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Activation of TGR5 protects blood brain

barrier via the BRCA1/Sirt1 pathway after
middle cerebral artery occlusion in rats
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Abstract

Background: The disruption of the blood–brain barrier (BBB) plays a critical event in the pathogenesis of ischemia
stroke. TGR5 is recognized as a potential target for the treatment for neurologic disorders.

Methods: This study investigated the roles of TGR5 activation in attenuating BBB damage and underlying
mechanisms after middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were subjected to model of MCAO
and TGR5 agonist, INT777, was administered intranasally. Small interfering RNA (siRNA) for TGR5 and BRCA1 were
administered through intracerebroventricular injection 48 h before MCAO. Infarct volumes, brain water content, BBB
permeability, neurological scores, Western blot, immunofluorescence staining and co- immunoprecipitation were
evaluated.

Results: Endogenous TGR5 and BRCA1 were upregulated in the injured hemisphere after MCAO and TGR5
expressed in endothelial cells. Treatment with INT777 alleviated brain water content and BBB permeability, reduced
infarction volume and improved neurological scores at 24 h and 72 h after ischemia. INT777 administration
increased BRCA1 and Sirt1 expression, as well as upregulated expressions of tight junction proteins. Ischemic
damage induced interaction of TGR5 with BRCA1. TGR5 siRNA and BRCA1 siRNA significantly inhibited expressions
of BRCA1 and Sirt1, aggravated BBB permeability and exacerbated stroke outcomes after MCAO. The protective
effects of INT777 at 24 h after MCAO were also abolished by TGR5 siRNA or BRCA1 siRNA.

Conclusions: Our findings demonstrate that activating TGR5 could reduce BBB breakdown and improve
neurological functions through BRCA1/Sirt1 signaling pathway after MCAO. TGR5 may serve as a potential new
candidate to relieve brain injury after MCAO.
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Background
Stroke is one of the most common causes of death and
the main cause of long-term disability worldwide [1]. It
has been recognized that disruption of the blood–brain
barrier (BBB) is a critical event in the pathogenesis of
stroke [2, 3]. During ischemia stroke, the disruption of
BBB can lead to extravasation of solutes and fluids into
the brain, resulting in vasogenic edema [4], which causes
a poor clinical outcome. Therefore, the pharmacological
targeting of protecting BBB may be a promising treat-
ment strategy for cerebral infarction [5].
TGR5 is a plasma membrane-bound G protein-

coupled bile acid receptor, which is present in various
tissues, including in animal and human brain [6, 7].
TGR5 is recognized as a potential target for the treat-
ment for hepatic disorders, metabolic disorders, and kid-
ney disease, through anti-inflammation, anti-apoptosis
and inhibition of oxidative stress [8, 9]. In central ner-
vous system (CNS), studies have found that activating
TGR5 alleviates brain damage and improves outcomes
in a model of experimental autoimmune encephalomy-
elitis (EAE) and hepatic encephalopathy [10, 11]. Never-
theless, the effects of TGR5 on BBB integrity in brain
injuries after ischemic stroke have not been investigated.
BRCA1, a tumor suppressor gene implicated in breast

and ovarian cancers, is expressed by endothelial cells
and can improve endothelial dysfunction, which may
provide a protective role in neurological diseases
[12–14]. Several researches have established that BRCA1
is a key regulator of sirtuin 1 (Sirt1) [15, 16]. Sirt1 is a
nicotinamide adenine dinucleotide-dependent deacety-
lase, which is involved in the regulation of physiological
functions, including cell senescence, gene transcription,
energy balance, and oxidative stress. Studies have con-
firmed the protective role of sirt1 against BBB damage in
CNS pathologies [17, 18].
In the present study, we hypothesized that (1) activat-

ing TGR5 protects BBB damage and attenuates brain in-
sult after middle cerebral artery occlusion (MCAO) and
(2) the protection of TGR5 on the BBB is mediated
through a BRCA1/Sirt1-related signaling pathway.

Materials and methods
Animals
All experiments were approved by the Institutional Ani-
mal Care and Use Committee of Loma Linda University
(approval no. 8170034) and Zhejiang University (ap-
proval no. 2016–193). All animal care and use were con-
ducted according to the Guide for the Care and Use of
Laboratory Animals (National Research Council). All
procedures of experiments are reported in compliance
with the ARRIVE (Animal Research: Reporting in Vivo
Experiments) guidelines. Animals were housed in a 12 h
light-dark cycle, temperature-controlled room. A total of
494 Sprague-Dawley male rats (2–3 months, weighing
250–300 g) were used in the study.
MCAO model
The transient MCAO model was induced as previously
described [19]. Rats were anesthetized intraperitoneally
with a mixture of ketamine (80 mg/kg) and xylazine (20
mg/kg). Briefly, the right common carotid artery (CCA),
internal carotid artery (ICA) and external carotid artery
(ECA) were surgically exposed. 4–0 nylon suture with
silicon was inserted into the ICA through the ECA
stump until the tip of the suture reached the origin of
the anterior cerebral artery (ACA) (approximately 18 to
22mm). After 2 h of occlusion, the suture was with-
drawn to allow for reperfusion. During surgery, body
temperature was maintained at a physiological level.
Sham groups underwent the same procedure but with-
out occluding the MCA.
Experimental design
A schematic diagram of our research design was shown
in Fig. 1.
Experiment 1 The time course of endogenous expres-
sions of TGR5 and BRCA1 in right hemispheric tissue
was evaluated by Western blot.30 rats were divided into
5 groups: Sham (n = 6), MCAO 6 h (n = 6), MCAO 12 h
(n = 6), MCAO 24 h (n = 6), and MCAO 72 h (n = 6). An
additional 8 rats, sham (n = 4) and MCAO 24 h (n = 4),
were used for immunofluorescence staining to
characterize the localization of TGR5 in endothelial cells
(visualized using an antibody against von Willebrand
factor (VWF)).
Experiment 2 One hundred two rats were used in the
following groups: sham (n = 18), MCAO+vehicle (n = 30),
MCAO+INT777 (0.16mg/kg, n = 12), MCAO+INT777
(0.48mg/kg, n = 30), MCAO+INT777 (1.44mg/kg, n =
12). Infarction volume, neurobehavior scores, and brain
water content were measured at 24 and 72 h after MCAO.
Evans blue (EB) extravasation was evaluated at 24 h after
MCAO and barrier function assessment in vitro was
assessed by TEER. Based on neurological tests at 24 h and
72 h after MCAO, the middle dosage of INT777 (0.48 mg/
kg) was chosen for further studies.
Experiment3 Thirty-six rats were divided into 3 groups
for exploring the association between TGR5 and BRCA1
by co-immunoprecipitation: sham (n = 12), MCAO+ve-
hicle (n = 12), MCAO+INT777 (n = 12). The immuno-
fluorescence staining samples for co-labeling of TGR5
with BRCA1 were shared with experiment 1.



Fig. 1 Experimental design and animal group classification. IF, immunofluorescence; icv, intracerebral ventricular; MCAO, middle cerebral artery
occlusion; Scr siRNA, Scramble small interfering RNA; WB, Western blot; Co-IP, Co- immunoprecipitation
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Experiment 4 To explore the effect of knocking down
TGR5 and BRCA1 on stroke, 146 rats were randomly
assigned to the following 5 groups: Sham (n = 26),
MCAO+vehicle (n = 30), MCAO+Scramble siRNA (n =
24), MCAO+TGR5 siRNA (n = 30), MCAO+BRCA1-
siRNA (n = 30), MCAO++INT777 (n = 6). Infarction
volume, neurobehavior scores, brain water content, EB
extravasation, immunofluorescence staining and
Western blots were measured. Four samples of sham for
immunofluorescence staining were shared with experi-
ment 1.

Experiment 5 One hundred eight rats were randomly
assigned to 6 groups for mechanism study: sham (n = 18),
MCAO+vehicle (n = 18), MCAO+INT777 (n = 18), MCAO
+INT777 + scramble siRNA (n = 18), MCAO+INT777 +
TGR5 siRNA (n = 18), and MCAO+INT777 + BRCA1
siRNA (n = 18). Neurobehavioral scores, brain infarction,
brain water content and Western blot were evaluated.

Drug administration
Intranasal administration of INT777 (MedChemExpress,
USA) was performed as previously described [20], with
some modifications: rats were administered either saline,
INT777 (0.16 mg/kg), INT777 (0.48 mg/kg) or INT777
(1.44 mg/kg) intranasally (5 μL/drop) over a period of 20
mins, alternating drops every 2 min between left and
right nares. The total volume delivered was 50 μL at 1 h
following MCAO.
Intracerebroventricular siRNA injection
Three different formats of TGR5-siRNA or BRCA1-
siRNA (OriGene Technologies) were diluted with trans-
fection reagent (entranser™,Engreen Biosystem) and were
injected 48 h before MCAO by intracerebroventricular
injection (ICV) as previously described [21, 22]. The ICV
injection site was relative to location of bregma: antero-
posterior 1 mm, right lateral 1.5 mm, depth 3.5 mm. The
TGR5-siRNA, BRCA1-siRNA mixture or scramble-
siRNA (100 pmol in 5 μL) was delivered into the ipsilat-
eral ventricle with a Hamilton syringe (Microliter 701,
Hamilton Company, Reno, NV) and administered over
5 min. The needle was left for 5 min after injection and
was then slowly withdrawn over 5 min. After the needle
was removed, the burr hole was sealed with bone wax.
Neurological scores
Neurobehavioral outcomes were assessed by a blinded
investigator at 24 h and 72 h following MCAO [23]. The
sensorimotor function scores were evaluated as follow-
ing: spontaneous activity, symmetry in limb movement,
symmetry of forelimb outstretching, climbing, body pro-
prioception, response to vibrissae touch, and beam
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walking. The neurological scoring ranged from 3 (most
severe deficits) to 21 (normal).

2.6. 2,3,5-Triphenyltetrazolium chloride (TTC) staining
Infarction volume was evaluated by TTC staining after
MCAO [24]. standard methods were used to correct the
possible interference of brain edema on infarct volume
and infarction volume was expressed as a ratio of the
whole brain volume, as previous report [25].

Brain water content
Brains were separated into left hemisphere, right hemi-
sphere, cerebellum, and brain stem at 24 or 72 h after
MCAO. Each brain samples were weighed immediately
after removal (wet weight) and then dried in an oven at
105 °C for 72 h (dry weight). The percentage of brain
water content was calculated as [(wet weight-dry
weight)/wet weight] Χ100% [23].

BBB permeability
BBB permeability was evaluated by EB extravasation
using spectrophotometry as previously described [26]. At
4 h before sacrifice, 2% EB dye in saline was injected
intravenously as a BBB permeability tracer. A microplate
fluorescence reader was used to determine EB dye fluor-
escence intensity. The amount of extravasated EB dye
was quantified as micrograms per ischemic hemisphere.

Barrier function assessment of in vitro
The in vitro experiment was prepared as previously re-
ported [27], with some modifications.bEnd.3 cells were
purchased from the Bioleaf Biotech Co., Ltd. (Shanghai,
China) and were cultured as previously described. After
the bEnd.3 cells were treated with INT777 (30 μmol/l),
OGD/R was induced in the cells for 6 h in a hypoxia
chamber in RPMI 1640 culture medium without glucose,
in an atmosphere of1% O2, 5% CO2, and 94% N2.Then
the cells were cultured under normoxia conditions in
normal culture medium after 2 h of OGD for 18 h. The
integrity ofthe bEnd.3 cell monolayer was measured via
the TEER assay.

Immunofluorescent staining
The method of double and triple immunofluorescence
staining was performed as previously described [28, 29].
Rats were transcardially perfused with cold phosphate-
buffered solution (PBS) followed by 10% paraformalde-
hyde after rats were deeply anesthetized at 24 h after
MCAO. The whole brains were fixed in 10% paraformal-
dehyde for 24 h then in 30% sucrose solution for 72 h.
Coronal frozen slices (10 μm) were obtained with a cryo-
stat (CM3050S; Leica Microsystems, Wetzlar, Germany)
and permeabilized with 0.3% Triton X-100 in PBS for
30 min. Sections were blocked with 5% donkey serum
for 1 h and incubated at 4 °C overnight with primary
antibodies: anti-TGR5 (1:100 Abcam), anti-BRCA1 (1:
100 Santa Cruz Biotechnology), anti- vWF (1:100
Abcam) and anti- CD31 (1:100 Abcam). The slices were
viewed with fluorescence microscope (DMi8; Leica
Microsystems, Germany) or confocal LSM 710 micro-
scope and fluorescence intensity was quantified using
ImageJ.

Western blot analysis
Western blot analysis was performed as previously re-
ported [30]. Proteins of the ipsilateral hemisphere were
extracted by homogenizing in radio-immunoprecipita
tion assay lysis buffer. Equal amounts of a sample pro-
tein were loaded onto an SDS-PAGE gel. First, electro-
phoresis and transfer of the samples to a nitrocellulose
membrane were performed. Second, the membrane was
blocked for 2 h at room temperature and incubated
overnight at 4 °C with the following primary antibodies:
anti-TGR5 (1:1000, Abcam), anti-BRCA1 (1:1000, Santa
Cruz Biotechnology), anti-Sirt1(1:1000, Abcam), anti-
occludin (1:2000, Abcam, USA), anti-ZO-1(1:200, Santa
Cruz Biotechnology) and anti-β-actin (1:5000, Santa
Cruz Biotechnology). The secondary antibodies were all
from Santa Cruz Biotechnology. Blot bands were visual-
ized with an ECL reagent (Amersham Biosciences UK
Ltd., PA, USA) and were quantified by densitometry
using Image J software (Image J 1.4, NIH, USA).

Co-Immunoprecipitation (co-IP)
Co-IP was performed as previously described [20,
31].500 μg protein incubated with TGR5 antibody (1:50)
or BRCA1 antibody (1:50) and agitated. Protein A/G
agarose (20 μL; Sigma) was added to each sample and in-
cubated overnight at 4 °C. Next, the mixture was precipi-
tated by high-speed freezing centrifugation at 12000 rpm
for 10 s. Then the sediment was washed three times with
NP-40 buffer. Agarose-bound immunocomplexes were
released using a denaturing solution. TGR5 and BRCA1
proteins in immunocomplex denaturing solution and
total protein solution (for comparison) were analyzed by
Western blot.

Statistical analysis
All data analyses were performed using SigmaPlot 11.0
and GraphPad Prism 6 (GraphPad software, San Diego,
CA). Parametric data was expressed as mean ± SEM.
Data from different groups were compared using one-
way ANOVA followed by post hoc Tukey tests. Non-
parametric data (neurological scores, beam walking)
were analyzed with the Kruskal–Wallis test followed by
Dunn’s post-hoc. In all statistical analysis, P < 0.05 was
considered as significant.
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Results
Mortality and exclusion
A total of 494 rats were used and 410 rats underwent
MCAO induction. There were no deaths in sham group.
For groups of MCAO, the mortality rate was 11.5% (47
of 410) (Supplementary Table 1). Seventeen animals
were excluded if rats didn’t show signs of neurobehav-
ioral deficits when waking up from MCAO (body twist-
ing when lifted by the tail and walking in circles) or if
subarachnoid hemorrhage was found during euthanasia.
Endogenous TGR5 receptor and BRCA1 expression
increased after MCAO
We investigated TGR5 and BRCA1 alterations after
MCAO. In Fig. 2a and b, TGR5 and BRCA1 expressions
significantly increased from12 hours to a peak at 24 h
but declined at 72 h after MCAO (P < 0.05 versus Sham).
Double immuno-fluorescence staining demonstrated
that TGR5 was expressed in endothelial cells at 24 h
after MCAO (Fig. 2c). Whole brain immunofluorescence
staining showed that TGR5 expression was upregulated
in the cortex, hippocampus and basal ganglia 24 h after
MCAO when compared with contralateral non-ischemic
hemisphere (Fig. 2d).
Fig. 2 Expression of TGR5 and BRCA1 in the right hemisphere of the rat br
quantitative analyses of TGR5 and BRCA1 time-course expression after MCA
that both TGR5 (red) was predominantly expressed in vWF positive- endoth
*P < 0.05 vs sham group. Bars represent mean ± SEM. Scale bar, 50 μm. vWF
showed that TGR5 expression was upregulated in the cortex, hippocampus
contralateral non-ischemic hemisphere. Bars represent mean ± SEM. Scale b
INT777 improved stroke outcomes and BBB permeability
after MCAO
Treatment with 0.48 mg/kg and 1.44 mg/kg of INT777
significantly reduced infarct volume, improved neuro-
logical scores and reduced brain water content of right
ischemic hemisphere at 24 h post-MCAO compared to
MCAO+vehicle group (Fig. 3a-d) (P < 0.05). The admin-
istration of 0.48 mg/kg INT777 decreased cerebral in-
farction, restored neurological function and ameliorated
brain water content at 72 h after injury (Fig. 3e-h) (P <
0.05 versus MCAO+vehicle). Based on the dose study,
we chose to middle dosage of INT777 for all subsequent
studies.
EB extravasation was markedly increased at 24 h post-

MCAO (P < 0.05 versus sham), INT777 treatment
significantly reduced EB dye leakage(P < 0.05 versus
MCAO+vehicle) (Fig. 4a). INT777 also alleviated the
TEER decrease in the in vitro model after OGD/R(P <
0.05 versus OGD/R + vehicle) (Fig. 4b).

MCAO induced interactions between TGR5 and BRCA1
In the sham group, double immunofluorescence staining
showed that co-labeling of TGR5 with BRCA1 was de-
tected in the brain. After ischemic injury, co-labeling of
TGR5 with BRCA1 increased in the penumbra area (Fig.
ain after MCAO. a, b Representative Western blot images and
O. n = 6 per group. c Double immunofluorescence staining revealed
elial cells (green) in penumbra at 24 h after MCAO. n = 4 per group.
, Von Willebrand factor. d Whole brain immunofluorescence staining
and basal ganglia 24 h after MCAO. n = 4 per group. *P < 0.05 vs
ar, 400 μm



Fig. 3 Exogenous TGR5 agonist INT777 ameliorated brain injury at 24 h and 72 h after MCAO. Representative TTC staining indicated brain
infarction at 24 h and 72 h after MCAO (a, e);quantified infarct ratio(b, f), neurological scores (c, g) and brain water content(d, h) showed that
INT777 decreased infarction and neurological deficits in medium dose as well as reduced brain edema of right ischemic hemisphere at 24 h and
72 h after MCAO . High dose was only analyzed at 24 h after MCAO. n = 6 for each group. *P < 0.05 vs sham, #P < 0.05 vs MCAO+ vehicle. Bars
represent mean ± SEM. BS indicates brain stem; CB, cerebellum; LH, left hemisphere; RH, right hemisphere
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4c). Triple-fluorescence staining also showed that TGR5
and BRCA1 co-localized in endothelial cell (Fig. 4d).
Western blot showed that both TGR5 and BRCA1 ex-
pression increased at 24 h after MCAO (P < 0.05 versus
sham), and INT777 further increased TGR5 and BRCA1
expression(P < 0.05 versus MCAO) (Fig. 4f). CO-IP
showed that TGR5- BRCA1 interaction was found in the
ischemic hemisphere (Fig. 4e).

TGR5 siRNA inhibited expression of BRCA1/Sirt1 and
aggravated BBB permeability after MCAO
To further assess the role of TGR5 in stroke, TGR5
siRNA was administered by ICV injection to knockdown
endogenous TGR5. Double immunofluorescence stain-
ing showed that both TGR5 and BRCA1 expressions in-
creased in penumbra following MCAO while siRNA
significantly reduced TGR5 or BRCA1 expression (Fig. 5a
and b).
The results of Western blot staining showed that

TGR5 expression was partially prevented by TGR5
siRNA (Fig. 6a and b). Compared with scramble siRNA
group, TGR5 siRNA significantly inhibited expressions
of BRCA1 and Sirt1 after MCAO (P < 0.05) (Fig. 6a and
b). The knockdown efficacy of BRCA1 siRNA was also
confirmed by Western blot and BRCA1 knockdown
markedly decreased the Sirt1 expression and had no ef-
fect on TGR5 expression after MCAO (Fig. 6a and b).
Both TGR5 siRNA or BRCA1 siRNA significantly ex-

acerbated stroke outcomes and aggravated BBB perme-
ability after MCAO (P < 0.05) (Fig. 6c-f), when compared
with scramble siRNA group at 24 h after MCAO.
TGR5 or BRCA1 knockdown abolished the protective
effects of INT777 on BBB integrity after MCAO
Decreased tight junction (TJ) protein expressions or var-
iations are associated with alterations in BBB permeabil-
ity [32]. As shown in Fig. 7a and b, Sirt1 and TJ proteins
(ZO-1 and occludin) were remarkably decreased at 24 h
after SAH, when compared with the sham group (P <
0.05). However, INT777 increased expressions of Sirt1,
ZO-1 and occludin, compared with MCAO group (P <
0.05) (Fig. 7a and b). The results above demonstrated
that INT777 alleviated disrupted BBB by increasing TJ
proteins in ischemic brain.
When compared with INT777+ scramble siRNA

group, TGR5 siRNA reversed the effect of INT777 on
the expressions of TGR5, BRCA1, Sirt1, ZO-1and occlu-
din at 24 h after MCAO (P < 0.05) (Fig. 7a and b). West-
ern blot showed that BRCA1 siRNA also abolished the



Fig. 4 INT777improved BBB permeability and TGR5 interacted with BRCA1 after MCAO. a INT777 treatment significantly reduced EB dye leakage,
n = 6 per group; b INT777 alleviated the TEER decrease after OGD/R, n = 6 per group; c Double immunofluorescence staining showed that co-
localization of TGR5 (red) and BRCA1 (green) was increased in penumbra 24 h after MCAO, d Triple-fluorescence staining showed that TGR5 and
BRCA1colocalized in endothelial cell, n = 4 per group. Scale bar 50 μm. e Representative co-IP bands showed that interactions of TGR5 with
BRCA1 occurred at 24 h after MCAO, n = 6 per group. f Expression of TGR5 and BRCA1 in total protein solution was detected by Western blot
analysis and relative OD ratios were reported. n = 6 for each group. *P < 0.05 vs sham, #P < 0.05 vs MCAO+ vehicle. Bars represent mean ± SEM

Fig. 5 The effect of INT777 and siRNA on TGR5 and BRCA1 expression in penumbra after middle cerebral artery occlusion (MCAO). a, b Double
immunofluorescence staining showed that expression of TGR5 or BRCA1 was upregulated in the penumbra area 24 h after MCAO; INT777
treatment increased the expressions while siRNA inhibited TGR5 or BRCA1 expression. n = 6 per group. *P < 0.05 vs sham, #P < 0.05 vs MCAO+
vehicle. Bars represent mean ± SEM. Scale bar, 50 μm
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Fig. 6 The effect of knockdown TGR5 on BRCA1/Sirt1 expression and BBB permeability after MCAO. a The band of Western blot analysis; b The
relative density of TGR5, BRCA1, Sirt1.n = 6 per group. TGR5 or BRCA1 knockout increased infarct volume (c), worsen neurobehavioral deficits (d),
exacerbated brain water content (e) and BBB permeability (f). n = 6 per group. *P < 0.05 vs sham, #P < 0.05 vs MCAO+ Scr siRNA. Bars represent
mean ± SEM. Scr siRNA, scramble siRNA
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effects of INT777, leading to reduce expressions of Sirt1,
ZO-1 and occludin (P < 0.05) (Fig. 7a and b).
Administration of TGR5 siRNA or BRCA1 siRNA sig-

nificantly abolished the protective effect of INT777 on
infarction volume, neurological deficits and brain edema
at 24 h after MCAO (P < 0.05 versus MCAO+INT777 +
Scramble siRNA) (Fig. 7c-e).
Discussion
In the present study, we first described the TGR5 medi-
ated signaling pathway in BBB protection after MCAO
in rats. Our data demonstrated that TGR5 and its essen-
tial downstream protein BRCA1 were upregulated in the
injured hemisphere after MCAO. Exogenous TGR5
agonist INT777 reduced brain edema and BBB perme-
ability and thereby alleviated stroke outcome after
MCAO. In contrast, knockdown of endogenous TGR5
or BRCA1 by siRNA exacerbated brain edema, BBB dis-
ruption, infarction volume, and neurological deficits.
INT777 increased TGR5, BRCA1 and Sirt1 expressions,
as well as upregulated TJs. Furthermore, knockdown
TGR5 or BRCA1 by siRNA abolished the beneficial ef-
fects of INT777, which were associated with reduced
Sirt1, ZO-1 and occludin. Taking together, our study
suggested that activating TGR5 may be involved in
regulating BBB permeability after MCAO at least in part
via a BRCA1 /Sirt1 signaling pathway.
Research have showed that Bile acids, such as taurour-

sodeoxycholic acid (TUDCA), play an important role of
neuroprotection for brain pathologies which are medi-
ated by TGR5 [33]. McMillin et al. found that TGR5 is
present in the cortex of C57Bl/6 mice and is upregulated
in the brain following azoxymethane induced acute liver
failure. This up-regulation appears to be protective, as
activating TGR5 reduces neurological decline [11]. In
the model of EAE, mice treated with TGR5 agonists had
significant reductions in the clinical score both at peak
of disease and at the termination of the study [10]. In
the present research, we observed that TRG5 was upreg-
ulated in the penumbra after MCAO and was expressed
in endothelial cells. The administration of INT777 sig-
nificantly diminished BBB disruption and improved
stroke outcomes after MCAO, whereas silencing en-
dogenous TGR5 by siRNA aggravated BBB breakdown
and neurological deficits.
Although the exact mechanisms of TGR5–mediated

BBB protection are not well clarified, BRCA1 may play
an important role in the TGR5-mediated signaling path-
way. BRCA1, a well-known tumor suppressor implicated
in familial breast and ovarian cancers, provides a pro-
tective role in atherosclerosis and neurological diseases



Fig. 7 Knockdown TGR5 or BRCA1 abolished the protective effects of INT777 on BBB permeability after MCAO. a Representative Western blots. b
Quantitative analyses of TGR5, BRCA1, Sirt1, zo-1, occludin. Quantified infarct ratio (c), neurological scores (d) and brain water content (e), n = 6
per group. *P < 0.05 vs sham, #P < 0.05 vs MCAO+ vehicle,@P < 0.05 vs MCAO+INT777 + Scr siRNA group. Scr siRNA, scramble siRNA
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[12–14]. Noristani et al. found that BRCA1 is expressed
by human microglia and is dysregulated in humans and
an animal model of ALS [34]. Several studies demon-
strated that BRCA1 deficiency contributes to neuronal
injury in Huntington’s Disease and impairs cognitive
function in mice [13, 14]. In vitro experiments, two
major bile acids, deoxycholic acid and chenodeoxycholic
acid, were found to increase BRCA1 expression relative
to untreated control OVCAR3 ovarian cancer cells,
through interaction with bile acid receptors [35]. In the
present study, we observed that endogenous BRCA1 ex-
pression was increased at 24 h after MCAO and INT777
further augmented BRCA1 expression. Double immuno-
fluorescence staining demonstrated an increased co-
localization of TGR5 with BRCA1 after MCAO, and
using CO-IP, we found an interaction between TGR5
and BRCA1 after MCAO. Furthermore, we observed
that silencing TGR5 inhibited the expression of BRCA1
and reversed the protective effect of INT777 on BRCA1
expression. Taken together, these findings support that
TGR5 is upstream to activate BRCA1, thereby alleviating
BBB damage.
Several evidence have confirmed that BRCA1 is a key

regulator of Sirt1 in cancer research. BRCA1 inactivation
events (mutation, promoter methylation, or knockdown)
are accompanied by decreased Sirt1 levels while
overexpression of BRCA1 results in increased Sirt1 levels
[15] by direction binding of BRCA1 to the Sirt1 pro-
moter [16]. More studies showed that Sirt1 plays a major
role in protecting against brain injuries during ischemia
stroke [36]. Chen et al. reported that the activation of
Sirt1 was associated with increased BBB permeability
in vitro [37]. However, in most studies, increasing the
Sirt1 level would benefit BBB damage after oxygen glu-
cose deprivation, subarachnoid hemorrhage or sepsis-
induced brain injury [17, 18, 38]. Our lab also found that
Sirt1 was a key mediator of Hyperbaric Oxygen (HBO)
protective effects in BBB damage after MCAO. Knock-
down Sirt1 by Sirt1 siRNA reversed the protective effects
of HBO [23].
In the current study, we found that INT777 increased

the expression of Sirt1 after MCAO while TGR5 siRNA
and BRCA1 siRNA inhibited the Sirt1 expression, re-
versed the effect of INT777 on Sirt1, which means
TGR5 and BRCA1 can act as upstream regulators of
Sirt1. Furthermore, our data demonstrated that TGR5 or
BRCA1 knockdown significantly reverses the neuro-
protection of INT777 on stroke outcomes, as well as de-
creasing ZO-1 and occludin expression. This finding
supports the notion that the BRCA1/ Sirt1 signaling
pathway plays a role in BBB protection induced by acti-
vation of TGR5 after MCAO.



Fig. 8 Proposed pathway in the present study. This study found that TGR5 agonist, INT777, could protect BBB and improve neurological
outcomes after MCAO, which through BRCA1/Sirt1 signaling pathway after MCAO. Our findings suggest that TGR5 may serve as a potential new
candidate to relieve brain injury after MCAO
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There are some limitations in the present study. First,
TGR5 produces pleiotropic effects via different signaling
pathways, such as alleviating inflammation and attenuat-
ing apoptosis [39]. In this study, we only focused on the
neuroprotective effects of TGR5 on BBB integrity after
MCAO, but further studies are needed to explore other
effects of TGR5 after MCAO and its underlying signal-
ing mechanisms. Second, only young male rats were
used. Following the STAIR recommendations, we need
to repeat the key findings using aged males, as well as fe-
male rats.

Conclusions
As summarized in Fig. 8, we found that activating TGR5
could reduce BBB breakdown and improve neurological
deficits after ischemic stroke. The results highlight
TGR5/BRCA1/Sirt1 signaling as a critical contributor to
alleviate BBB damage and as a novel target for brain
edema in diseases characterized by BBB damage, such as
stroke, inflammatory diseases, and neurodegenerative
diseases.
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