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Abstract

Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels
as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior
knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we
carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for
about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with
sequencing of transcriptomes (RNA-Seq) and the trans-regulators by gene knockdown, metabolic assays, and chromosome
conformation capture analysis. The majority of the regulators act in trans to the target (regulated) genes. Most of these
trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled
the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.
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Introduction

Expression levels of genes, like many phenotypes, vary among

normal individuals. Since gene expression underlies cellular char-

acteristics and functions, variation in gene expression contributes

to phenotypic diversity and differences in disease susceptibility.

Previously, we and others demonstrated that there is a genetic

basis to individual variation in gene expression [1–6]. This facili-

tates studies to identify sequence variants that influence expression

levels of genes. Since expression phenotypes of many genes are

studied in parallel, results from genetics of gene expression

(GOGE) studies contribute to the understanding of global gene

regulation.

GOGE studies that treated expression levels as quantitative

traits in family-based linkage [3,7] and population-based associ-

ation analyses [5,8,9] have uncovered polymorphic regulatory

regions that contribute to variation in human gene expression.

However, the regulatory regions were large, often megabases in

size; thus, the identity of most polymorphic regulators remained

unknown. In this GOGE study, we analyzed a large sample in

linkage analyses, then we used deep sequencing of transcriptomes

(RNA-Seq) to guide association-based fine mapping. The results

allowed us to narrow the regulatory regions and identify cis- and

trans-acting polymorphic regulators of ,1,000 human genes.

These results facilitated molecular validation and analyses of the

mapping data. This is an important advance in human genetic

studies where such validations have largely been impossible. In

previous human GOGE studies, the resolution of the mapping

results was inadequate; hence, regulators were not identified, while

other gene mapping studies focused on complex phenotypes, such

as human diseases that are often not amenable to molecular

analyses. Thus, the end points of many human genetic studies

showed genotype-phenotype connections statistically but not

molecularly.

Here, we have an unusual opportunity to begin to bridge the

gap between genetic and mechanistic studies. Knowing the

identity of the regulators, we were able to validate the cis- and

the trans-regulatory relationships using different approaches. For

genes that are cis-regulated, we used RNA-Seq to show differential

allelic expression. For the trans-regulatory relationships, we altered

the expression of the regulators by gene knockdowns and

metabolic perturbations and showed that manipulations of the

regulators affected the expression levels of the corresponding

target genes. We also demonstrated direct interactions between
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regulators and their target genes by chromosome conformation

capture.

Another goal of this study is to examine the role of cis- and trans-

acting polymorphisms on human gene expression. Previously,

GOGE studies in model organisms and humans appear to

disagree on the proportion of polymorphic cis- and trans-acting

regulators. In yeast, fly, and mouse studies, most of the regulators

act in trans [2,10–12]. In contrast, human studies focused mostly

on cis-acting variants. This apparent discrepancy is likely due to

differences in sample sizes. Studies in model organisms used larger

sample sizes and thus were able to find trans-acting regulators that

have smaller effects on gene expression than cis-regulators [13,14].

In contrast, early human studies of GOGE used relatively small

sample sizes, such as samples collected by the International

HapMap Consortium [5,8]; hence they identified mostly cis-

regulators. This and the discovery of cis-regulation of disease

susceptibility genes such as ORMDL3 (asthma) [15] led to

suggestions that cis-acting variants are significant contributors to

variation in human gene expression. However, it is unlikely that

the regulatory landscapes are different between humans and other

organisms. In humans, trans-acting regulators possibly also play an

important role. Several studies [3,4,9] have suggestive evidence for

the important contribution of trans-acting variants. Recently,

studies that used RNA-Seq to analyze gene expression phenotypes

in HapMap samples found cis-acting variants for less than 10% of

human genes [16,17]. These studies suggest that along with cis-

variants, trans-acting polymorphisms contribute to individual

variation in human gene expression. Here, to address this, we

used a large sample size and identified hundreds of polymorphic

trans-regulators. These findings confirm that as in other organisms,

there are many sequence variants in the human genome that act in

trans to influence gene expression.

Many of the identified trans-regulators were previously not

known to play a role in gene regulation. Over 60% of the

regulators are not transcription factors or known signaling factors.

However, the trans-regulators are not randomly distributed;

instead they tend to be found in the same functional pathways

as their target genes. While the regulators were discovered in

analysis of immortalized B-cells, we showed that the regulatory

relationships were also found in primary fibroblasts. Thus, natu-

ral variation in gene expression allowed the identification of

polymorphic expression regulators, which then enabled us to

develop a deeper understanding of gene regulation.

Results

Linkage Scans
We obtained genotypes of single nucleotide polymorphisms

(SNPs) and measured the expression levels of genes in immortal-

ized B-cells from members of 45 Centre d’Etude du Polymor-

phisme Humain (CEPH) Utah pedigrees [18] using microarrays.

We focused our analysis on 4,793 expressed genes that show

variation in expression levels among individuals and carried out

genome-wide linkage analysis (see Methods). From those analyses,

we selected 1,681 (35%) phenotypes for further studies using a

threshold of t.4 (a logarithm of odds (lod) score of ,3.4, and a

genome-wide corrected significance level of approximately 0.05

[19]) (see Methods). Figure 1 shows examples of genome scan

results.

We expected to find polymorphic regulators of the expression

phenotypes in the candidate regions identified by the linkage

scans. Hence we examined the linkage peaks to determine their

locations relative to the genomic addresses of the target genes. To

take into account the imprecision of linkage, we define regulatory

regions that are within 5 Mb of the target genes as proximal and

those that are greater than 5 Mb or on another chromosome as

distal to the target genes [20]. By this definition, among the 1,681

phenotypes with evidence of linkage at t.4, we found that 70

(4.2%) phenotypes have proximal regulators, 1,574 (93.6%)

phenotypes have distal regulators, and 37 (2.2%) phenotypes have

both proximal and distal regulators. Ninety-four percent of the

distal regulators are on a different chromosome than their

corresponding target genes. These results suggest that trans-acting

regulation contributes appreciably to variation in gene expression.

Family-Based and Population Association
Linkage scans provided regulatory regions for over 1,600

expression phenotypes. To confirm these results, we carried out

family-based and population-based association analyses with

markers within the candidate regulatory regions. In addition to

confirming the linkage findings, association mapping allows us to

take advantage of historical recombinations in order to narrow the

candidate regions.

Proximal linkage peaks. For the 107 (70+37) phenotypes

where the linkage peaks are proximal to the target genes, we

assumed that they are likely to be cis-regulated, so we tested SNPs

within and 50 kb up- and downstream of the target genes. Among

these 107 phenotypes, we had informative genotypes for 100

phenotypes to carry out family-based association analysis by

quantitative transmission disequilibrium test (QTDT) [21]. From

the analysis of the members of the 45 CEPH pedigrees by QTDT,

63 of the 100 phenotypes showed significant evidence (nominal

p#0.001) for the combined presence of linkage and association

(Table S1). These results confirm the linkage findings and support

that these phenotypes are cis-regulated.

Using expression data and genotypes of 86 unrelated individ-

uals, we carried out population-based association analysis and

found significant evidence (nominal p,0.005) for population

associations between gene expression levels and SNPs within or

near the target genes (Table S1) for 47 (75%) of these 63

phenotypes. We also estimated the variation in expression

explained by the cis-acting determinants by calculating R2 using

results of the linear regression analyses in population association

studies. For the 47 phenotypes, the average R2 is 0.25

(range = 0.09 to 0.75). For 17 of these phenotypes, the cis-variants

Author Summary

Cellular characteristics and functions are determined
largely by gene expression and expression levels differ
among individuals, however it is not clear how these levels
are regulated. While many cis-acting DNA sequence
variants in promoters and enhancers that influence gene
expression have been identified, only a few polymorphic
trans-regulators of human genes are known. Here, we used
human B-cells from individuals belonging to large families
and identified polymorphic trans-regulators for about
1,000 human genes. We validated these results by gene
knockdown, metabolic perturbation studies and chromo-
some conformation capture assays. Although these
regulatory relationships were identified in cultured B-cells,
we show that some of the relationships were also found in
primary fibroblasts. The large number of regulators
allowed us to better understand gene expression regula-
tion, to uncover new gene functions, and to identify their
roles in disease processes. This study shows that genetic
variation is a powerful tool not only for gene mapping but
also to study gene interaction and regulation.

Genetics of Human Gene Expression
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explained more than 30% of the individual variation in their

expression levels. This provides an estimate of the contribution of

cis-variants; the fraction not explained this way includes non-

genetic factors (including environment) and other genetic factors

not in linkage disequilibrium with the cis-acting determinants.

These findings further support the linkage results and provide

evidence of differential allelic expression of these genes (see

Figure 2 for examples). We also looked for molecular evidence of

cis-regulation (see section below on differential allelic expression

under ‘‘molecular validation’’).

Distal linkage peaks. We followed up results for the 1,611

(1,574+37) phenotypes with significant distal linkage peaks using

QTDT. Unlike proximal peaks where we can look for cis-acting

variants within or near the target genes, there are no obvious

regions to look in the distal peaks. This is particularly difficult

when the linkage peaks are large and contain several potential

regulators. One option is to test all the SNPs under the linkage

peaks for evidence of association with expression levels of the

corresponding target genes; however, that would result in a severe

multiple testing problem. Instead we identified the genes that are

expressed in our B-cells by RNA-sequencing and testing the

expressed genes for association with expression levels of their

corresponding target genes.

In RNA-sequencing, we are not limited to studying only genes

that are represented on the microarrays. With sufficient coverage,

sequencing data also allow us to detect genes that are expressed at

lower levels. This is important since gene expression regulators,

such as transcription factors, are often expressed at low levels. We

Figure 1. Genome scans of six expression phenotypes. The name of the target gene and its chromosomal location (in parenthesis) are shown.
Evidence of linkage as indicated by p value (2log10) is shown on the vertical axis and genomic locations are shown on the horizontal axis of each
graph. The top two panels are examples of phenotypes with proximal linkage peaks, and the bottom four panels are phenotypes with distal linkage
peaks.
doi:10.1371/journal.pbio.1000480.g001
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sequenced the cDNA samples of 41 CEPH HapMap (CEU)

[22,23] individuals using the Illumina technology [24]. For each

sample, we obtained ,40 million reads, each 50 nucleotides long

or about 2 Gb of sequences per sample. We mapped the short

read sequences to the reference human genome (hg18) using the

software MAQ [25]. About 83% of the sequences mapped

uniquely to the reference sequence. The other 17% mapped to

multiple sites in the genome (repetitive sequences or sequence

motifs that are common in gene families) or failed to map

anywhere in the reference genome (including exon junctions

which would not map to the reference genome sequence). We

compared the expression levels of genes in B-cells of the same

individuals from RNA-Seq with those from our microarrays, the

average correlation was 0.76 (range = 0.73 to 0.80, highly similar

to those in other studies [16,17,26]). We also compared genotypes

from our RNA-Seq to those from the HapMap Consortium and

found the average concordance rate was 98.6%. These results gave

us confidence in the data so we used them to identify expressed

genes in the candidate regions identified by linkage scans.

We tested SNPs in the expressed genes within each linkage

peak for association with their candidate target genes. For genes

that are expressed with RPKM$1 [26] in the linkage regions, we

carried out QTDT analyses using SNPs within and 5 kb up- and

downstream of the regulators in all members of the 45 CEPH

families. Among the 1,611 phenotypes with distal linkage peaks,

we excluded 94 phenotypes whose candidate regulatory regions

were over 20 megabases in size. Of the 1,517 remaining

phenotypes, the expression levels of 103 (6.8%) phenotypes

Figure 2. Allelic expression from RNA-Seq confirms prediction by association analysis. Graphical presentations of two genes that show
differential allelic expression. The thick lines represent the higher expressing allelic forms of CHI3L2 and CRYZ (A). Regression of expression
phenotypes (expression levels shown on vertical axis) of two genes on nearby SNPs (genotypes shown on horizontal axis) (B). Number of reads
(vertical axis) from RNA-Seq for each allelic form (horizontal axis) of the genes; only data for individuals who are heterozygous at the coding SNPs are
shown. For each individual, the number of reads for each allele of an SNP is connected by a line. For example, in the panel for rs8535 (CHI3L2), the
individual represented by a red line had 268 reads of the A-bearing form of CHI3L2 and 49 reads of the C-bearing form of CHI3L2 (C).
doi:10.1371/journal.pbio.1000480.g002
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showed evidence of linkage and association (nominal p#0.001;

FDR = 0.02) with SNPs in trans-regulators. Since trans-acting

regulators have weaker effect than cis-regulators, we also looked

at results using lower thresholds of p,0.01 and 0.05 (FDR 3 and

8%); there are 518 (34%) and 917 (60%) phenotypes that met

these thresholds, respectively. Among these 917 phenotypes, the

expression levels of 112 genes are influenced by two or more

unlinked polymorphic trans-regulators. Thus, the analysis re-

vealed 1,036 regulator–target gene pairs. Table 1 shows the top

20 trans-regulator–target gene pairs from our linkage and

association study (see Table S2 for the top 200 regulator–target

gene pairs). As we did for the cis-acting regulators, we tested the

trans-regulators identified by QTDT for allelic association with

their target genes using population association tests. Although the

sample size is small (n = 86), we found significant association for a

set of trans-regulators and their target genes. Among the

regulators of the 917 target genes, SNPs in 58 (6%) and 318

(35%) regulators showed significant allelic association with

expression levels of their target genes at nominal p,0.005 and

p,0.05, respectively. To estimate the influence of these trans-

acting variants on individual variation in gene expression, we

calculated R2 for the 318 phenotypes. The average R2 is 0.07

(median = 0.07; range = 0.05 to 0.24). For 53 phenotypes, the

trans-acting variants explained 10% or more of the individual

variation in their expression levels. These results show that

individual differences in gene expression can be explained by

DNA sequence polymorphisms in trans-acting regulators.

Known and Newly Discovered Regulatory Relationships
To check the validity of these findings, we looked for known

regulatory relationships among the regulator–target gene pairs

that we identified in the genetic analyses. An example of such

known relationship is MRLC2, which encodes myosin regulatory

light chain 2 and its regulator myocyte enhancing factor 2A,

MEF2A, a transcription factor that is known to affect muscle gene

expression, including MRLC2 [27]. Our linkage results identified

chromosome 15q26 (linkage t = 4.9) as the candidate regulatory

region for the expression level of MRLC2. Using association

analyses, we narrowed the candidate region and rediscovered

MEF2A as the regulator of expression level of MRLC2 (QTDT

p = 0.008; population association p = 0.04, rs325380). Another

example is TTC5 as the polymorphic regulator of HSP90AA1

expression. Previous studies showed that a mouse protein

phosphatase that contains a tetratricopeptide repeat regulates

heat shock protein 90; this regulation occurs by dephosphoryla-

tion, which is mediated by the binding of heat shock protein 90 to

the tetratricorepeat domain of the phosphatase [28,29]. Our

results showed that the expression of human HSP90AA1 is

influenced by variants in TTC5, a gene with a tetratricopeptide

repeat (linkage t = 5.4; QTDT p = 0.01, rs11623837). The

‘‘rediscovery’’ of these known regulatory relationships confirms

that our approach can identify trans-acting regulators of human

gene expression.

For the 20 regulator–target gene pairs in Table 1, we checked

for co-occurrence of the names of the regulators and target genes

Table 1. Expression phenotypes with the strongest evidence of linkage and association to polymorphic trans-regulators.

Target
Gene

Target
Gene
(Chr)

t
Value1

Trans-
Regulator

Regulator
(Chr)

SNP
(QTDT)2

p Value
(QTDT)

SNP
(Association)

p Value
(Association)3

Expression Level
(Log2) by Genotype

PECAM1 17 5.54 PSMD8 19 rs2074981 261025 rs2074981 0.02 (4.62, 7.22, 6.85), (‘‘AA,’’ ‘‘AC,’’ ‘‘CC’’)

DLG5 10 5.21 TNIK 3 rs9814699 261025 rs9810370 0.03 (5.47, 5.93, 6.15), (‘‘AA,’’ ‘‘TA,’’ ‘‘TT’’)

TYMS 18 4.96 OPTN 10 rs17512962 261025 rs2095387 N.S. (13.02, 12.9, 13.04), (‘‘GG,’’ ‘‘TG,’’ ‘‘TT’’)

SSR1 6 4.58 ITPR2 12 rs12823128 261025 rs12823128 0.002 (11.01, 10.97, 10.69), (‘‘CC,’’ ‘‘TC,’’ ‘‘TT’’)

FOXG1 14 4.44 NAPB 20 rs2424534 261025 rs2252824 0.04 (3.83, 3.12, 4.41), (‘‘AA,’’ ‘‘AG,’’ ‘‘GG’’)

PARVA 11 4.23 VGLL4 3 rs6807423 261025 rs12374138 0.005 (6.02, 5.78, 5.23), (‘‘AA,’’ ‘‘AG,’’ ‘‘GG’’)

ATXN2L 16 4.21 ENOPH1 4 rs1980187 261025 rs6826022 N.S. (7.34, 7.32, 7.1), (‘‘CC,’’ ‘‘CT,’’ ‘‘TT’’)

PDE4B 1 5.89 MBP 18 rs9959822 361025 rs11150996 0.02 (8.36, 8.06, 7.92), (‘‘CC,’’ ‘‘CT,’’ ‘‘TT’’)

USP1 1 4.05 UXS1 2 rs17279736 361025 rs2167531 N.S. (10.65, 10.7, 10.83), (‘‘CC,’’ ‘‘CT,’’ ‘‘TT’’)

KHDRBS3 8 4.72 FAM120B 6 rs910424 461025 rs1022615 0.002 (4, 4.92, 6.22), (‘‘CC,’’ ‘‘GC,’’ ‘‘GG’’)

ZNF189 9 4.85 ARHGAP10 4 rs6822971 861025 rs7660368 N.S. (8, 8.03, 8.27), (‘‘CC,’’ ‘‘TC,’’ ‘‘TT’’)

USPL1 13 4.68 COG1 17 rs1026129 961025 rs1026128, N.S. (8.32, 8.33, 8.34), (‘‘AA,’’ ‘‘AG,’’ ‘‘GG’’),

IFNA2 9 4.81 C3orf1 3 rs1967621 161024 rs1967621 N.S. (4.29, 4.61, 4.68), (‘‘CC,’’ ‘‘GC,’’ ‘‘GG’’)

PDCD10 3 4.72 ZNF429 19 rs2650825 161024 rs2650825 N.S. (10.66, 10.75, 10.83), (‘‘CC,’’ ‘‘CT,’’ ‘‘TT’’)

MLYCD 16 4.64 DNAJC25-
GNG10

9 rs1322251 161024 rs10817199 N.S. (7.66, 7.65, 7.27), (‘‘CC,’’ ‘‘GC,’’ ‘‘GG’’)

KCNMB3 3 4.57 IPO8 12 rs3910561 161024 rs33270 0.04 (5.93, 5.43), (‘‘AA,’’ ‘‘GA’’)

STXBP3 1 4.38 DCUN1D2 13 rs3814254 161024 rs2261120 N.S. (7.5, 7.54, 8.07), (‘‘CC,’’ ‘‘TC,’’ ‘‘TT’’)

ATXN2 12 4.86 NFATC2 20 rs4811172 261024 rs6067803 0.03 (8.11, 8.18, 8.4), (‘‘GG,’’ ‘‘GT,’’ ‘‘TT’’)

LIN7A 12 4.49 YLPM1 14 rs2241275 261024 rs957345 N.S. (7.52, 6.89, 6.83), (‘‘CC,’’ ‘‘CG,’’ ‘‘GG’’)

ETV6 12 5.04 KCNQ5 6 rs16883476 261024 rs16882712 N.S. (7.92, 7.41, 7.76), (‘‘AA,’’ ‘‘AG,’’ ‘‘GG’’)

1From linkage scans (S.A.G.E./sibpal) of 45 families (.1,000 sibpairs).
2QTDT of all members of 45 families.
3Population association of 86 unrelated individuals.
N.S. = not significant (p.0.05). The sample size for population association is much smaller than ones for the linkage and QTDT analyses.
doi:10.1371/journal.pbio.1000480.t001
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in the literature using a text-mining program, Chilibot [30], to

determine if any of these regulatory relationships are known. We

also queried PubMed for such co-occurrences. Among these 20

pairs, only one pair (MBP and PDE4B) has been shown to have

interactive relationships in Chilibot. Thus, many of these

regulator-target relationships are likely unknown previously.

Molecular Validation
RNA-Seq to identify differential allelic expression in cis-

regulated genes. To validate the polymorphic cis-regulation

identified in our mapping study, we used the RNA-Seq data of

individuals in the HapMap Project as described above. We used

the sequencing data to assess differential allelic expression (DAE)

[16,17,22,23].

The digital nature of the sequence data allows us to use the

heterozygous genotypes in each transcript to determine whether

two allelic forms of a transcript are expressed in equal abundance

[31–33]. Among the 107 expression phenotypes with proximal

linkage peaks, 67 have at least one SNP where there are 2

individuals who are heterozygous at that SNP (see Methods). We

examined these heterozygous samples for evidence of DAE. For

many of these genes, we have data for multiple SNPs from an

average of 7.2 individuals (median = 6). Among the 67 genes, 43

genes (64%) showed significant evidence (p,0.01, chi-square test)

of departure from equal expression of the two allelic forms of the

genes. For the 273 exonic SNPs in these 43 genes, we calculated

an ‘‘allelic expression ratio’’ a/(a+b), where a and b are the

numbers of sequence reads for the two alleles. Figure S1 shows

these allelic expression ratios and their departures from 0.5. For 31

of these genes, the exonic and the associated SNPs from our

mapping study are part of the markers in the HapMap Project

[23]; thus phased haplotype data are available. Using these

haplotypes, we showed that for 28 (90%) genes, the predicted

expression in the association study was confirmed by RNA-Seq

data (see Figure 2 for examples). Hence, the DAE results confirm

the findings from our mapping studies and show that the majority

of genes (,65%) with proximal linkages are cis-regulated. For the

remaining phenotypes, either we do not have adequate sample size

or read coverage to detect subtle evidence of DAE, or they are

regulated by trans-regulators that mapped close to the target genes.

Our sequence data allow us to examine DAE of many more

genes in addition to those with proximal linkage peaks. There are

5,782 genes that can be studied for DAE. Among them, 1,029

(18%) and 1,501 (26%) genes showed significant evidence of DAE

at p value (chi-square test) thresholds of 0.001 and 0.01,

respectively. The 18% to 26% of genes that show DAE provide

another estimate of the number of genes in our B-cells that are cis-

regulated. This proportion is similar to the 12% estimated by Price

and colleagues using admixture analysis [34], the 30% by Pastinen

and colleagues by hybridization of cDNA to SNP arrays [35], the

11% to 22% by Church and colleagues using RNA-Seq, and our

mapping study (we found 6.5% and 24% of phenotypes to have

proximal peaks, at t threshold of 4 and 5, respectively).

Molecular validation of trans-acting regulators: gene

knockdown. To validate the trans-regulator–target gene

relationships, we carried out molecular analyses. First, we

performed gene knockdown studies. We used short interfering

RNA (siRNA) to silence 25 potential regulators, and then assessed

the effects by measuring the expression of the target genes (we

tested cells from 4 to 6 individuals) [36]. Among the 25 regulators,

we included MEF2A and TTC5 as positive controls. The

remaining 23 regulators were selected based on availability of

siRNAs and they span a range of QTDT significance from

p = 1025 to 1022 (for BLM-NUSAP1). We did not select regulators

that were supported by the most significant p-values. We reasoned

that if we can confirm molecularly the regulators with relatively

modest statistical supports, then the ones with more significant

mapping results are likely to be true regulators.

Among the 25 regulators, successful knockdown was achieved

for 18 regulators. The expression of these regulators including

MEF2A and TTC5 decreased significantly (p,0.05) by about 20%

to 85% in four or more independent samples, whereas no changes

in the expression of the regulators were observed when siRNAs

with no homology to the regulators were used (Table 2). We then

measured the expression levels of the target genes following

knockdown of their regulators. The expression levels of 13 (72%)

target genes including MRLC2 (target of MEF2A) and HSP90AA1

(target of TTC5) changed significantly (p,0.05) following the

knockdown of their regulators (Table 2). The expression levels of

the target genes, such as NUSAP1 (encodes a spindle associated

protein) and SSR1 (signal sequence receptor alpha), changed by

,10% to 60%, while those of non-target control (GAPDH) did not

change significantly after the knockdown of the regulators,

suggesting that the changes in expression levels of the target genes

were specific effects of silencing their regulators.

We followed up three of these regulator–target gene pairs in

primary fibroblasts (n = 2) to determine the cell-type specificity of

the regulatory relationships. We carried out siRNA-mediated

knockdown of BLM, ITGB4BP, and PSAP in fibroblasts. Following

the silencing of BLM and ITGB4BP, we observed significant

changes (p,0.05, t test) in expression of their target genes NUSAP1

and SLC25A11 as in the immortalized B-cells (Table S3A).

However, the expression of HMGCS1 did not change significantly

following knockdown of its regulator, PSAP, suggesting that this

regulatory relationship may be specific for B-cells.

These results provide molecular support for the regulator–target

gene relationships identified in our mapping studies. However, the

lack of changes in expression levels of the target genes following

the knockdown of their regulators does not argue against the

regulatory relationships. The expressions of the regulators were

only partly decreased by siRNAs; partial expression may be

sufficient for regulation. In addition, many human genes have

other family members that take over their functions upon

knockdown of their expression.

INSR and its target genes. In addition to knockdown

studies, we carried out another functional analysis that does not

rely on transfection. One of the trans-regulators is the insulin

receptor, INSR. Our mapping results identified six genes, ADD3,

ARNT, ATIC, CCL5, LTB, and PSMD10, whose expression levels

are regulated by the insulin receptor, INSR. Previously, studies

have shown that ADD3 is involved in insulin receptor signaling

[37]. In addition, Kahn and colleagues showed that following

knockdown of ARNT, the expression of the insulin receptor was

decreased in pancreatic islet cells [38]. If our mapping results are

correct, then it would suggest that insulin receptor regulates the

expression of ARNT, providing evidence of reciprocal regulation of

ARNT and INSR or feedback mechanisms. To validate these

regulatory relationships, we stimulated the insulin receptor by

treating primary fibroblasts with insulin and measured the

expression levels of INSR and its target genes. The fibroblasts

allowed us to confirm the regulatory relationship in primary cells.

Among the six genes, four (ADD3, ARNT, ATIC, and PSMD10) were

expressed in fibroblasts, so we focused our analysis on these genes.

We treated the cells with insulin; upon insulin treatment, the insulin

receptor is activated but not the related IGF1 receptor, thus

indicating that insulin was acting specifically through INSR

(Figure 3). Insulin led to a biphasic response of INSR: 2 h after

insulin treatment, the expression level of INSR among four
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individuals increased by an average of 12% (p = 461025); this was

followed by a 48% decrease (p = 0.004) at 6 h after exposure to

insulin (Table 3). The expression levels of the four target genes also

changed significantly (p,0.005) following insulin treatment (Table 3).

These findings confirm our mapping results, which identified INSR

as the polymorphic regulator of expression of ADD3, ARNT, ATIC,

and PSMD10. They show that the regulatory relationships identified

in immortalized B-cells are also found in primary fibroblasts.

Physical interactions between regulators and their target

genes. We used data from chromosome conformation capture

(3C) as additional validation of the regulatory relationships and to

identify regulatory pairs that interact physically. Recently, using

the same immortalized B-cells, Dekker and colleagues combined

3C with high-throughput sequencing, in a procedure they coined

‘‘Hi-C,’’ to identify regions of the human genome that interact

physically [39]. We used their data to determine if any of our

1,036 regulator–target gene pairs (with population association

p,0.05) interact. We found 75 of our gene pairs in their data

(corresponding to 63 unique regulator–target gene pairs; some

pairs were found more than once; see Table 4 and Table S7). The

chance of finding two genes as regulatory pairs in our mapping

study and as interacting partners in the Hi-C experiment by a

different group randomly is very small; thus we believe that these

are likely true interactions. The Hi-C results further confirm

findings from our genetic studies. These data suggest that the

regulators and their target genes may be co-transcribed in

‘‘transcription factories’’ [40–42].

Since the Hi-C libraries were not sequenced exhaustively [39],

some of our pairs may not be included in their results even though

they interact physically. Nevertheless, the results provide addi-

tional information for some of the regulatory relationships and

show that similar approaches can be used to extend the analysis.

Characteristics of the Trans-Regulators
The resolution of our mapping study allowed us to identify the

polymorphic regulators of nearly 1,000 human genes. Instead of

just confirming these results computationally, we used molecular

approaches, which provide an independent method for assessing

Figure 3. INSR activation following insulin treatment in human primary fibroblasts. Fibroblasts were serum starved for 18 h and then
treated with 100 nM insulin for 5 min. Cell lysates were incubated with a-INSR or a-IGF1R antibodies. Input and immunoprecipitated products were
analyzed by western blots using a-phosphotyrosine, a-INSR, or a-IGF1R antibodies.
doi:10.1371/journal.pbio.1000480.g003

Table 2. Results of knockdown of trans-regulators.

Changes in Expression Levels of

Regulator–Target Gene* Regulator{ Target Gene{ Control (GAPDH){

AIG1-TMEM50A 251.067.8 17.162.9 20.4613.2

BLM-NUSAP1 239.267.7 23.363.7 0.163.3

CLTA-GCA 284.266.3 22.265.3 14.561.5

FAM120B-KHDRBS3 271.461.2 26.561.2 5.867.2

GALNTL4-PTPRG 277.564.1 36.7611.8 23.7611.1

GPHN-RALB 272.664.6 40.768.7 14.7612.0

HSP90AB1-STK24 279.064.7 14.465.3 9.264.7

ITGB4BP-SLC25A11 264.464.3 65.767.8 0.260.4

ITPR2-SSR1 221.468.5 20.166.1 7.1611.6

MEF2A-MRLC2 233.969.3 228.162.6 12.768.5

PSAP-HMGCS1 268.565.1 11.966.2 2.764

TTC5-HSP90AA1 287.363.1 243.8612.8 22.6614.9

VGLL4-PARVA 265.967.3 56.5614.2 15.267.9

*All experiments were based on independent siRNA knockdown of four or more samples.
{Expression levels of the regulators and target genes changed significantly (p,0.05, t test) compared to baseline (without siRNA knockdown). Results are shown as
mean 6 S.E.M.
{Expression level of a control, GAPDH, did not change significantly (p.0.05) upon siRNA knockdown of the regulators. Results are shown as mean 6 S.E.M.
doi:10.1371/journal.pbio.1000480.t002
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the findings. Even though we picked regulatory relationships that

had modest statistical support (p = 1025 to 1022) from our

mapping study, over 70% of the regulatory pairs are validated

molecularly. Thus, we are reasonably confident that many of the

1,036 gene pairs have true regulatory relationships, so we went on

to characterize them.

First, many of the trans-regulators were not known to influence

gene expression. Among the 742 regulators, 112 (15%) are known

transcription factors and 140 (19%) play a role in signaling

pathways. The remaining genes have a variety of functions

including metabolism (for example, MAN2A1, PDHA2) and protein

transport or modification in the endoplasmic reticulum (for

example, LMAN1, SEC31A).

Second, the target genes and their regulators often belong to the

same functional pathways. For example, midasin (MDN1), which

plays a role in protein processing [43], regulates the expression of

dynactin 1 (DCTN1) and signal sequence receptor, delta (SSR4).

Both of these target genes also participate in protein transport and

processing in the endoplasmic reticulum [44,45]. To test formally

whether regulators and their target genes belong to the same

functional groups more often than by chance, we annotated the

regulators and target genes using Gene Ontology [46]. We found

significantly (p = 0.008) more regulator–target gene pairs with the

identical ontology annotation than random pairs of genes. The

criterion we used is quite stringent since we required members of a

gene pair to have the identical ontology grouping; it excludes

regulator–target gene pairs that are in the same pathway but do

not have the identical ontology. However, despite the stringent

criterion, a significant result was obtained. Recent results from

yeast studies also showed that regulators and their target genes

share common gene ontology annotations [47].

Third, many of the trans-regulators have more than one target

gene. We found 161 (22%) of the 742 trans-regulators influence the

expression levels of two or more genes. Table 5 shows the 11

regulators that influence six or more target genes. Three of these

regulators are known to play a role in transcription regulation

through chromatin modification (AEBP2) or as transcription

factors (BCL2, ZCCHC2). In addition, three of the regulators

(PHLPP, RAMP1, WDR7) affect gene expression through signal

transduction pathways. The remaining five regulators are not

known to be gene expression regulators, including TTC5, which

has no known function.

Gene Network
The regulators with multiple target genes prompted us to

examine interactions beyond the relationship between a gene and

its regulator. To do so, we used our mapping results to construct

Table 4. Examples of regulator–target gene pairs that interact physically based on Hi-C experiments* [39].

Regulator Target t Value SNP (QTDT) p Value (QTDT) Hi-C Coordinate (Regulator) Hi-C Coordinate (Target)

ATRN NFIB 5.7 rs151507 0.01 chr20:3566294 chr9:14180554

USO1 WDR13 5.64 rs324734 0.004 chr4:76912713 chrX:48351440

CTNNBIP1 DDX58 5.63 rs935073 0.0009 chr1:9873467 chr9:32472537

ROBO1 ATF6 5.38 rs1507417 0.02 chr3:79217935 chr1:160093368

TMEM45A KCNMA1 5.06 rs6799992 0.01 chr10:101764442 chr10:78646999

KCNQ5 ETV6 5.04 rs16883476 0.0002 chr6:73892628 chr12:11800513

KCNQ5 ETV6 5.04 rs16883476 0.0002 chr6:73522933 chr12:11841656

KCNMA1 HMGCS1 5.04 rs11002137 0.006 chr10:78782737 chr5:43334692

KCNMA1 HMGCS1 5.04 rs11002137 0.006 chr10:78778388 chr5:43334974

PRKCE LIG4 4.99 rs2711295 0.0004 chr2:45893756 chr13:107664041

PHLPP PFKL 4.88 rs2053600 0.03 chr18:58718878 chr21:44555603

ROBO1 VRK2 4.83 rs9838937 0.001 chr3:79422794 chr2:58139091

ROBO1 VRK2 4.83 rs9838937 0.001 chr3:79020607 chr2:58189813

SDCCAG8 ACBD3 4.82 rs11800122 0.008 chr1:241614818 chr1:224416160

SDCCAG8 ACBD3 4.82 rs11800122 0.008 chr1:241640785 chr1:224442930

SDCCAG8 ACBD3 4.82 rs11800122 0.008 chr1:241732306 chr1:224420181

DIS3L2 GLTSCR2 4.82 rs3100608 0.01 chr2:232554756 chr19:52951146

WWOX IMPA2 4.82 rs11150104 0.002 chr16:76861753 chr18:11973686

SDCCAG8 NDEL1 4.81 rs10803140 0.009 chr1:241615074 chr17:8316669

SMYD3 COX4NB 4.75 rs2105158 0.003 chr1:244566879 chr16:84369002

*This table shows only the regulator-target pairs with the most significant linkage evidence. The complete list is given in Table S7.
doi:10.1371/journal.pbio.1000480.t004

Table 3. Changes in expression levels of insulin receptor
target genes following insulin treatment.

Time Point Following Insulin Treatment

Gene Names 1 h 2 h 6 h 12 h

INSR 11% 12%* 248%* 2%

ARNT 23%* 29%* 239%* 216%*

ATIC 22%* 3%* 49%* 82%*

ADD3 7%* 10%* 219%* 237%*

PSMD10 13% 12%* 28% 13%*

*p,0.005 compared to no treatment (t test, n = 4).
doi:10.1371/journal.pbio.1000480.t003
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directed gene networks. We connected regulators and their target

genes using results from the QTDT analysis. The resulting

network consists of 1,036 connections among 742 regulators and

917 target genes. As in many biological networks, the network

connections follow a scale-free distribution (scale-free criteri-

on = 0.98) [48]. On average, genes have 1.3 connections, but some

genes have more connections such as those that regulate the

expressions of several target genes. Figure 4 shows subnetworks for

KIAA1468 and WDR7, which illustrate that some regulators have

multiple target genes and some genes are regulated by more than

one regulator. Unlike many gene networks, the nodes in our

networks are connected by directed edges based on genetic data.

DNA variants in the highly connected genes such as KIAA1468

and WDR7 influence the expression of many genes that are

directly and indirectly connected to them. The WDR7 subnetwork

shows the connections between ITPR2 and SSR1, as well as several

other genes, including SYNCRIP [49] and RHOC [50], that play a

role in the endoplasmic reticulum; thus polymorphisms in WDR7

likely affect protein processing and secretion, the primary functions

of the endoplasmic reticulum. Prior to this analysis, the function of

WDR7 was unknown except that it has been found to influence the

age of onset of multiple sclerosis [51] in genome-wide association

studies. Results from our analyses offer WDR7 as a mechanistic

link between multiple sclerosis and functions of the endoplasmic

reticulum. The efficiencies of the endoplasmic reticulum can

influence susceptibility to multiple sclerosis in different ways. First,

studies have shown that the endoplasmic reticulum plays a key role

in immunity, for example in ensuring the maturation of B-cells

to immunoglobulin secreting plasma cells [52]. In addition,

during myelination, cells such as oligodendrocytes rely on the

endoplasmic reticulum to produce a large amount of plasma

membrane [53]. Thus by altering the efficiencies of endoplasmic

Table 5. Trans-regulators with six or more target genes.

Regulator Target Genes

AEBP2 CAPNS1, CGRRF1, HIVEP1, LOC642732, MED4, PARVB

BCL2 AES, CPNE1, PDAP1, PMVK, TAGLN2, ZFPL1

KIAA1468 CD44, F11R, HNRPDL, MLLT10, PRKCSH, PSMD12, TDG, YTHDF2,
ZWINT

KMO ABCF2, EIF1, HEXB, TNFRSF14, ZMYM2, ZNF330

MDN1 AES, DCTN1, EMP3, MRPL23, PDHX, SSR4

PHLPP ANXA6, CSTF1, NRBP1, PFKL, RAB11B, SLC37A4, STK19, VAV2

RAMP1 GAPDH, LOC645899, PLK1, RPL23A, RPL32, RPL41, RPS13, RPS15,
RPS17, RPS18, RPS23, RPS24, RPS4X

TTC5 C11orf10, GLUD2, HSP90AA1, RPS3A, USP3, USPL1

USP40 ACTG1, RPL22, RPLP1, RPS10, RPS3A, RS3A

WDR7 APPBP1, ATP5G2, BCAS2, LOC642732, PIK3CB, RCC1, RHOC,
SPAG7, SYNCRIP

ZCCHC2 BTBD2, CD37, CNOT3, DDX10, EML2, GNAI2, GNB2, PPP2R1A

doi:10.1371/journal.pbio.1000480.t005

Figure 4. Directed subnetworks. Regulators are connected to their target genes based on results (p,0.05) from QTDT analyses. Directions of the
arrows go from regulators to their target genes. The two examples correspond to genes connected to KIAA1468, a gene with no known function (a),
and WDR7, a gene associated with age of onset of multiple sclerosis (b) [51].
doi:10.1371/journal.pbio.1000480.g004
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reticulum, variants in WDR7 can influence individual susceptibility

to multiple sclerosis through the autoimmune and/or myelination

pathways. Besides WDR7, other regulators in our network have

also been identified as disease susceptibility genes (see examples in

Figure S2).

Discussion

The main focus of this study is to assess and determine the

polymorphic regulation of human gene expression. We used

linkage analyses to locate the polymorphic regulatory regions for

1,681 human genes. About 6% to 24% of these regulatory regions

were close (proximal) to the target genes, and the remaining

regions were further away (distal) from the target genes and mostly

on other chromosomes. In follow-up association studies and

sequence-based DAE analyses, at least 60% of phenotypes with

proximal linkage peaks were found to be cis-regulated; this result is

similar to findings in yeast [2,11]. The remaining phenotypes with

proximal linkages are likely regulated by trans-regulators that are

close to their target genes. For 917 genes with distal linkage peaks,

we narrowed the regulatory regions and identified the trans-acting

polymorphic regulators. For some genes, we identified more than

one trans-regulator; thus, the results include a total of 1,036

regulator–target gene pairs. Previous genetics of human gene

expressions studies uncovered only the regulatory regions; here, we

improved the resolution significantly by finding the individual

regulators.

The results allowed us to explore previously unknown aspects of

gene regulation. We found that many genes besides transcription

factors can influence the expression of other genes. Similar results

were found in yeast [2,54]. Only 34% of the polymorphic trans-

regulators that we identified are transcription or signaling factors.

Many of the regulators are found in the same functional pathways

as their target genes. By eliminating the recruitment of regulators

from other pathways, cells can alter gene expression quickly when

a cellular process requires a gene to be turned on or off. We do not

know yet how polymorphisms in these genes influence expression

in trans. One possibility is that the sequence variants in or near the

regulators affect their own message and protein levels (cis-

regulation) and lead to differential expression levels of the target

genes that they regulate (trans-regulation). Based on our RNA-Seq

data, ,20% of the trans-regulators show such DAE or cis-

regulation. Alternately, the sequence variants in the regulators can

affect their structures, stabilities [55–57], and functions by

changing modifications such as phosphorylation status [58]; these

in turn can affect the expression of their target genes. We also do

not know whether the regulatory relationships are direct or

indirect. Since regulatory relationships are highly complex and

most genes are regulated by multiple genes in different feedback

mechanisms, we expect most regulatory relationships are indirect.

The Hi-C data show that some of the regulator–target gene pairs

interact physically at the DNA level; the results imply that they

may be co-transcribed perhaps in ‘‘transcription factories’’ [40,41]

where others have found trans interactions among regulators and

their target genes [42].

Although the regulatory mechanisms remain unknown, we

found that regulatory relationships are shared among cell types.

For a number of genes, the trans-regulatory relationships that we

identified in immortalized B-cells are also found in primary

fibroblasts. Others have found that cis-regulation of some genes is

shared across cell types [4,9,59,60]; here, we provide evidence that

trans-regulation can also be shared across different cells. This is

important since many cell types in humans are not easily

accessible. These results suggest that it may be possible to use

more readily available cells for analysis and apply the results across

cell types.

Our results have implications beyond regulation of gene

expression. It provides insight into disease mechanisms. We

already discussed the role of WDR7 as regulator of genes in the

endoplasmic reticulum and the implication of this finding for

multiple sclerosis. There are additional examples: for instance, we

identified inositol 1,4,5-triphosphate receptor, type 2 (ITPR2) as a

regulator of signal sequence receptor, alpha (SSR1, also known as

TRAPA). Both genes function in the endoplasmic reticulum [45,61]

and are susceptibility genes for amyotrophic lateral sclerosis (ALS)

[62,63], but the connection between them was previously

unknown. By showing the regulatory relationship between these

two endoplasmic reticulum genes, we implicate inefficient

endoplasmic reticulum function in the development of ALS. The

role of the endoplasmic reticulum in ALS is further supported by

another regulator–target gene pair, ALS2 and its target gene,

SEC22A. ALS2 is the mutated gene in juvenile ALS [64]. Despite

several knockouts of Als2 in mice, its role in ALS has not been

identified. Here, we found that it regulates expression of SEC22A

(linkage t = 5.6, QTDT p = 0.004 rs3219171), which mediates

endoplasmic reticulum to Golgi transport. These findings have

therapeutic implications; a recent study suggested that survival of

ALS mice can be extended by blocking endoplasmic reticulum

stress induced cell death [65].

Unraveling the control of gene expression of human cells is

critical for understanding normal cellular processes and disease

mechanisms. It is difficult to identify trans-acting regulators. They

are not restricted to regulatory genes such as transcription factors.

The hundreds of regulators identified in our study do not share

protein domains nor belong to particular protein families. Thus,

the search cannot be guided by known regulatory functions or

protein domains alone. We show that GOGE study along with

RNA-Seq and molecular analyses allow the identification of cis-

and trans-acting regulators of human gene expression. This

approach makes it possible to determine how individual genes

are regulated and to discover regulatory pathways that maintain

cellular functions in human cells.

Materials and Methods

CEPH Samples, Genotypes, and Expression Phenotypes
The data were from members of 45 three-generations CEPH

families (CEPH 1328, 1330, 1331, 1332, 1333, 1334, 1340, 1341,

1344, 1345, 1346, 1347, 1349, 1350, 1353, 1354, 1356, 1357,

1358, 1362, 1375, 1400, 1408, 1413, 1416, 1418, 1420, 1421,

1423, 1424, 1444, 1447, 1451, 1454, 1456, 1458, 1459, 1463,

1477, 1582, 13281, 13291, 13292, 13293, 13294). Low-density

genotypes for 4,600 autosomal SNP markers were obtained using

the Illumina Linkage Panel (v3). We used PedStats [66] to check

for mendelian inconsistencies. This resulted in the removal of 297

genotypes at 209 distinct SNP markers. High-density genotypes for

some of the grandparents and parents were obtained from the

International HapMap Project (HapMap 22), and for those

families who are not part of the HapMap project, the parents

and one randomly selected child in each family were genotyped

using the Human SNP Array 5.0 (Affymetrix), which assays for

,500,000 SNP loci throughout the human genome. Then, high

density genotypes for family-based association (QTDT) on all

subjects were obtained by inference using the low-density geno-

types and high-density genotypes on selected individuals [67].

For expression analysis, immortalized B cells were grown at a

density of 56105 cells/mL in RPMI 1640 with 15% fetal bovine

serum, 2 mM L-glutamine, and 100 U/mL penicillin-streptomy-
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cin. RNA was extracted from the cells and hybridized onto

Human Focus Arrays (Affymetrix; ,8,500 RefSeq Genes on each

array). Samples were grown and processed in random order to

minimize batch effects. Samples of sibs were processed together

only by chance. Expression intensity was scaled to 500 using the

global scaling method implemented in the Expression Console

software from Affymetrix and transformed by log2.

The RNA samples for 94 CEPH grandparents (from the 45

families) were hybridized onto duplicate arrays. This allows us to

calculate ‘‘variance ratio’’ as a measurement of variability in

expression levels among individuals relative to the measurement

noise. For each expressed gene (called ‘‘present’’ by Affymetrix

Expression Console in 80% or more grandparents), we calculated

this measure as the ratio of the variance in mean expression levels

among individuals to the mean of the variance of the replicates

within individuals: (variance of Mi)/(mean of si
2). There are 4,793

genes with a variance ratio .1. We focused on these genes in our

analyses.

Analysis of Linkage and Association
Multipoint genome-wide linkage analysis was done by SIBPAL

in S.A.G.E. (http://darwin.cwru.edu/) [68]. We used the ‘‘W4’’

option [69] for weighting pairwise phenotypic differences between

siblings. SIBPAL determines evidence for linkage at each SNP

from regression of the phenotype difference between siblings on

the estimated proportion of marker alleles shared identical-by-

descent between siblings; the result is reported as a t value with

corresponding significance. Point-wise significance was converted

to genome-wide significance for multiple testing of markers by use

of the expression of Lander and Kruglyak (as implemented at

http://www.imbs-luebeck.de/8859-15/software/silclod.html)

[19]. In SIBPAL linkage analysis, for each family phenotypic data

of the children were used, and those for the grandparents and

parents were not used.

Family-based association analysis with SNPs near and within

the target genes or candidate regulators was carried out using

QTDT [21,70]. We tested about nine genes (median) per (trans)

linkage peak. Within a gene, the SNP markers are often in strong

linkage disequilibrium and thus are not independent tests. We

report nominal p values for the QTDT results. In the linkage

analysis, we used only data from children in the CEPH families;

however, in the QTDT analysis, we used data from all members of

the CEPH families. For the QTDT, we used the orthogonal (ao)

model [21] and variance component options (wega).

We carried out population association analysis to follow-up

results of QTDT. For these studies, expression phenotypes from

86 unrelated parents in the 45 CEPH families, as dependent

variables, were regressed on SNP genotypes (coded 0, 1, 2).

Conventional analysis of linear regression was carried out; we

tested SNPs within a gene that showed significant QTDT for each

phenotype. To minimize multiple testing, for each significant trans-

linkage peak, we tested only the gene where the most significant

QTDT result was found; SNPs within these genes are mostly

highly correlated so we did not consider them as independent tests.

We reported the nominal p values for these tests.

RNA-Seq
mRNA-Seq was performed as recommended by the manufac-

turer (Illumina). Briefly, immortalized B-cells from 41 unrelated

CEPH grandparents (part of the International HapMap Project

and the 45 families in this study) were grown and processed for

RNA-Seq; hence these are biological replicates of those used in

our microarray-based analysis. Poly(A) mRNA was extracted using

Dynal oligo(dT) beads, fragmented, and first strand cDNA

generated using random hexamers. Following second strand

cDNA synthesis, end repair, and addition of a single A base,

Illumina adaptors were ligated onto the samples. Then, ,200 bp

fractions of the cDNA samples were isolated from agarose gels and

PCR amplified. The qualities of the PCR amplicons were checked

using the Agilent Bioanalyzer. The samples were then sequenced

using the Illumina Genome Analyzer. We obtained an average of

41 million 50 bp reads per sample (median = 40 million).

For alignment of the short reads sequences to the human

reference sequence (hg18) and identification of SNPs, we used the

program MAQ (version 0.6.8) [25]. To minimize sequence errors,

we used the first 40 of the 50 nucleotides in each sequence read for

our analysis. For the alignment, we used the default settings of

MAQ: allowing up to two mismatches per read. From the aligned

reads with map quality scores of 30 or higher, we identified SNPs.

For this analysis, we used only known SNPs in dbSNP Build 129.

For a sample to be heterozygous at a SNP for our DAE analysis,

we required that each allele be represented in at least 5% of the

total reads covering that locus. To determine the expression level

of a gene, we calculated RPKM [26]. Among our data, ,700

genes with average RKPM .1 were ‘‘called’’ absent on micro-

arrays. If we had relied on microarray to identify ‘‘expressed’’

genes, these genes and the genes that were not represented on the

microarrays would have been excluded in our analyses.

To check the accuracy of our RNA-Seq results, we compared

the expression levels with those from our microarray and

genotypes from our sequencing data with those obtained by

HapMap Consortium. For each gene, we calculated correlation

coefficient of the expression levels between the two platforms

across the 41 samples. The average correlation coefficient was 0.76

(median = 0.76; range = 0.73 to 0.80). For each sample, we also

identified the homozygous genotypes (AA, CC, GG, TT; ,25,000

genotypes per sample) using the HapMap database and compared

them to genotypes in our sequencing results. The comparisons

showed a high degree of agreement. Across the 41 samples, the

average concordance rate is 98.6% (median = 98.7%).

Network Analysis
The gene regulatory network was constructed based on pairwise

regulatory relationship identified through linkage (t.4) and

QTDT analyses (p,0.05). Connections (edges) were placed

between genes that were implicated in a regulator-target inter-

action. Properties of the resulting gene regulatory network were

analyzed in MATLAB (MathWorks) by representing regulatory

relationships as an asymmetric adjacency matrix. The number of

incoming and outgoing connections per gene was determined by

summing the columns and rows of the adjacency matrix. A

MATLAB function for determining the scale-free topology criteria

was implemented as previously described [48]. Code will be

provided upon request. Figures of the resulting networks were

drawn using Cytoscape 2.6.0 [71]. To identify genes that have

been implicated as human disease susceptibility genes, we queried

the Catalogue of Genome-Wide Association Studies (http://www.

genome.gov/26525384) [72].

Functional Pathway Analysis
To determine whether a regulator and its target belong to the

same functional groups, we examined Gene Ontology Biological

Process terms [46] for the regulator and the target genes. We

counted the number of regulator-target pairs with identical Gene

Ontology Biological Process annotations; these were the ‘‘observed

counts.’’ We then examined 1,000 randomly chosen gene pairs

(from expressed genes in our B-cells) and counted the number of

gene pairs that shared Gene Ontology Biological Process annota-
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tions. We repeated this 5 times and took the average; these were the

‘‘expected counts.’’ We compared the observed to the expected

counts by a chi-square test.

Knockdown of Candidate Regulators
Immortalized B cells of four to six individuals and primary

fibroblasts (foreskin) from two healthy newborns were used. The

cells were transfected with Accell siRNAs (Thermo Scientific)

against candidate regulators or non-target control according to the

manufacturer’s instructions. For each regulator, we used a pool of

siRNAs that target the regulators in order to minimize off-target

effects [36]. To compare the knockdown by pools of siRNA and

single siRNAs against a gene, we silenced GPHN using a pool of

siRNA and 2 siRNAs against different parts of the gene; similar

results were obtained in the three experiments (see Table S3B).

For each transfection, immortalized B cells were seeded at a

concentration of 4.56105 cells per 750 ul on the day of trans-

fection. 7.5 ul of 100 uM Accell siRNA was mixed with the seeded

culture. Each transfection mix was then plated in a 96-well tissue

culture plate in 150 ul aliquots. Similarly, 4.56105 cells per 750 ul

of primary fibroblasts were plated in 12-well plates in growth

media the day before the transfection. On the day of transfection,

the growth media were removed and replaced with 7.5 ul 100 um

Accell siRNA (against genes of interest or scrambled sequence as

control) and 750 ul of Accell media.

The transfected cells with siRNAs were incubated at 37uC for

96 h. We then replaced the Accell media with regular growth

media (RPMI 1640 with 15% fetal bovine serum, 2 mM L-

glutamine, and 100 U/mL penicillin-streptomycin) and let the

cells recover for 24 h. RNA was extracted using Qiagen RNeasy

kits. Effects of siRNA on gene expression were analyzed by

quantitative PCR (Applied Biosystems). Expression of ACTB was

used for normalization and changes in expression were calculated

relative to cells transfected with non-target control siRNA.

Sequences of PCR primers and siRNAs are presented in Tables

S4 and S5.

Insulin Treatment
For the western analysis: primary fibroblasts were cultured in

MEM medium supplemented with 10% fetal bovine serum, 2 mM

L-glutamine, and 100 U/mL penicillin-streptomycin. Cells were

serum starved for 18 h before treatment with 100 nM insulin for

5 min. Cells were lysed in 16 Lysis buffer (20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1%

Triton 6100) (Cell Signaling) supplemented with 16 Complete

protease inhibitors (Roche) and 16phosphatase inhibitors I and II

(Sigma). Cell lysates containing 150 mg of total protein were

incubated with 5 mg of a-INSR antibody (#3025, Cell Signaling)

or a-IGF1R antibody (#3018, Cell Signaling) at 4uC overnight.

Immuno-complex was pulled down using Protein A Sepharose

(GE Healthcare). Input and immunoprecipitation samples were

analyzed by Western Blot using a-phosphotyrosine (1:1000) (4G10

Platinum, Millipore) or the above a-INSR (1:1000) and a-IGF1R

(1:1000) antibodies.

For the gene expression analysis, primary fibroblasts (from

foreskin) of four individuals were cultured as above. Cells were

serum starved overnight (18 h) before being treated with 100 nM

insulin (Sigma) for 0, 1, 2, 6, or 12 h. RNA was extracted and gene

expression was analyzed by quantitative PCR (Applied Biosys-

tems). Sequences of PCR primers are presented in Table S6.

Comparison to Hi-C Data
Hi-C data from Dekker and colleagues [39] were obtained from

NCBI GEO (GSE189199); we used the data in their alignment

summaries. We compared their list of interacting pairs to our

regulator–target gene pairs. A match is called when one of their

interacting pair coordinates was found within a regulator or 5 kb

up- or downstream and the matching member of that pair is found

within or 5 kb up- or downstream of the corresponding target

gene. Seventy-five such pairs were found.

The experimental steps in this study are summarized by a

flowchart (Figure S3).

Accession Numbers. The data have been deposited to

NCBI GEO under the accession numbers GSE16778 and

GSE16921 for the microarray and RNA-Seq data, respectively.

Supporting Information

Figure S1 Differential allelic expression by RNA-Seq.
Allelic expression ratio of 273 exonic SNPs in 43 genes. Data for

each heterozygous individual is represented as a color dot. SNPs

are ordered left to right by mean expression ratio, a/(a+b).

Found at: doi:10.1371/journal.pbio.1000480.s001 (5.83 MB

TIF)

Figure S2 Examples of subnetworks that include genes
that were implicated as disease susceptibility in ge-
nome-wide association (GWA) studies (http://www.

genome.gov/gwastudies/).
Found at: doi:10.1371/journal.pbio.1000480.s002 (1.65 MB

PNG)

Figure S3 Flowchart showing experimental steps.
Found at: doi:10.1371/journal.pbio.1000480.s003 (0.08 MB

PDF)

Table S1 Linkage, QTDT, and association results for
cis-regulated genes.

Found at: doi:10.1371/journal.pbio.1000480.s004 (0.07 MB PDF)

Table S2 Regulators for 200 trans-regulated expression
phenotypes.
Found at: doi:10.1371/journal.pbio.1000480.s005 (0.06 MB PDF)

Table S3 Additional results of knockdown of trans-
regulators. (A) Knockdown of trans-regulators in fibroblasts. (B)

GPHN knockdown using a pool of 4 siRNAs compared to

individual siRNAs.

Found at: doi:10.1371/journal.pbio.1000480.s006 (0.10 MB PDF)

Table S4 Primer sequences for qRT-PCR (gene knock-
down experiment).
Found at: doi:10.1371/journal.pbio.1000480.s007 (0.04 MB PDF)

Table S5 siRNA sequences (gene knockdown experi-
ment).
Found at: doi:10.1371/journal.pbio.1000480.s008 (0.05 MB PDF)

Table S6 Primer sequences for qRT-PCR (insulin
treatment).
Found at: doi:10.1371/journal.pbio.1000480.s009 (0.03 MB

DOC)

Table S7 Regulator–target gene pairs that are found to
interact physically by Hi-C.
Found at: doi:10.1371/journal.pbio.1000480.s010 (0.05 MB PDF)
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