signaling. The 
TiPARP enzyme has an important role in the developmen-
tal process since the TiPARP knockout mice experienced 
disturbances in the development of GABAergic neurons 
and the loss of TiPARP induced an abnormal layering of 
mouse cerebral cortex [81]. There is convincing evidence 
that the activation of AhR factor reduced the level of  NAD+ 
under diverse experimental conditions [82]. It seems that 
AhR signaling decreases the level of  NAD+ attributed to 

the activation of TiPARP, whereas concurrently it increases 
the mono-ADP-ribosylation of many proteins, thus affecting 
the maintenance of homeostasis. There is robust evidence 
that the cellular level of  NAD+ declines in senescent cells 
and during aging in many tissues [83, 84]. Currently, the 
role of AhR signaling in these age-related alterations is not 
completely clear.

AhR signaling promotes cellular senescence and controls 
apoptosis

The accumulation of senescent cells into tissues is a major 
hallmark of the aging process [85]. Senescent cells undergo 
an irreversible arrest of cell-cycle which has been attributed 
to an activation of several tumor suppressors, such as p53, 
p16Ink4a, p21Cip1, p27Kip1, and retinoblastoma (Rb) pro-
tein [85, 86]. There is abundant evidence that the activation 
of AhR signaling by several agonists arrests the proliferation 
of different cell types and consequently triggers a senescent 
phenotype [87–89]. Interestingly, AhR signaling also inhib-
its the proliferation of stem cells, e.g., embryonal stem cells 
[25], hematopoietic stem cells [90], and bone marrow mes-
enchymal stem cells [89] (Fig. 2). It seems that there are sev-
eral mechanisms through which AhR factor can repress the 
cell-cycle progression. For instance, AhR factor can increase 
the expression of p21Cip1 and p27Kip1 proteins and thus 
halt cell proliferation. Jackson et al. [91] demonstrated that 
the activation of AhR by TCDD induced the expression of 
p21Cip1 protein and consequently inhibited the regeneration 
of mouse liver. The p21Cip1 inhibited the G1-phase cyclin-
dependent kinase 2 (CDK2) activity and induced a G0/G1 
cell-cycle arrest. Accordingly, Kolluri et al. [92] reported 
that the activation of AhR factor induced the expression of 
p27Kip1 protein and suppressed the proliferation of devel-
oping mouse thymus and rat hepatoma cells. There are sev-
eral studies indicating that the AhR protein can bind to the 
Rb protein and consequently repress the function of E2F 
transcription factors, thus inhibiting DNA synthesis and 
cell-cycle progression [93, 94] (Fig. 2). Marlowe et al. [94] 
revealed that the binding of AhR protein to E2F transcrip-
tion factors displaced the p300 protein from the complex 
and subsequently inhibited the transcription of many E2F-
regulated genes which control the S phase progression. It is 
known that the E2F1 transcription factor inhibits the Fork-
head box O transcription factors (FoxO) and thus controls 
cellular senescence and organismal aging [95]. Moreover, 
the aging process is associated with a progressive decline in 
the numbers of stem cells [96]. Currently, the role of AhR 
signaling in the exhaustion of age-related stem cells needs 
to be clarified.

Programmed cell death, i.e., apoptosis, is a crucial archi-
tect of mammalian development [54]. Although AhR sign-
aling has a fundamental role in embryogenesis, there are 
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only a few reports on its effects on apoptosis during devel-
opmental processes. For instance, the Bax-dependent apop-
tosis driven by AhR signaling controlled the development 
of murine fetal ovarian germ cells [97]. However, there is 
a substantial literature examining the role of AhR signal-
ing in apoptosis, both in pro-apoptotic and anti-apoptotic 
responses, later in the life. It seems that the activation of 
AhR signaling by environmental toxins, e.g., TCDD and 
polycyclic aromatic hydrocarbons (PAH), induces an apop-
totic cell death in diverse cell types [98, 99]. There appears 
to be several mechanisms in the toxin-induced apoptosis 
although the ROS-induced mitochondrial dysfunction seems 
to be the major process. However, it is not known how AhR 
signaling is driving the endogenously-induced apoptosis or 
resistance to apoptosis. For instance, it has been demon-
strated that C2-ceramides can trigger apoptosis in murine 
hepatomas [100]. On the other hand, there is robust evi-
dence that AhR signaling can prevent apoptotic cell death in 
many tissues. As a proof of principle, Elizondo et al. [101] 
reported that embryonic fibroblasts obtained from the AhR-
knockout mice were predisposed to apoptosis in cell culture. 
Moreover, when AhR signaling was activated by tumor pro-
moters, this proved to be a potent inhibitor of apoptosis and 
an effective inducer of tumorigenesis [102]. For instance, 
Bekki et al. [103] demonstrated that AhR signaling acti-
vated by kynurenine (KYN) exposure enhanced apoptosis 
resistance in human breast cancer cells. Interestingly, there 
is clear evidence indicating that the resistance to apoptosis 
increases in both cellular senescence and the aging process 
[104, 105]. Marlowe et al. [106] demonstrated that the AhR 
protein formed a complex with the E2F1 factor and thus 
inhibited the E2F1-induced apoptosis in mouse hepatoma 
cells and human osteosarcoma cells. Currently, it needs to be 
clarified whether the resistance to the apoptosis associated 
with aging and cellular senescence is related to AhR signal-
ing. It is clear that any decline in the extent of apoptosis with 
aging would prevent the elimination of unfit cells and thus 
disturb tissue homeostasis.

AhR signaling inhibits autophagic degradation

Autophagy is a catabolic process which involves the degra-
dation of intracellular proteins and organelles via the lyso-
somal pathway. Mammalian target of rapamycin (mTOR), 
a major regulator of protein synthesis and cellular growth, 
is a potent inhibitor of autophagy. Schmeisser and Parker 
[12] have reviewed the potential role of mTOR-dependent 
autophagy as a model of antagonistic pleiotropy. A low level 
of autophagy enhances the growth of tissues during devel-
opment, but with aging, it has detrimental effects on tissue 
homeostasis. There is robust evidence that autophagic deg-
radation declines with aging and that there are disturbances 
in the function of the autophagy-lysosome pathway [52, 

107]. Interestingly, there are observations indicating that 
AhR signaling is able to suppress autophagic activity. Kon-
drikov et al. [89] demonstrated that KYN, an endogenous 
agonist for AhR, inhibited autophagy via the activation of 
AhR signaling in the bone marrow mesenchymal stem cells 
(BMSC) obtained from aged mice. The physiological levels 
of KYN disrupted autophagic flux and inhibited macroau-
tophagy induced by serum-starvation in mouse BMSCs. 
Kim et al. [108] reported that the activation of AhR signal-
ing with TCDD and proinflammatory cytokines in human 
keratinocytes decreased the expression of several autophagy-
related factors including Beclin 1, ATG5, and LC3 proteins. 
The production of LC3-positive autophagosomes was also 
down-regulated in activated keratinocytes. Surprisingly, 
the inhibition of autophagy with chloroquine increased the 
expression of AhR in the cytokine-stimulated keratinocytes. 
Yang and Chan [109] also observed that the inhibition of 
autophagy by chemical agents increased the level of the 
AhR protein in human HeLa cells. They revealed that the 
AhR protein was degraded through the p62/LC3-mediated 
selective autophagy in diverse human cell lines. Thus, the 
inhibition of autophagy, e.g., by mTOR signaling, enhances 
the AhR-related responses. Currently, the mechanism of the 
AhR-induced repression of autophagy still needs to be clari-
fied. Polager et al. [110] demonstrated that the E2F1 factor 
stimulated autophagy by increasing the expression of several 
autophagy genes, e.g., ATG1, ATG5, LC3, and DRAM genes, 
in human osteosarcoma cells. This means that the E2F1 fac-
tor does not only arrest cell cycle and inhibit apoptosis, but it 
also stimulates autophagy in order to maintain homeostasis. 
As discussed earlier, AhR is a potent inhibitor of E2F1 sign-
aling [93, 94, 106] and thus it could promote the age-related 
inhibition of autophagy. One might speculate that the AhR 
factor, as an effective growth regulator during development, 
can inhibit certain catabolic activities with aging although 
they are crucial for the maintenance of cellular integrity, 
i.e., autophagy and apoptosis. The inhibition of autophagy 
by AhR signaling is a good example of how antagonistic 
pleiotropy can drive the aging process.

AhR signaling aggravates extracellular matrix degeneration

The extracellular matrix (ECM) has a crucial role in both 
the developmental morphogenesis of tissues and in the 
maintenance of homeostasis during the aging process. Tis-
sue development is dependent on a constant remodeling 
of ECM structures involving a dynamic balance between 
both synthetic and catabolic processes [111]. ECM pro-
vides the microenvironment for both cellular differentia-
tion and tissue morphogenesis during embryogenesis. This 
developmental process is regulated by a diverse network 
of signaling mechanisms and the enzymes controlling the 
homeostasis of ECM. On the other hand, it is known that the 
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aging process is associated with many degenerative activi-
ties in the ECM of many tissues, e.g., in the skin and car-
diac muscle [112, 113]. For example, there is an increased 
expression and activity of many matrix metalloproteinases 
(MMP), an accumulation of collagen with an increased level 
of cross-linking, and an enhanced fragmentation of ECM 
components; these are all common hallmarks of age-related 
degeneration of ECM integrity. Moreover, the degeneration 
of ECM modifies immune responses thus exposing tissues 
to inflammation and many diseases [114]. Interestingly, AhR 
signaling has an important role in the ECM remodeling and 
the maintenance of its homeostasis [115, 116]. It is known 
that AhR signaling stimulates the expression and activity of 
different MMPs, e.g., MMP1 and MMP9, and thus enhances 
the degradation of ECM structures in a context dependent 
manner (Fig. 2). There is robust evidence indicating that the 
expression of many MMPs increases with aging in different 
tissues [113]. AhR signaling co-operates with several signal-
ing pathways, such as TGF-β, NF-κB, and integrin pathways, 
in the regulation of cell adhesion and ECM metabolism 
[116, 117]. The TGF-β cytokine is a pleiotropic regulator of 
ECM remodeling, i.e., its signaling is stringently controlled 
in a cell-specific manner [117, 118]. However, AhR and 
TGF-β factors display mutually repressive signaling mecha-
nisms in many conditions [117]. For instance, AhR signaling 
regulates the expression of the latency-associated protein 1 
(LTBP-1) which inhibits the activation of latent TGF-β in 
the ECM. This regulation is under the epigenetic control 
and is thus a context-dependent process. It has been pro-
posed that the AhR/LTBP-1/TGF-β axis has a crucial role in 
many pathological conditions [117]. Tomkiewicz et al. [119] 
demonstrated that the activation of AhR factor stimulated 
the Src kinase which subsequently activated focal adhesion 
kinase (FAK) and enhanced cell migration in human HepG2 
cells. Moreover, TCDD exposure increased the expression 
of several integrin proteins, e.g., ITGβ1, ITGβ3, and ITGα1, 
in human HepG2 cells. Interestingly, Rapisarda et al. [120] 
revealed that an increased expression of ITGβ3 induced the 
senescence of several human cell types by activating TGF-β 
signaling. In this respect, the activation of AhR signaling 
enhances cell migration during the developmental phase as 
well as cell senescence and ECM degradation with aging.

AhR signaling provokes osteoporosis and vascular 
dysfunction

AhR signaling has an important role in the control of home-
ostasis in bones and vascular tissues. The balance between 
the activities of osteoblasts and osteoclasts regulates the 
mineralization and resorption of the bone [121]. There is 
abundant evidence that the activation of AhR signaling 
arrests the proliferation of human osteoblasts [122], whereas 
it stimulates the formation of osteoclasts thus increasing 

bone resorption and enhancing osteoporosis with aging 
[42, 47, 123]. Eisa et al. [47] reported that KYN, an agonist 
of AhR, induced the generation of osteoclasts from mouse 
macrophages via the activation of the receptor of nuclear 
factor κB ligand (RANKL) signaling. KYN treatment also 
enhanced the resorption of mouse bone. However, recent 
studies have revealed that the AhR-driven osteoclastogenesis 
in mouse macrophages is dependent on both the concen-
tration of indoxyl sulfate, an endogenous AhR agonist, as 
well as the duration of treatment [124]. A short-term and 
low-dose exposure stimulated mouse osteoclast differentia-
tion, whereas a long-term and high-dose treatment inhibited 
the differentiation of mouse macrophages into osteoclasts. 
Refaey et al. [125] reported that feeding of adult mice with 
KYN increased the serum level of RANKL, a marker for 
osteoclastic activity, as well as it induced osteoporotic 
changes in the bone microarchitecture. KYN supplemen-
tation also augmented the adiposity of bone marrow. It is 
known that the activity of indoleamine 2,3-dioxygenase 1 
(IDO1) and consequently the serum levels of KYN signifi-
cantly increase with aging [126, 127]. Accordingly, Chung 
et al. [128] reported that the aging process notably upregu-
lated the markers of osteoclastogenesis in human bone mar-
row cells, such as the expression levels of RANK and c-fms 
genes. Currently, the mechanisms behind the pleiotropic 
responses of AhR signaling in the maintenance of bone 
homeostasis remain to be elucidated.

AhR signaling regulates not only vascular development, 
but also sprouting angiogenesis which can have either ben-
eficial or detrimental effects in diverse diseases. It is known 
that different AhR agonists inhibit the proliferation, migra-
tion, and tube formation of human umbilical vein/artery 
endothelial cells (HUVEC/HUAEC) [129]. Ichihara et al. 
[130] demonstrated that a hindlimb ischemia induced a 
markedly increased angiogenesis in the AhR-knockout mice 
in comparison with that of their normal counterparts. The 
enhanced angiogenesis was associated with an increased 
expression of hypoxia-inducible factor-1α (HIF-1α) which 
stimulated the expression of vascular endothelial growth 
factor (VEGF) subsequently enhancing angiogenesis. Given 
that AhR and HIF-1α factors share the same nuclear trans-
porter ARNT protein [131], it seems that a reduced level 
of AhR factors could well increase the nuclear transport of 
HIF-1α (see below). It is known that exposure to indoxyl 
sulfate was able to promote rat endothelial senescence [132] 
and enhance the disruption of rat blood–brain barrier [133] 
via an activation AhR signaling. Indoxyl sulfate, a uremic 
toxin produced from L-tryptophan, has been claimed to be 
associated with some serious vascular diseases, e.g., chronic 
kidney disease and cardiovascular disease [134]. Eckers 
et al. [56] demonstrated that the overexpression of AhR fac-
tor or its stimulation with agonists impaired the activation of 
endothelial nitric oxide synthase (eNOS) and the production 
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of NO in human endothelial cells. eNOS has a crucial role 
in the maintenance of vascular homeostasis and it is evident 
that its reduced activation could lead to the development of 
vascular diseases [135].

AhR signaling induces the remodeling of immune system

The aging process is associated with a significant remod-
eling of both arms of the immune system, i.e., adaptive and 
innate immunity [136–138]. Common hallmarks of immuno-
aging include (i) an involution of the thymus, (ii) a chronic 
low-grade inflammation called inflammaging, (iii) increased 
immunosuppressive activity attempting to counteract inflam-
maging, and (iv) immunosenescence of effector immune 
cells reducing the functional activity of the immune system 
with aging. Interestingly, AhR signaling seems to be able to 
regulate these processes in a context-dependent manner. It is 
known that the activation of AhR signaling can promote an 
atrophy/involution of mouse thymus which disturbs the mat-
uration of lymphocytes with aging thus enhancing immu-
nosenescence [82, 139]. Laiosa et al. [139] revealed that 
the activation of AhR signaling within intrathymic lympho-
cyte progenitor cells arrested their proliferation and conse-
quently induced the atrophy of mouse thymus. Diani-Moore 
et al. [82] reported that the stimulation of AhR signaling by 
TCDD activated poly (ADP-ribose) polymerase (TiPARP) 
which caused the loss of  NAD+ and subsequently elicited 
thymic atrophy in mice. The exposure to a PARP inhibitor 
increased the level of  NAD+ and prevented the atrophy of 
thymus. Age-related involution of thymus is an important 
contributor to inflammaging and immunosenescence [140].

There is clear evidence that AhR signaling can induce 
both pro-inflammatory and anti-inflammatory responses 
through different signaling pathways [4, 141, 142]. Com-
monly, many environmental pollutants, e.g., polycyclic aro-
matic hydrocarbons (PAH), are known to stimulate oxidative 
stress and induce inflammatory responses [143, 144]. The 
AhR-induced ROS production probably is the major mech-
anism underpinning the generation of inflammation since 
ROS are well-known inducers of inflammatory responses 
[145]. Vogel et al. [144] demonstrated that inflammatory 
stimuli also induced the expression of AhR factor in human 
dendritic cells. They revealed that the promoter of the human 
AhR gene contained three putative NF-κB binding sites; 
of these, one motif mediated the RelA/p50-induced tran-
scription of the AhR gene which explains why an increased 
NF-κB signaling is associated with the stimulation of AhR 
signaling. Subsequently, AhR signaling is able to control the 
function of a large set of lymphoid cells generating either 
pro- or anti-inflammatory responses [4, 146]. Moreover, 
bilirubin and biliverdin, the catabolic metabolites of heme 
protein, are also agonists of the AhR factor [147] (Fig. 2). 
It is known that diverse stresses can increase the levels of 

these compounds which possess anti-inflammatory activity 
by inhibiting the activation of NF-κB and inflammasomes 
[148].

There is convincing evidence that AhR signaling is driv-
ing an anti-inflammatory regulation rather than pro-inflam-
matory responses. Huai et al. [149] demonstrated that the 
AhR factor suppressed the function of inflammasomes by 
inhibiting the transcription of the NLRP3 gene in mice. They 
revealed that AhR factor was able to bind to the xenobiotic 
response element (XRE) in the promoter of the NLRP3 gene 
and inhibited its transcription (Fig. 2). Inflammasomes are 
responsible for the activation of a diverse set of inflamma-
tory responses driven by the innate immune system. AhR 
factor can also suppress inflammatory responses by inducing 
the expression of SOCS3 protein, a suppressor of cytokine 
signaling [150]. Wada et al. [150] revealed that the mouse 
and human promoter sequences of the SOCS3 gene con-
tained a transcriptionally active XRE site through which 
AhR factor inhibited the transactivation of the SOCS3 gene 
in mouse liver and human HepG2 cells. They also reported 
that the activation of AhR signaling suppressed hepatic 
steatosis occurring when mice were fed a high fat diet. 
Moreover, the activation of AhR signaling stimulates the 
differentiation of immunosuppressive phenotypes of many 
immune cells, i.e., (i) induction of myeloid-derived suppres-
sor cells (MDSC) [151], (ii) Tregs [38], (iii) Bregs [37], (iv) 
tolerogenic dendritic cells (tolDC) [152], and (v) M2 mac-
rophages (Mreg) [153]. For instance, AhR signaling stimu-
lated the expression of Forkhead box 3 (FoxP3) protein, a 
master regulator of Tregs [38] (Fig. 2). AhR factor can also 
induce immunosuppressive responses via the non-genomic 
Src-STAT3 pathway. Zhu et al. [154] reported that AhR fac-
tor promoted the expression of IL-10 through the Src-STAT3 
pathway in mouse inflammatory macrophages.

It is known that a chronic state of inflammation, such 
as inflammaging, triggers a compensatory immunosup-
pression which prevents excessive inflammatory responses 
[155]. There is clear evidence that the aging process induces 
the activation of immunosuppressive network which most 
probably counteracts inflammaging [138]. Interestingly, it 
seems that AhR signaling has a key role in the induction 
of inflammation-induced immunosuppression. It is recog-
nized that NF-κB signaling, a major inducer of inflamma-
tory responses, is also able to transactivate the expression of 
AhR factor [144]. Moreover, it is known that inflammation 
stimulates the expression of the IDO1 enzyme which acti-
vates the KYN pathway thus producing KYN and kynurenic 
acid (KYNA), potent agonists for AhR [39, 127] (Fig. 2). 
Consequently, the activation of AhR signaling can pro-
mote the expression of IDO1 [156], i.e., a positive feedback 
loop between IDO1 and AhR signaling. Given that AhR 
signaling stimulates anti-inflammatory/immunosuppres-
sive responses (see above), this provides a counteracting 
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regulation commonly observed not only in inflammaging 
[157], but also in age-related inflammatory diseases. An 
increased immunosuppressive activity with aging inhib-
its the functional activity of the immune system evoking 
a state called immunosenescence [158]. Immunosenes-
cence in conjunction with immunosuppression increases 
a risk for cancers, enhances sensitivity to infections, and 
exposes elderly people to many age-related diseases [159]. 
For instance, it is well-known phenomenon that vaccination 
efficiency and the efficacy of immunotherapies decline as 
the individual enters old age. These observations are indica-
tions that there is a remodeling of the immune system with 
aging. Immunosuppressive mechanisms, e.g., the secretion 
of anti-inflammatory cytokines and ROS/RNS compounds 
as well as the depletion of certain amino acids via catabo-
lism also promote degenerative bystander effects in inflamed 
host tissues [160]. For instance, TGF-β signaling can induce 
fibrosis, cellular senescence, osteoporosis, muscle atrophy, 
and alterations in ECM [161]. It seems that acute inflam-
matory responses stimulate the expression of AhR factor 
which consequently enhances immunosuppression and ulti-
mately promotes immunosenescence and immunoaging of 
the immune system.

AhR signaling is increased in age‑related inflammatory 
diseases

Currently, there are many review articles describing the role of 
AhR signaling in inflammatory diseases, e.g., atherosclerosis, 
neurodegenerative diseases, rheumatoid arthritis, and chronic 
infections [162, 163]. Given that AhR signaling has a crucial 
role in cardiovascular physiology, disturbances in its function 
have been linked with several cardiovascular diseases, e.g., 
atherosclerosis and ischemic heart disease [164]. For instance, 
AhR signaling can enhance inflammatory responses by pro-
moting oxidative stress and cellular senescence in the intimal 
layer of the blood vessel wall. Moreover, Vogel et al. [165] 
demonstrated that TCDD stimulated the differentiation of 
human U937 macrophages into atherogenic foam cells. The 
foam cells secreted inflammatory mediators and MMPs thus 
disturbing ECM structures and inducing chronic inflamma-
tion in blood vessel wall. However, Kim et al. [166] reported 
that AhR signaling inhibited the transition of smooth muscle 
cells to chondromyocytes in human atherosclerotic lesions. 
This implies that AhR signaling has both beneficial and 
harmful effects in atherosclerotic tissue. There seem to exist 
tissue-specific differences in the AhR-induced responses to 
ischemic insults. Seong et al. [167] revealed that the activation 
of AhR signaling with an endogenous agonist, 2-[1′H-indole-
3-carbonyl]-thiazole-4 carboxylic acid methyl ester (ITE), 
improved the function of mouse cardiac muscle after myocar-
dial infarction. In fact, ITE treatment increased the number 
of immunosuppressive FoxP3-positive Tregs and shifted the 

pro-inflammatory M1 macrophages towards the anti-inflam-
matory M2 phenotype. On the other hand, Cuartero et al. 
[168] demonstrated that the activation of KYN/AhR pathway 
enhanced the extent of acute brain damage after middle cer-
ebral artery occlusion (MCAO) in mice. An ischemic insult 
increased the nuclear translocation of AhR factor to neurons 
in peri-infarct and core regions. They also reported that the 
KYN-induced increase in infarct volume was AhR-dependent 
since it did not appear in the AhR antagonist-treated or in 
the AhR-knockout mice. Chen et al. [169] reported that AhR 
immunoreactivity mainly increased in activated microglia and 
astrocytes after MCAO in mice. They also observed that the 
activation of AhR after an ischemic stroke increased astroglio-
sis and suppressed neurogenesis in adult mice. These stud-
ies indicate that the responses of AhR signaling are context-
dependent in inflammatory states.

Ramos-Garcia et al. [170] demonstrated that the expression 
of AhR was increased with aging in the human post-mortem 
hippocampal samples. The increase was more evident in non-
neuronal cells than neurons, especially the cytoplasm of astro-
cytes displayed a robust immunostaining. They also revealed 
that there was a strong increase in the expression level of AhR 
protein in the hippocampal samples of patients with Alzhei-
mer’s disease (AD) as compared to that of healthy elderly peo-
ple. Currently, the role of AhR signaling in the pathogenesis 
of AD is unknown. However, Duan et al. [171] demonstrated 
that the neurotoxicity of β-amyloid peptide was dependent on 
IDO1/KYN/AhR signaling in rat primary neurons. There is 
clear evidence that uremic toxins aggravate vascular inflam-
mation in many chronic inflammatory diseases, e.g., in car-
diovascular diseases [172]. Uremic toxins, e.g., indoxyl sul-
fate, derived from the gut microbiota, are potent agonists for 
AhR factor [173]. Chronic kidney disease (CKD) leads to the 
accumulation of uremic toxins in the circulation. It has been 
reported that indoxyl sulfate promotes the AhR-mediated 
production of ROS/RNS compounds which impair the redox 
balance of endothelial cells and induce vascular inflamma-
tion [174]. These toxins not only enhance inflammation in the 
kidney, but they accelerate vascular or even organismal aging 
throughout the body [175, 176]. It is known that the presence 
of CKD exposes the patient to many other chronic diseases, 
such as cardiovascular diseases [172] and Alzheimer’s disease 
[177]. Given that AhR signaling is a pleiotropic regulator in 
inflammatory states, it will provide a great challenge for drug 
discovery projects.

Potential molecular mechanisms associated 
with the AhR‑promoted aging process

The AhR is a transcription factor which integrates many 
upstream signaling pathways to a multitude of downstream 
functions. Here, the principles of the regulation will be 
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briefly described, mainly focusing on the mechanisms which 
appear to control the aging process. The signaling mecha-
nisms and functions undertaken by the AhR factor have 
been described in detail elsewhere [3, 178, 179]. The AhR 
protein belongs to the family of bHLH/PAS domain factors 
possessing functional sites for ligand binding, dimerization, 
HSP90 interface, and DNA-binding [3]. A cytoplasmic com-
plex of AhR contains the interaction with chaperones p23, 
XAP2, and HSP90 [180]. After ligand binding, AhR fac-
tor is translocated to the nucleus where it heterodimerizes 
with AhR nuclear translocator (ARNT) protein [181]. The 
AhR/ARNT complex binds to the specific dioxin/xenobiotic 
response element (DRE/XRE) and this can activate the tran-
scription of multiple genes. However, AhR factor can also 
form complexes with other transcription factors, e.g., RelB, 
E2F1, and estrogen receptor (ER), and subsequently bind to 
their specific binding sites, i.e., not that of DRE/XRE. These 
non-canonical pathways indicate that AhR factor can affect 
gene expression which is not controlled by the AhR/ARNT 
complex [182]. The ARNT factor can form a complex with 
the AhR repressor (AhRR) protein which means that AhRR 
protein competes with AhR factor for binding to the ARNT 
factor. Given that the AhRR/ARNT complex lacks a trans-
activation domain, it indicates that the complex inhibits AhR 
signaling [183]. In addition to the genomic regulation, AhR 
factor is also able to affect signaling in a non-genomic man-
ner. There is clear evidence that ligand binding to AhR factor 
in the cytoplasm can activate Src kinase which subsequently 
stimulates focal adhesion kinase (FAK) and promotes inte-
grin clustering and cellular plasticity in human HepG2 cells 
[119] (Fig. 2). The AhR/Src signaling can also induce the 
Src/IDO1 and Src/STAT3 pathways which are inducers of 
many immunosuppressive properties [154].

Given that AhR factor is a ligand-dependent transcrip-
tion factor, its ligands, either agonists or antagonists, have 
a key role in the regulation of its activity. The AhR factor 
was first characterized as a sensor for environmental tox-
ins, such as TCDD and PAH compounds. In addition to 
xenobiotic ligands, it has been revealed that it can bind a 
number of endogenous ligands, such as many tryptophan 
metabolites as well as the metabolites of the arachidonic 
acid and heme pathways [178]. There exist significant dif-
ferences in the specificity of ligands in the activation of 
AhR factor concerning ligand structures, tissues, and even 
animal species. Currently, it has been speculated that the 
most important ligands related to the aging process and 
age-related diseases could be metabolites of L-tryptophan 
degradation [179]. In the host cells, the activation of IDO1/
IDO2 and tryptophan 2–3-dioxygenase (TDO) stimulates 
the kynurenine pathway generating kynurenine (KYN) and 
kynurenic acid (KYNA) which are potent activators of AhR 
factor [127, 179]. Interestingly, many inflammatory media-
tors stimulate the activation of IDO1 and the levels of KYN 

are significantly elevated with aging [126, 127]. Ultraviolet 
radiation (UVR) generates 6-formylindolo[3,2-b]carbazole 
(FICZ) from tryptophan and FICZ is a potential inducer of 
skin photoaging [58]. Gut microbiota are also an impor-
tant producer of tryptophan metabolites, especially indole 
compounds, which can gain access to the circulation and 
subsequently activate AhR signaling in many tissues [173]. 
Moreover, Marinelli et al. [184] revealed that the butyrate 
produced by the microbiota was an activating ligand for the 
AhR factor. There is convincing evidence indicating that 
microbiome can have a crucial role in the aging process and 
especially in age-related diseases [185, 186]. Currently, it 
seems that the IDO1/KYN pathway and gut microbiome pro-
vide important endogenous ligands which can participate in 
the regulation of AhR signaling.

The ARNT protein is not a specific binding partner for 
AhR and AhRR, but it can also bind some other transcription 
factors, e.g., hypoxia-inducible factor-1α (HIF-1α) [187]. 
This means that there exists a competition between the AhR 
and HIF-1α factors for the recruitment of the ARNT protein 
and subsequent DNA binding [131, 187, 188]. The ARNT 
factor has also been called HIF-β because it dimerizes with 
HIF-1α protein. There is robust evidence that hypoxia/
HIF-1α suppressed the gene expression via AhR signaling, 
whereas the activation of AhR inhibited the HIF-1α-driven 
gene expression [187–189]. The conditional knockout of 
mouse Arnt gene prevented both the AhR and HIF-1α-
driven induction of target genes [190]. It has been demon-
strated that an increased expression of HIF-1α and hypoxia 
resistance are both associated with an extension of lifespan, 
e.g., in subterranean naked mole-rats [191]. Studies on C. 
elegans have also revealed that hypoxia and the consequent 
stabilization of HIF-1α protein can extend lifespan in the 
co-operation with other longevity factors [192]. Currently, 
it is not known whether an increased HIF-1α stabilization in 
hypoxic conditions decreases AhR signaling and thus could 
reduce the AhR-promoted degenerative processes.

There is clear evidence that AhR factor co-operates with 
the NF-κB signaling system [179]. The NF-κB pathway is 
a major regulator of immune responses, but it also controls 
apoptosis, cellular senescence, and even the aging process 
[193, 194]. Vogel et al. [195] demonstrated that AhR factor 
interacted with RelB component, a member of NF-κB fam-
ily driving non-canonical signaling, and subsequently the 
complex became bound to the specific RelB/AhR respon-
sive element (RelBAhRE) in the promoter of the IL-8 gene 
and increased the promoter activity in human macrophages. 
Interestingly, the RelB/AhR complex was able to bind to 
specific NF-κB sites as well as to the DRE/XRE sites. The 
RelB-induced DNA-binding did not require ARNT protein, 
but protein kinase A (PKA) signaling clearly activated the 
transcription. Consequently, Ishihara et al. [196] revealed 
that the RelB-enhanced expression of AhR-driven cytokine 
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genes was dependent on which ligand was binding to the 
AhR factor. For instance, TCDD and FICZ promoted the 
RelB-dependent expression of CCL20, whereas indole-
3-carbinol suppressed the expression of CCL20 in the LPS-
stimulated mouse macrophages. The function of the RelB 
factor has been associated with many developmental pro-
cesses in the immune system, especially the differentiation 
of dendritic cells [197]. It is known that RelB protein can 
modify the chromatin landscape and thus promote alterations 
in cell phenotypes. For instance, RelB protein can form a 
repressive complex with histone H3 lysine methyltransferase 
G9a in the IL-1β promoter of human THP-1 monocytes and 
thus induce tolerance to endotoxin [198]. Currently, it is not 
known whether the RelB/AhR complex can be associated 
with the RelB-dependent epigenetic regulation.

Currently, it is known that epigenetic regulation controls 
the expression of the AhR gene and subsequently AhR pro-
tein can modify, e.g., the activity of retrotransposons [13, 
26]. Epigenetic mechanisms have a crucial role both in the 
early development and the aging process [199, 200]. There 
are several studies indicating that the promoter sequences of 
the human AhR gene contained DNA methylation sites which 
controlled the silencing of the gene [201]. Moreover, Ko 
et al. [24] demonstrated that the promoter of the mouse AhR 
gene contained clusters of binding sites for the pluripotency 
factors NANOG and OCT3/4 which mediated the silencing 
of the AhR gene through an association of polycomb group 
(PcG) proteins with the methylated histones. Accordingly, 
the differentiation of mouse embryonal stem cells increased 
the acetylation level of these histone sites that enhanced the 
transcription of the AhR gene. Garrison et al. [202] reported 
that exposure of human HepG2 and MCF7 cells to histone 
deacetylase (HDAC) inhibitors robustly increased the activ-
ity of the AhR promoter. These observations highlight that 
the transactivation of the AhR gene is under the epigenetic 
regulation through DNA and histone methylation. Interest-
ingly, there are studies indicating that AhR factor is able 
to regulate the epigenetic state of target genes. Singh et al. 
[203] demonstrated that in mice, an experimental colitis 
decreased the presence of Tregs and increased the activa-
tion of Th17 cells. Interestingly, TCDD exposure promoted 
the differentiation of Tregs and inhibited the activity of Th17 
cells. They also revealed that TCDD treatment significantly 
reduced the methylation of CpG sites in the promoter of the 
FoxP3 gene, whereas it increased the methylation level of 
the IL-17 promoter. These changes attenuated clinical and 
inflammatory markers of mouse colitis. Clinical studies have 
also revealed that the activation of the AhR-HDAC8 axis 
promoted the progress of human hepatocellular carcinoma 
[204]. AhR factor stimulated the expression of HDAC8 via 
the AhR-ARNT complex in human hepatoma cells. Wajda 
et al. [205] have reviewed the studies on the role of AhR 
factor in the epigenetic regulation of the immune system. 

Currently, it is clear that epigenetic mechanisms control the 
aging process both at the stem cell and organismal level [96, 
200]. Epigenetic regulation is a tempting model to explain 
how antagonistic pleiotropy could control both the develop-
mental and aging processes.

Several epigenome-wide association studies (EWAS) have 
demonstrated that smoking is associated with DNA hypo-
methylation at the intron 3 of the AhRR gene (cg05575921) 
in peripheral blood mononuclear cells (PBMC) [206, 207]. 
Dawes et al. [208] reported that increased cigarette con-
sumption enhanced the hypomethylation of the intron in 
PBMC and saliva samples in a dose-dependent manner. 
Interestingly, there are several reports indicating that the 
alterations in the DNA methylation signatures of smokers 
significantly correlated with the markers of the epigenetic 
aging clock, e.g., with the GrimAge and DNAmPhenoAge 
biomarkers [209, 210]. These studies indicated that the 
hypomethylation of CpG site at the intron 3 of the AhRR 
gene accelerated the aging process although the mechanism 
is still unknown. Moreover, AhR factor is able to regulate 
the differentiation of embryonic stem cells via the control of 
retrotransposon Alu and LINE-1 sequences. Alu and LINE-1 
transposons are normally silenced with heterochromatin 
structures, but there are studies indicating that many trans-
posons are activated as the individual ages [211]. Wood et al. 
[212] demonstrated that the genetic suppression of transpos-
able elements extended the lifespan in Drosophila. There 
are many observations that AhR factor regulates the activity 
of transposable elements, e.g., Alu and LINE-1 [26, 213] 
(Fig. 2). It is known that AhR ligands can reactivate LINE-1 
retrotransposon in many human and mouse cell lines [213]. 
The retrotransposition of LINE-1 has been associated with 
the activation of immune system and thus it can induce both 
inflammation and autoimmunity [214]. There are observa-
tions that LINE-1 caused DNA damages and enhanced cel-
lular senescence [215]. Given that retrotransposons have 
beneficial effects during embryogenesis, St. Laurent  3rd et al. 
[215] proposed that the activation of retrotransposition with 
aging represents an antagonistic pleiotropy in the regulation 
of the aging process.

Anti‑aging therapeutic treatments suppress 
AhR signaling

Substantial research efforts have been exerted in the search 
for anti-aging therapeutics. It is known that metformin and 
rapamycin treatments are able to extend the healthspan and 
lifespan of mice [216, 217]. Interestingly, there is clear evi-
dence that metformin and rapamycin can suppress AhR sign-
aling in different models [218, 219]. It seems that autophagy 
is involved in these results since both metformin and rapa-
mycin are potent inducers of autophagy and it is known that 
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autophagy is an important regulator of the aging process 
[52, 107]. Interestingly, Yang and Chan [109] demonstrated 
that the AhR protein was degraded via selective autophagy 
in several human cell lines. Accordingly, chloroquine, an 
inhibitor of autophagy, significantly increased the protein 
level of AhR factor. Nguyen et al. [220] reported that the p23 
co-chaperone of the AhR complex prevented the degrada-
tion of AhR factor. The levels of AhR and ARNT were also 
robustly reduced in mouse hepatoma cells with a p23 knock-
down. Although the mechanism of p23 in the degradation of 
AhR factor is unknown, it seems that autophagy controls the 
protein level and the activity of AhR signaling. In addition to 
metformin and rapamycin, also a short-term nutrient depri-
vation was able to induce autophagy and down-regulate AhR 
factor in human HeLa cells [109]. It is widely accepted that 
the anti-aging response of caloric restriction is induced by 
an increase in cellular autophagy [221]. There is robust evi-
dence that certain plant polyphenols are potent modulators 
of AhR factor, either as agonists or antagonists [222, 223]. 
Xue et al. [222] categorized different polyphenols according 
to their agonistic/antagonistic properties; the most potent 
agonists were chrysin, baicalein, and quercetin, whereas 
the most powerful antagonists were kaempferol, resveratrol, 
luteolin, and curcumin. Especially, resveratrol, a potential 
anti-aging compound, displays many anti-inflammatory and 
therapeutic effects in age-related degenerative diseases, e.g., 
cardiovascular diseases, cancers, osteoporosis, neurodegen-
erative diseases, and sarcopenia [224]. However, the role of 
AhR signaling as a potential target of anti-aging therapeutics 
needs to be clarified.

AhR knockout mice: Cons for antagonistic 
pleiotropy theory?

The AhR-null (AhR−/−) mice revealed crucial developmental 
defects in many tissues, especially in liver, spleen, and car-
diovascular system [17, 18, 20]. Moreover, there appeared 
clear impairments in the immune system, e.g., proliferation 
of hematopoietic stem cells (HSC) was robustly increased 
which promoted premature exhaustion of HSCs and thus 
augmented myeloproliferative disorders [19]. The AhR-null 
mice displayed such pathological changes as cardiovascular 
lesions, hepatic fibrosis, and increased tumorigenesis [17, 20]. 
The mortality of the AhR-null mice was significantly increased 
both right after birth and later in life [17, 225]. All these altera-
tions are consistent with the theory of antagonistic pleiotropy. 
Surprisingly, recent studies have revealed that lack of AhR 
factor is associated with premature aging process characterized 
by enhanced cellular senescence and increased serum levels 
of both pro-inflammatory and anti-inflammatory cytokines, 
such as IL-6, TNF-α, and IL-10 [225, 226]. Nacarino-Palma 
et al. [226] reported that AhR depletion significantly increased 

tumor incidence in mouse liver with aging. Moreover, they 
demonstrated that the deficiency of AhR factor robustly 
expanded the number of senescent cells in the liver preceding 
the aging process. For instance, there was a clear overexpres-
sion of senescence markers, such as senescence-associated 
β-galactosidase, p16INK4a, and p21CIP1. An increased cellu-
lar senescence was not only a liver-specific process since AhR-
deficient embryonic and adult fibroblasts displayed increased 
cellular senescence in vitro cell cultures. These results indi-
cate that lack of AhR factor accelerates premature aging pro-
cess and tumorigenesis, robustly present already at the age of 
12–15 months [225, 226]. Given that AhR signaling promotes 
cellular senescence with aging (see above), these observations 
on premature aging process in the AhR-null mice seem to be 
contradictory to the antagonistic pleiotropy theory (Fig. 1).

There is substantial evidence that natural killer (NK) cells 
and cytotoxic  CD8+ T cells have a crucial role in the immune 
surveillance of senescent and tumor cells [227–229]. Sagiv 
et al. [227] revealed that NK cells targeted senescent human 
fibroblast and killed them by secreting perforin, a pore-form-
ing cytolytic protein present in the granules of NK and  CD8+ 
T cells. NK and  CD8+ T cells also exploit the perforin/gran-
zyme mechanism to induce apoptosis of tumor cells [230]. 
Consequently, Ovadya et al. [231] reported that there was 
a robust accumulation of senescent cells in the tissues of 
perforin-knockout mice which displayed a premature aging 
process. Interestingly, there is convincing evidence that AhR 
factor is required for the maintenance of liver-resident NK 
cells in mice [232]. Zhang et al. [232] demonstrated that 
there was a robust decline in the number of NK cells in the 
AhR-null mice. Moreover, AhR deficient mice could not 
mount an NK cell memory response to hapten challenges. 
Accordingly, Shin et al. [233] reported that the activation 
of AhR factor was required for the proper cytolytic activity 
of NK cells in tumor surveillance, i.e., NK cells from the 
AhR-null mice possessed an intrinsic defect in tumoricidal 
activity. These results imply that an impaired surveillance 
capacity of NK cells could cause an accumulation of senes-
cent and tumor cells in the AhR-null mice. An enhanced 
cellular senescence of AhR-depleted fibroblasts in cell cul-
ture might be attributed to metabolic disturbances caused 
by the absence of the AhR-driven gene expression, both via 
genomic and non-genomic pathways. It seems that a lack of 
AhR factor disturbs normal development and leads to patho-
logical processes rather than represents a real aging process.

Conclusions

The antagonistic pleiotropy theory is an old evolution-
ary explanation for the cellular senescence and the aging 
process. There are rather few genes revealing the clear-cut 
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examples of the antagonistic pleiotropy. Blagosklonny [11] 
provided the evidence that mTOR was a good example 
of antagonistic pleiotropy, i.e., it drives developmental 
processes, its knockout has detrimental effects during 
embryogenesis, but it promotes many age-related degen-
erative processes later in life. Interestingly, similar prop-
erties have been associated with the expression of AhR 
factor although the mTOR and AhR factors represent very 
different types of regulation. The AhR factor is an ancient 
sensor for diverse environmental ligands, initially its role 
was thought to be confined to defending the organism from 
a range of chemical threats. Nowadays, it is recognized 
that it is also involved in early developmental processes, 
especially the differentiation of stem cells and immune 
cells. There is substantial evidence that with aging, AhR 
factor is involved in several processes promoting cellular 
senescence and age-related pathological conditions, such 
as osteoporosis, vascular dysfunction, and the remodeling 
of the immune system. Accordingly, there is evidence that 
an increase in AhR signaling occurs in many age-related 
diseases, such as atherosclerosis, cancers, and rheumatoid 
arthritis. This pleiotropy poses difficulties for targeting 
AhR for drug discovery purposes. For instance, many AhR 
agonists, e.g., phytochemicals and microbiota compounds, 
prevent inflammation but an increase in the level of AhR 
signaling can promote different age-related degenerative 
processes. Nonetheless, treatment with tapinarof, a natural 
AhR agonist, resolved skin inflammation in patients with 
psoriasis and atopic dermatitis [234]. Currently, there are 
also some drug discovery projects aimed to reveal novel 
antagonistic ligands to inhibit AhR signaling. Treatments 
with AhR antagonists have yielded promising results in 
rheumatoid arthritis [235] and in cancers, e.g., melanoma 
and glioma [236]. Some researchers have claimed that 
AhR factor is a survival and longevity factor based on 
the health problems and shorter lifespan of the knockout 
mice. However, it seems that the knockout technology, 
even a conditional knockout, is unable to confirm directly 
whether AhR factor is driving the aging process since as 
a pleiotropic factor AhR signaling is able to regulate dif-
ferent and sometimes opposing traits in the organism. For 
instance, there are observations that indoles, an agonist 
of AhR factor, can extend healthspan, but not maximum 
lifespan in worms, flies, and mice [57] (Fig. 1). However, 
indoles from commensal bacteria contains numerous com-
pounds which can be processed to different metabolites 
with diverse agonist/antagonist activities. It is also known 
that there exist many species-specific differences in the 
responses of AhR signaling [237] but their role in antago-
nistic pleiotropy needs to be clarified.
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