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1McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada,
2Laboratoire des Neurosciences Cognitives UMR 7291, Federation 3C, Aix-Marseille University, France, 3Centre
National de la Recherche Scientifique (CNRS), Paris, France, 4Centre de Recherche, Institut Universitaire de
Gériatrie de Montréal, Montréal, Canada and 5Department of Psychiatry, McGill University, Montréal, Canada
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Abstract
Dopaminergic projections are hypothesized to stabilize neural signaling and neural representations, but how they shape
regional information processing and large-scale network interactions remains unclear. Here we investigated effects of
lowered dopamine levels on within-region temporal signal variability (measured by sample entropy) and between-region
functional connectivity (measured by pairwise temporal correlations) in the healthy brain at rest. The acute phenylalanine
and tyrosine depletion (APTD) method was used to decrease dopamine synthesis in 51 healthy participants who underwent
resting-state functional MRI (fMRI) scanning. Functional connectivity and regional signal variability were estimated for each
participant. Multivariate partial least squares (PLS) analysis was used to statistically assess changes in signal variability
following APTD as compared with the balanced control treatment. The analysis captured a pattern of increased regional
signal variability following dopamine depletion. Changes in hemodynamic signal variability were concomitant with changes
in functional connectivity, such that nodes with greatest increase in signal variability following dopamine depletion also
experienced greatest decrease in functional connectivity. Our results suggest that dopamine may act to stabilize neural
signaling, particularly in networks related to motor function and orienting attention towards behaviorally-relevant stimuli.
Moreover, dopamine-dependent signal variability is critically associated with functional embedding of individual areas in
large-scale networks.
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Introduction
The brain is a complex network of interacting neuronal popula-
tions that collectively support perception, cognition, and
action. Transient episodes of synchrony establish brief win-
dows for communication among remote neuronal populations,

manifesting as patterns of functional connectivity and large-
scale resting state networks (Damoiseaux et al. 2006; Power
et al. 2011; Yeo et al. 2011). Thus, regional neural activity
reflects computations that result from network interactions,
but also drives those interactions (Deco et al. 2010; Avena-
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Koenigsberger et al. 2018). Greater connectivity may promote
greater signal exchange, leading to variable dynamics (Rubinov
et al. 2009; Mišić et al. 2011); alternatively, densely intercon-
nected regions may be more likely to synchronize, rendering
their dynamics less variable and more stable (Gollo et al. 2015).
How the balance between local dynamics and global functional
interactions (connectivity) is modulated remains a fundamen-
tal question in systems neuroscience.

Dopamine is thought to stabilize neuronal signaling by mod-
ulating synaptic activity and signal gain (Seamans and Yang
2004). Dopamine, acting in cortex or striatum, could regulate
cortical representations by facilitating or suppressing neural
signaling. These effects may also play a role in reinforcement
learning, based on the theory of dopaminergic reward predic-
tion error signaling (Schultz 2002). In humans, transient
decreases in dopamine synthesis (which we term “dopamine
depletion”) have been shown to disrupt multiple aspects of per-
ception, motor control, and executive function (Nagano-Saito
et al. 2008, 2012; Coull et al. 2012; Ramdani et al. 2015), consis-
tent with a role in the regulation of sustained cortical activity
(Seamans and Yang 2004). Similar effects have also been dem-
onstrated in various animal models including rodents and
monkeys (Seamans and Robbins 2010). Furthermore, death of
dopamine neurons in Parkinson’s disease (PD) leads to unstable
and increasingly variable motor output (McAuley 2003;
Björklund and Dunnett 2007). Thus, by stabilizing neuronal sig-
naling, dopamine may influence the stability of regional activ-
ity and its potential for functional interactions at a network
level.

Here we use resting-state functional magnetic resonance
imaging (fMRI) to investigate the effects of dopamine depletion
on within region signal variability and intrinsic brain networks
in healthy brain at rest. We applied acute phenylalanine and
tyrosine depletion (APTD) to transiently decrease dopamine
levels in healthy participants (Palmour et al. 1998; McTavish,
Cowen et al. 1999; Leyton et al. 2000, 2004; Montgomery et al.
2003; Carbonell et al. 2014). We hypothesized that dopamine
depletion would destabilize regional hemodynamic activity,
manifesting as increased signal variability. We further hypoth-
esized that regions with increased signal variability may be less
likely to interact with other regions, resulting in decreased
functional connectivity defined by temporal statistical associa-
tion of fMRI time series.

Materials and Methods
Participants

Altogether, =n 51 healthy young individuals (right-handed,
23.6 ± 5.9 years old, 32 male/19 female) participated in 3 sepa-
rate dopamine precursor depletion studies (two published
(Coull et al. 2012; Nagano-Saito et al. 2012) and one unpublished
study). The protocol, acquisition site, scanner and sequence
were identical across the 3 studies. Participants with a history
of drug abuse, neurological, or psychiatric disorder were
excluded. Informed consent was obtained from all participants.

Dopamine Depletion

The APTD technique (Palmour et al. 1998; McTavish, McPherson
et al. 1999; Leyton et al. 2000) was used to reduce dopamine
synthesis in healthy participants, following the procedure
described previously (Coull et al. 2012; Nagano-Saito et al.
2012). In short, each participant was tested twice on 2 separate
days, once following administration of a nutritionally balanced

amino acid mixture (BAL) and once following acute phenylala-
nine/tyrosine depletion (APTD), in a randomized, double-blind
manner, such that neither the participants nor the experiment
conductors had any information regarding the label of the con-
dition (BAL vs. APTD) being tested on each day. It should be
noted that although APTD leads to depletion of dopamine pre-
cursors and only reduces the dopamine synthesis and availabil-
ity, the term “dopamine depletion” is used throughout this
manuscript to refer to “dopamine precursor depletion” and
APTD. Although APTD might also theoretically decrease norepi-
nephrine synthesis, several reports have shown that the
release of norepinephrine is not affected under resting state
conditions (McTavish, Cowen et al. 1999; Le Masurier et al.
2014).

Data Acquisition and Preprocessing

T1-weighted, three-dimensional structural MRIs were acquired
for anatomical localization (1-mm3 voxel size), as well as two
resting-state echoplanar T2*-weighted images with blood oxy-
genation level-dependent (BOLD) contrast (3.5-mm isotropic
voxels, TE 30ms, TR 2 s, flip angle 90°) from all participants
using a Siemens MAGNETOM Trio 3 T MRI system at the
Montréal Neurological Institute (MNI) in Montréal, Canada.
Each participant was scanned for 5min (150 volumes) with
eyes open, on 2 separate days, once following administration of
a nutritionally balanced amino acid mixture (BAL) and once fol-
lowing acute phenylalanine/tyrosine depletion (APTD). The
resting state fMRI data was preprocessed through the following
steps: slice timing correction, rigid body motion correction,
removal of slow temporal drift using a high-pass filter with
0.01 Hz cut-off, physiological noise correction. Head motion
parameters were estimated by spatially re-aligning individual
time points with the median volume, which was then aligned
with the anatomical T1 image of the individual. Further motion
correction was done by scrubbing (Power et al. 2012): time
points with excessive in-scanner motion (>0.5mm framewise
displacement) were identified and removed from time series,
along with the two volumes before and two volumes after. All
preprocessing steps were performed using the Neuroimaging
Analysis Kit (NIAK) (Bellec et al. 2010, 2012).

Anatomical MRI data was parceled into 83 cortical and sub-
cortical areas using the Desikan-Killiany atlas (Desikan et al.
2006), and then further subdivided into 129, 234, 463, and 1015
approximately equally sized parcels following the procedure
described by Cammoun and colleagues (2012). The Desikan-
Killiany atlas is a commonly-used, anatomical (as opposed to
functional), automated labeling system, where nodes are delin-
eated according to anatomical landmarks. It has been shown
that the Desikan-Killiany atlas is comparably reliable to manual
parcellations of human cortex (Desikan et al. 2006). The atlas
exists at 5 progressively coarser resolutions (the so-called
“Lausanne” parcellation; Cammoun et al. 2012), allowing us to
verify the experimental effects on various spatial scales. The
parcellations were used to extract BOLD time series from func-
tional MRI data. The time series of each parcel were estimated
as the mean of all voxels in that parcel. All analyses were
repeated at each resolution to ensure that none of the conclu-
sions were idiosyncratic to a particular spatial scale.

Sample Entropy

Sample entropy (SE) analysis was used to estimate within-
region signal variability (Richman and Moorman 2000). The
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algorithm quantifies the conditional probability that any two
sequences of time points with length of +m 1 will be similar to
each other, given that the first m points of these sequences
were similar (Fig. 1). SE is defined as the natural logarithm of
this quantity, such that large values are assigned to unpredict-
able signals, and small values to predictable signals. The algo-
rithm is subject to 2 parameters: the pattern length (m), which
determines the segment length used to detect repeating pat-
terns, and the similarity criterion (r), which is the tolerance for
accepting matches in the time series. The sample entropy of a
time series with length N is estimated as
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(e.g., segment j with length m) that are similar to the m-length
segment i within the similarity criterion, excluding self-
matches ( ≠i j; i.e., the algorithm does not compare patterns
with themselves) (Costa et al. 2005). The sample entropy of a
time series corresponds to “scale 1” of the well-known multi-
scale entropy analysis procedure (Costa et al. 2005).

Following the optimization proposed by Small and Tse
(2004), we set =m 2 as the pattern length. We set the similarity
criterion to =r 0.5 times the standard deviation (SD) of the time
series following the method proposed by Richman and
Moorman (2000). Although these values of m and r have been
used extensively in previous reports (McIntosh et al. 2008;
Beharelle et al. 2012; Heisz et al. 2012; Mišić et al. 2016), we
sought to ensure that the reported results were robust across
multiple choices of m and r. We therefore re-calculated SE
using different values for m and r and re-ran the PLS analysis
described below (see Statistical assessment). Figure S2 shows

the correlation between new bootstrap ratios (i.e., changes in
signal variability) with bootstrap ratios that were originally esti-
mated by setting =m 2 and = ×r SD0.5 . The correlations were
generally greater than 0.7 across a range of similarity criteria r ,
and greater than 0.3 across a range of pattern lengths m, sug-
gesting that the results were relatively insensitive to choice of
parameters.

We operationalized signal variability using SE rather than
other popular measures, such as standard deviation (SD). The
primary reason for this choice is that SE is sensitive to temporal
dependencies in the signal, while variance-based measures,
such as SD, are not. This distinction is illustrated in Figure 1b
and c. Figure 1b (left) shows a typical BOLD signal from the
present study (a randomly selected condition, participant and
node). Figure 1b (right) shows the same signal, but with the
time points reordered by amplitude. The sample entropy and
standard deviation of the original and reordered signals were
then measured (Fig. 1c). Sample entropy is sensitive to this
change, because the reordered signal monotonically increases
and is trivially predictable. Critically, standard deviation is
blind to this change; although the temporal complexity of the
signal has been profoundly altered by reordering, standard
deviation measures only the dispersion of points and cannot
detect any temporal change (Fig. 1c).

Statistical Assessment

We used partial least squares (PLS) analysis to investigate
within-participant changes in regional signal variability follow-
ing the BAL versus APTD conditions. PLS analysis is a multivari-
ate statistical technique that is used to analyze two “blocks” or
sets of variables (McIntosh and Lobaugh 2004; McIntosh and
Mišić 2013). In neuroimaging studies, one set may represent

Figure 1. Sample entropy of a time series | (a) An example of a BOLD signal is shown, where the x-axis is time and the y-axis is the amplitude. Signal variability is cal-

culated using sample entropy analysis. Sample entropy (SE) measures the conditional probability that any two sequences of data points with length +m 1 will be

similar to one another under the condition that they were similar for the first m points. The similarity criterion r represents the tolerance of algorithm to accept

matches in the time series. (b) An example of a BOLD signal in its original form (left). The same signal, with the time points reordered by amplitude (right). (c)

Standard deviation of the signal is the same for both the original and reordered signal; however, sample entropy of the reordered signal drastically decreases com-

pared with sample entropy of the original signal.
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neural activity, while the other may represent behavior or
experimental design (e.g., condition and/or group assignments).
PLS analysis seeks to relate these two data blocks by construct-
ing linear combinations of the original variables such that the
new latent variables have maximum covariance (Krishnan
et al. 2011).

In the present report, one block ( )X corresponded to regional
signal variability for each participant estimated by sample
entropy of BOLD time series following BAL versus APTD condi-
tions. The rows of matrix X correspond to observations (partici-
pants nested within conditions) and the columns correspond to
variables (regional signal variability). For p participants, c condi-
tions, and v variables, matrix X will have ×p c rows and v col-
umns. Within-condition means are computed for each column
and centered to give the matrix M. Singular value decomposi-
tion (SVD) is applied to M

′ =USV M

resulting in a set of orthonormal left singular vectors, U, and
right singular vectors, V, and a diagonal matrix of singular val-
ues, S. The number of latent variables is equal to the rank of
the mean-centered matrix (here c), so U will have c columns
and v rows, and V and S will both have c columns and c rows.

The decomposition results in a set of latent variables that
are composed of columns of singular vectors, U and V, and a
set of singular values from the diagonal matrix of S. In the pres-
ent study, the v elements of column vectors of U are the
weights of original brain activity variables (i.e., signal variabil-
ity) that contribute to the latent variable and demonstrate a
pattern of changes in signal variability following dopamine
depletion. The c elements of column vectors of V are the
weights of experimental design variables that contribute to the
same latent variable and are interpreted as a contrast between
experimental conditions. The latent variables are mutually
orthogonal and express the shared information between the
two data blocks with maximum covariance. This covariance is
reflected in the singular values from the diagonal elements of
matrix S that are associated with each given latent variable.

We assessed the statistical significance of each latent vari-
able using permutation tests (Edgington and Onghena 2007).
During each permutation, condition labels for each participant
are randomized by reordering the rows of matrix X. The new
permuted data matrices were then mean-centered and sub-
jected to SVD as before. The procedure was repeated 10 000
times to generate a distribution of singular values under the
null hypothesis that there is no relationship between neural
activity and study design. A p-value was estimated for each
latent variable as the proportion of permuted singular values
greater than or equal to the original singular value.

We assessed the reliability of singular vector weights using
bootstrap resampling. Here, the rows of data matrix X were
randomly resampled with replacement while keeping the origi-
nal condition assignments. Mean-centering and SVD were then
applied to the resampled data matrices as before. The results
were used to build a sampling distribution for each weight in
the singular vectors U and V. A “bootstrap ratio” was then cal-
culated for each original variable (i.e., for each node) as the
ratio of the singular vector weight to its bootstrap-estimated
standard error. Bootstrap ratios are designed to be large for
variables that have a large weight (i.e., large contribution) as
well as a small standard error (i.e., are stable). Bootstrap ratios
are equivalent to z-scores if the bootstrap distribution is
approximately unit normal (Efron and Tibshirani 1986). In this

case, 95% and 99% confidence intervals correspond to bootstrap
ratios of ±1.96 and ±2.58, respectively.

PLS was chosen as the primary analytic method (instead of
univariate statistical techniques) because we sought to identify
patterns of nodes whose signal variability collectively changes
due to dopamine depletion. However, the results of PLS analy-
sis were nearly identical with the results obtained by a more
conventional univariate paired t-test (correlation between t-val-
ues and bootstrap ratios; ≈r 1).

Community Detection

Functional networks were partitioned into communities or
intrinsic networks using the assignment derived in Mišić et al.
(2015a), which we describe below. As we show in the Results
section, the main conclusions also hold for the partitions
reported by Yeo and colleagues (Yeo et al. 2011) and Power and
colleagues (Power et al. 2011).

A Louvain-like greedy algorithm was used to identify a com-
munity assignment that maximized the quality function, Q
(Newman and Girvan 2004; Rubinov and Sporns 2011)
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where +Wij and −Wij are the functional connectivity (correlation)
matrices that contain only positive and only negative coeffi-
cients of correlation, respectively. ±pij is the expected density of
only positive or only negative connectivity matrices according
to the configuration null model and is given as = ( )± ± ± ±p s s m/2ij i j .

= ∑±
>

±m Wi j i ij, is the total weight of all positive or negative con-
nections of ±Wij (note that the summation is taken over >i j i, to
ensure that each connection is only counted once). The total
weights of positive or negative connections of i and j are given
by = ∑± ±s Wi i ij and = ∑± ±s Wj j ij , respectively. The resolution
parameter γ scales the importance of the null model and effec-
tively controls the size of the detected communities: larger
communities are more likely to be detected when γ < 1 and
smaller communities (with fewer nodes in each community)
are more likely to be detected when γ > 1. Furthermore, σi

defines the community assignment of node i. The Kronecker
function δ σ σ( ),i j is equal to 1 if σ σ=i j and is equal to zero other-
wise (σ σ≠i j), ensuring that only within-community connec-
tions contribute to Q .

Multiple resolutions γ were assessed, from 0.5 to 10 in steps
of 0.1. The Louvain algorithm was repeated 250 times for each
γ value (Blondel et al. 2008). The resolution γ = 1.5 was chosen
based on the similarity measures (Rand index) of pairs of par-
titions for each γ value, such that the similarity measures of a
more stable set of partitions for a given γ value would have a
larger mean and smaller standard deviation compared with
similarity measures at other γ values (i.e., larger z-score of
similarity measure) (Traud et al. 2011). Finally, a consensus
partition was found from the 250 partitions at γ = 1.5 following
the method described in Bassett et al. (2013). Eight communi-
ties or networks were detected, including visual (VIS), tempo-
ral (TEM), default mode (DMN), dorsal attention (DA), ventral
attention (VA), somatomotor (SM), and salience (SAL) (Mišić
et al. 2015a). The subcortical areas (SUB) were added to the list
as a separate network based on the anatomical Desikan-
Killiany parcellation.
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Cohesion and Integration

Connectivity between and within modules was assessed as the
participation coefficient and within-module degree z-score
(Guimerà and Amaral 2005), using Brain Connectivity Toolbox
(BCT) (Rubinov and Sporns 2010). The participation coefficient
quantifies how evenly distributed a node’s connections are to
all modules. Values close to 1 indicate that a node is connected
to many communities, while values close to 0 indicate that a
node is connected to few communities. The participation coef-
ficient of node i, Pi, is given by

⎛
⎝⎜

⎞
⎠⎟∑= − ( )

∈

P
k m
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m M
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where m is a module from a set of modules M, ki is the
weighted degree (i.e., connection strength) of node i, and ( )k mi

is the number of connections between node i and all other
nodes in module m (Guimerà and Amaral 2005; Rubinov and
Sporns 2010). To find participation coefficients of resting state
networks, we first found the average participation coefficient of
each node across all participants and then compared the par-
ticipation coefficients of the nodes that belong to the same
module following the BAL versus APTD conditions.

The within-module degree is estimated as the weighted
degree (i.e., strength) of the connections that node i makes to
other nodes within the same module. The measure is then
z-scored, expressing a node’s weighted degree in terms of stan-
dard deviations above or below the mean degree of the nodes
in the given module (Zi). A positive within-module degree
z-score indicates that a node is highly connected to other nodes
within the same module, while a negative within-module
z-score indicates a node participates in less than average con-
nections within its own module. We estimated the within-
module degree z-score of each node for each participant and
then calculated the average Zi over all participants. Finally, we
compared the within-module degree z-scores of the nodes of a
given module following the BAL and APTD conditions.

Results
Task-free, eyes-open resting-state fMRI was recorded in =n 51
healthy young participants on 2 separate days, once following

administration of a nutritionally balanced amino acid mixture
(BAL) and once following acute phenylalanine/tyrosine deple-
tion (APTD). Anatomical MRI data were parceled into 5 progres-
sively finer resolutions, comprising 83, 129, 234, 463, and 1015
nodes (Cammoun et al. 2012), which were used for extraction of
blood-oxygen-level dependent (BOLD) time series. We investi-
gated how dopamine depletion affects (a) local, region-level
hemodynamic activity, (b) global, between-region temporal sta-
tistical association of BOLD time series (termed as “functional
connectivity”), and (c) the relationship between the two.

Dopamine Depletion Increases Signal Variability

We estimated within region signal variability using sample
entropy (SE), a measure of the unpredictability of a time series
(Richman and Moorman 2000). Briefly, the SE algorithm quanti-
fies the conditional probability that any two sequences of +m 1
time points will be similar to each other given that the first m
points were similar (Fig. 1). We then used multivariate partial
least squares (PLS) analysis to statistically assess within-
participant changes in signal variability at each brain region
following administration of the BAL versus APTD mixtures
(McIntosh and Mišić 2013). PLS results in a set of latent vari-
ables (LV), that are weighted combinations of experimental
design (i.e., a contrast) and signal variability patterns that opti-
mally covary with each other. The analysis revealed a single
statistically significant latent variable (permuted =p 0.014 for
the finest parcellation resolution with 1015 nodes), showing
broadly increased signal variability following dopamine deple-
tion (Fig. 2). Bootstrap resampling was used to estimate the reli-
ability with which individual nodes contribute to the overall
multivariate pattern. Specifically, the weight or loading associ-
ated with each node was divided by its bootstrap-estimated
standard error, yielding a measure (“bootstrap ratio”) that is
high for nodes with large weights (i.e., large contributions) and
small standard errors (i.e., are stable) (McIntosh and Lobaugh
2004). Note that bootstrap ratios may be interpreted as z-scores
if the sampling distribution is approximately unit normal
(Efron and Tibshirani 1986). Positive bootstrap ratios indicate
an increase in signal variability, while negative bootstrap ratios
indicate decreased variability. Figure 2c depicts a brain projec-
tion of this statistical pattern, showing that the greatest

Figure 2. Dopamine depletion increases signal variability | (a) PLS analysis identified a significant contrast between patterns of signal variability in depletion (APTD)

versus non-depletion (BAL) conditions (permuted P =0.014). (b) The change in signal variability of each node is given by a bootstrap ratio for that node: such that a

positive bootstrap ratio shows increase in signal variability of the node following dopamine depletion, while a negative bootstrap ratio shows the opposite. Bootstrap

ratios are depicted at the finest resolution (1015 nodes), showing that dopamine depletion increases signal variability at most nodes. (c) Bootstrap ratios are shown in

3D space sagittally and axially. Corresponding results are shown for all resolutions in Figure S1.
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increase in signal variability was observed in somatomotor cor-
tex. This effect (increased regional hemodynamic variability
following depletion) and the spatial pattern were consistent
across all 5 spatial resolutions (Fig. S1).

Increased Signal Variability in Somatomotor and
Salience Networks

We next investigated the effect of APTD on resting state net-
works (Power et al. 2011; Yeo et al. 2011). Figure 3a depicts the
nodes displaying the greatest increase in signal variability fol-
lowing dopamine depletion in descending order and color-
coded by resting state network membership (Mišić et al. 2015a).
The most affected nodes appear to belong primarily to the
somatomotor (yellow) and salience (green) networks suggesting
that the signal variability may selectively affect certain large-
scale networks.

To directly investigate the network-selectivity of dopamine
depletion, we first estimated the mean change in signal vari-
ability across all nodes in a given network, using PLS-derived
bootstrap ratios for the finest resolution (1015 nodes). To deter-
mine which network-level changes were statistically significant
and not due to differences in network size, spatial contiguity or
lateralization, we used a label permuting procedure. Network
labels were randomly permuted within each hemisphere (pre-
serving the number of nodes assigned to each network) and
network means were recomputed 10 000 times, generating a
distribution under the null hypothesis that network assign-
ment does not influence the overall change in signal variability.
A p-value was estimated for each network as the proportion of
cases when the mean for the permuted network assignment
exceeded the mean for the original empirical network assign-
ment. Figure 3b,c shows that changes in signal variability were
observed for all intrinsic networks, but that increased variabil-
ity was greatest and statistically significant for the

somatomotor and salience networks ( < −p 10 4 , FDR corrected
(Benjamini and Hochberg 1995)).

To ensure that these results are independent of how intrin-
sic networks are defined, we repeated the procedure using par-
titions reported by Yeo and colleagues (Yeo et al. 2011) and by
Power and colleagues (Power et al. 2011) (Fig. S3). The results
were consistent across the 3 partitions, indicating significant
increased signal variability in somatomotor and ventral atten-
tion networks among Yeo networks (note that the “ventral
attention network” overlaps with the “salience network” shown
in Fig. 3), and in somatosensory and auditory networks among
Power networks. No significant decrease in signal variability
was observed in any other intrinsic networks, regardless of
which network assignments were used.

Increased Signal Variability Correlates With Decreased
Functional Connectivity

Given that changes in signal variability were highly network
dependent, we next investigated whether increased signal vari-
ability is related to patterns of functional connectivity.
Functional connectivity was estimated as a zero-lag Pearson
correlation coefficient between regional time series for each
participant in each condition. To relate patterns of signal vari-
ability with functional connectivity, we estimated a group-
average functional connectivity matrix by calculating the mean
connectivity of each pair of brain regions across all partici-
pants. We then estimated the mean connectivity (i.e., strength
of the functional correlations) for each brain region.

We observed a weak relationship between increased signal
variability and decreased functional connectivity, such that
nodes with the greatest increase in signal variability following
dopamine depletion also experienced the greatest decrease in
functional connectivity ( = − =r R0.23, 0.0532 , = × −p 1.04 10 13;
Fig. 4a). Although statistically significant, effect was small,

Figure 3. Node- and network-level effects of dopamine depletion | (a) The top 10% of the nodes (i.e., top 100 nodes) that had the largest increase in signal variability (largest

bootstrap ratios) following dopamine depletion. Each bar shows the magnitude of bootstrap ratio of a node and is colored based on the community assignment of that

node (Mišić et al. 2015a). Somatomotor (yellow) and salience (green) networks appear over-represented compared with other networks. (b) The mean change in signal vari-

ability is calculated for each network and assessed by permutation tests (10 000 repetitions). Signal variability increases most in the salience and somatomotor networks fol-

lowing dopamine depletion, and these are the only two networks where this effect is statistically significant. (c) Changes in mean signal variability are depicted for

somatomor and salience networks (significance obtained by permutation tests; FDR corrected (Benjamini and and Hochberg 1995)). SM = somatomotor, SAL = salience, FPN

= fronto-parietal, VA = ventral attention, SUB = subcortical areas, DMN = default mode, VIS = visual, DA = dorsal attention, TEM = temporal.
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suggesting that the relationship was not sustained over the
bulk of data points (nodes), but that it may have been driven by
a subset of nodes instead.

To investigate this possibility, we assessed mean dopamine-
dependent changes in functional connectivity in each of the
intrinsic networks separately and correlated the network spe-
cific changes in functional correlation with the network specific
changes in signal variability. Note that these analyses did not
estimate subject error, but modeled group-averaged effects.
Although there is a significant negative correlation between
changes in functional connectivity and signal variability in
more than half of the participants (29 out of 51), positive or no
correlation was observed in others (7 and 15 out of 51 partici-
pants, respectively). In other words, the group-level effect is
consistent with individual-level effects in the majority of parti-
cipants. This result is broadly consistent with previous studies
of group- versus individual-level effects of dopaminergic
manipulations (Garrett et al. 2015; Alavash et al. 2018) and indi-
cates that further investigation is required to assess the effects
of dopamine depletion at the individual participant level. The
results provided in the present work mainly address the group-
level effects of dopamine depletion.

Thus, on the group-level, we observed an anti-correlation
between the two measures such that the networks with great-
est increase in hemodynamic signal variability also experience
the great decrease in functional correlations ( = −r 0.59; Fig. 4b).

Changes in functional connectivity were statistically assessed
using the same label permuting procedure outlined above (ran-
domly permuting the network label of all nodes and re-
computing network means, with 10 000 repetitions). Mean
functional connectivity significantly decreased in 3 intrinsic
networks: temporal, salience, and somatomotor networks con-
nectivity ( = × < = ×− − −p p p9.0 10 , 10 and 9.0 104 4 4 respec-
tively; FDR corrected; Fig. 4c,d). Critically, the salience and
somatomotor networks also experienced the greatest increase
in signal variability after APTD (Fig. 3), suggesting that
changes in signal variability and functional connectivity may
be related. Overall, these results suggest that the effects of
dopamine depletion are stronger in specific large-scale sys-
tems, and that changes in local dynamics are related to global
functional interactions.

Selective Disconnection of Intrinsic Networks

Dopamine-related increases in signal variability appear to be
concomitant with decreased functional connectivity and local-
ized to specific intrinsic networks. However, it is unclear
whether decreased connectivity in the somatomotor and
salience networks is driven by weakened within-network or
between-network connections, or both. To address this ques-
tion, we calculated the participation coefficient and within-
module degree z-score of every node (Guimerà and Amaral

Figure 4. Relating signal variability and functional connectivity | (a) Mean changes in functional connectivity following dopamine depletion were estimated across all

nodes and correlated with changes in within-region signal variability. Changes in functional connectivity are related to changes in signal variability, such that the

larger the increase in signal variability, the larger the decrease in functional connectivity. (b) Mean changes in functional connectivity for intrinsic networks are corre-

lated with mean changes in local signal variability in those networks. There is a clear anti-correlation between the two, consistent with the result in part (a). (c) The

mean changes in functional connectivity was calculated for each network and assessed by permutation tests (10 000 repetitions). Mean connectivity significantly

decreases in temporal, salience and somatomotor networks. Somatomotor and salience networks also experience significant increase in local variability (Fig. 3).

(d) Mean functional connectivity in depletion (APTD) versus non-depletion (BAL) conditions, shown for nodes belonging to the temporal (TEM), somatomotor (SM) and

salience (SAL) networks. Functional connectivity decreases in all instances (permutation test; FDR corrected).
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2005). The participation coefficient quantifies the diversity of a
node’s connectivity profile. A participation coefficient with a
value close to 1 indicates that a node’s connections are evenly
distributed across communities, while a value close to 0 indi-
cates that most of the node’s connections are within its own
community. The within-module degree z-score of a node is a
normalized measure of the strength of connections a node
makes within its own community.

Figure 5 shows that the participation coefficient significantly
decreases in somatomotor and salience networks following
dopamine depletion ( = −p 10 4 and = × −p 2.4 10 3, respectively,
assessed by label permuting (see above); FDR corrected), while
the within-module degree z-score does not ( =p 0.5). In other
words, dopamine depletion selectively reduced functional
interactions between these networks and the rest of the brain
(participation coefficient; Fig. 5a), but did not affect within-
network cohesion (within-module degree z-score; Fig. 5b).
Overall, these results suggest that dopamine depletion effec-
tively segregates these intrinsic networks from the rest of the
brain, but does not affect their internal cohesion. Note that the
two networks with significantly decreased participation coeffi-
cient are also the ones with greatest increases in signal vari-
ability. We also investigated average changes in participation
coefficient and within-module degree z-score in other intrinsic
networks, where we did not observe any significant changes in
either of the two measures.

No Systematic Effect of Study

The data used in this study were consolidated from 3 different
experiments (2 published; Coull et al. 2012; Nagano-Saito et al.
2012 and one unpublished study), so it is possible that the
observed effects were idiosyncratic to one or two of the

constituent datasets and do not necessarily generalize across
all 3 studies. To investigate this possibility, we used a multi-
way ANOVA to assess differences between studies: participant-
specific scores were calculated for the signal variability pattern
and the 3 studies were treated as separate groups. The analysis
did not reveal any significant difference among the 3 studies
( ( ) = = )F p2, 45 1.7, 0.19 , nor any condition by study interaction
( ( ) = = )F p2, 45 0.68, 0.51 . There was a significant condition dif-
ference, with greater scores in the depletion versus non-
depletion condition ( ( ) = ≈ )F p1, 45 131.06, 0 , but this is
expected given that the scores were derived by PLS to maxi-
mize this condition difference.

Comparing Sample Entropy and Standard Deviation

A popular alternative measure of signal variability is the simple
standard deviation (SD). Although we opted to use SE over SD
because the latter is not sensitive to temporal dependencies in
the signal (see Fig. 1), for completeness we directly compared
the effects of depletion using the two measures. A priori, we
expect the two measures to be anti-correlated, because sample
entropy estimation explicitly incorporates the SD of a given sig-
nal to define the similarity criterion r (the tolerance of the algo-
rithm to accept matches in the time series). For a deeper
discussion of this practice, including potential limitations, see
Grandy et al. (2016). In other words, the similarity criterion for
the sample entropy algorithm will be greater for a signal with a
greater SD. Consequently, the sample entropy algorithm is
more likely to identify matches in signals with a larger SD,
resulting in a lower sample entropy value. To demonstrate this
claim, we correlated the SD and sample entropy of regional
time series for both APTD (depletion) and BAL (no depletion)
conditions, as well as the changes in each measure following

Figure 5. The effects of dopamine depletion on cohesion and integration of specific intrinsic networks | (a) Mean participation coefficient, indexing the diversity of

inter-network connectivity, significantly decreases in somatomotor (SM) and salience (SAL) networks after dopamine depletion (using 10 000 permutation tests; FDR

corrected). (b) Within-module degree z-score, indexing within-network connectivity, remains unaffected.
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dopamine depletion. The results are shown in Figure S4, con-
firming the anti-correlation between sample entropy and SD of
a given signal at a brain region in the (a) no depletion condition,
(b) depletion condition. Panel (c) further shows that depletion-
driven changes in signal variability are also anti-correlated
with changes in standard deviation.

To further assess whether the effects of dopamine depletion
are specific to SE or SD, or both, we repeated the PLS analysis
using the SD of the BOLD time series before and after dopamine
depletion. The analysis revealed no significant effects of dopa-
mine depletion on SD (permuted =p 0.38). We then regressed
out SD from SE in each region for each participant and condi-
tion using a linear regression model and repeated the PLS anal-
ysis on the SD-residualized SE values. No statistically
significant differences were detected using the SD-residualized
SE values (permuted =p 0.9), indicating that SD and SE are not
wholly independent of each other. Altogether the results sug-
gest that SD and SE are both sensitive to the variance of the sig-
nal, but that SE captures additional temporal irregularities,
making it more likely to detect the effects of dopamine
depletion.

Discussion
We investigated the effect of dopamine depletion on the bal-
ance between local node properties and global network archi-
tecture. We report 2 key results: (1) dopamine depletion
selectively destabilizes neural signaling, measured at the
hemodynamic level, in salience and somatomotor networks,
and (2) increased local variability in these intrinsic networks is
accompanied by their disconnection from the global functional
architecture. Altogether, these results point to a stabilizing
influence of dopamine on neural signaling and highlight the
link between local, node-level properties and global network
architecture.

Linking Local and Global Dynamics

The present results highlight the relationship between local
hemodynamic signal variability and functional embedding.
Increased variability in salience and somatomotor networks
was concomitant with decreased functional connectivity with
the rest of the brain. It is possible that low dopamine states dis-
rupt local neuronal signaling, making it less likely for remote
populations to synchronize. Alternatively, dopamine depletion
may disrupt inter-regional synchrony through a separate
mechanism, resulting in greater local variability. The correla-
tive nature of the results cannot be used to disambiguate these
two possibilities and further causal experiments are necessary.
The within-condition relationship between local variability and
global connectivity remains an open question. In any case, the
present report demonstrates that functional interactions span
multiple topological scales, such that local and global dynam-
ical properties cannot be fully appreciated in isolation (Cabral
et al. 2011; Bolt et al. 2018).

Interestingly, dopamine depletion was associated with reduced
between-module connectivity but not with within-module con-
nectivity (Fig. 5). The effect was highly specific: reduced between-
module connectivity was significantly observed only in networks
that also experienced increased regional signal variability. In other
words, dopamine depletion affected how nodes within these net-
works communicated with the rest of the brain, but did not affect
their internal cohesion. A recent study demonstrated a similar
effect at the level of resting state networks: networks with greater

temporal variability displayed greater within-network cohesion
and lower between-network integration (Lee and Frangou 2017).
Altogether, the present results highlight a simple principle: the
tendency for nodes to form functional networks depends on their
ability to synchronize with one another. Thus, functional interac-
tions between regions must be studied together with the tempo-
ral properties of their local signals.

Recent theories emphasize dynamic over static brain func-
tion. At the network level, reconfiguration of functional interac-
tions is increasingly recognized as an informative attribute of
healthy brain function and dysfunction (Calhoun et al. 2014).
Functional reconfiguration has been observed across multiple
temporal scales, both at rest (Zalesky et al. 2014; Betzel et al.
2016) and with respect to a variety of cognitive functions (Shine
et al. 2016a), including learning (Bassett et al. 2015; Mohr et al.
2016), attention (Shine et al. 2016b) and working memory
(Kitzbichler et al. 2011), and even conscious awareness
(Barttfeld et al. 2015; Godwin et al. 2015). In parallel, the
dynamic range of local signal fluctuations has emerged as a
node-level marker of brain function (Garrett et al. 2013a;
Roberts et al. 2017). Traditionally disregarded as “noise”,
changes in signal variability have been reported across the life-
span (McIntosh et al. 2008; Garrett et al. 2011; Guitart-Masip
et al. 2015; Nomi et al. 2017), in multiple perceptual, cognitive
and affective tasks (Mišić et al. 2010; Samanez-Larkin et al.
2010; Garrett et al. 2013b; Pfeffer et al. 2018) and in a variety of
psychiatric and neurological diseases (Mišić et al. 2015b;
Bertrand et al. 2016; Mišić et al. 2016).

While most methods for estimating variability focus on
node-level time series, several recent studies have conceptual-
ized variability with respect to functional network embedding
(Shen et al. 2015b; Mišić et al. 2016). For instance, local variabil-
ity can be defined as the tendency for a node to switch network
allegiance or to interact with multiple networks (Braun et al.
2015; Zhang et al. 2016). This dynamic network switching is
conditioned by an underlying anatomy (Shen et al. 2015a;
Zhang et al. 2016), but is also likely to be influenced by a variety
of neurotransmitters. A prominent hypothesis is that dopa-
mine modulates signal-to-noise ratio (Mohr and Nagel 2010;
Samanez-Larkin et al. 2010). We turn to the specific role of
dopamine next.

Dopamine and Signal Dynamics

Our results suggest that dopamine may act to stabilize neural
signaling at the hemodynamic level, particularly in networks
associated with motor control (somatomotor network) and
orienting attention towards behaviorally-relevant stimuli
(salience network). Dopamine depletion was simultaneously
associated with increased within region signal variability and
decreased extrinsic connectivity, indicating that dopaminergic
signaling influences both local information processing and
network-wide interactions. Importantly, the effects of depletion
were not confined to a single locus but distributed over two
large-scale networks, suggesting that even transient decreases
in dopamine availability can disrupt local neuronal signaling
and have far-reaching effects on synchrony among multiple
systems.

There are two possible mechanisms by which dopamine
depletion could cause the observed changes in cortical signal
variability. The first possibility is that depletion modulates syn-
aptic activity and signal gain directly via cortical receptors
(Seamans and Yang 2004). Mechanistic studies in vitro have
demonstrated that dopamine influences intrinsic ionic currents
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and synaptic conductance (Durstewitz et al. 2000; Kroener et al.
2009). These modulatory effects may facilitate or suppress neu-
ral signaling, helping to stabilize neural representations. In
addition, dose–response effects of dopamine release may be
both tonic and phasic (Goto et al. 2007), with the two modes
thought to be mediated by distinct signaling pathways and
receptors, and manifesting in distinct behavioral outcomes
(Cox et al. 2015). For instance, striatal medium spiny neurons of
the direct pathway express D1 receptors and are thought to pro-
mote movement and the selection of rewarding actions.
Neurons in the indirect pathway mainly express D2 receptors
and are thought to inhibit cortical patterns that encode mal-
adaptive or non-rewarding actions (Surmeier et al. 2011).
Although our results are consistent with the broad notion
that dopamine stabilizes neural representations to facilitate
reward learning and movement, further experiments are nec-
essary to determine whether the observed effects can be
attributed to tonic or phasic modulation, and to D1 or D2

receptor transmission.
The second possibility is that the effects of dopamine deple-

tion may originate in the striatum, an area with dense dopami-
nergic afferents as well as projections to both the somatomotor
and salience networks (Alexander et al. 1986; Alexander and
Crutcher 1990; Zhang et al. 2017). Prominent projections from
dorsal striatum terminate in the somatomotor system (forming
the motor loop), while projections ventral striatum terminate
in the salience system. A dopaminergically-depleted striatum
may therefore disrupt ongoing cortico-striatal signaling, result-
ing in downstream cortical effects, such as increased variabil-
ity. Importantly, the two accounts are not mutually exclusive,
and it is possible that the observed effects depend on both
mechanisms.

Dopamine depletion can thus have local and global conse-
quences, influencing a range of sensory-motor and higher cogni-
tive functions. Age-related decline in dopaminergic transmission is
hypothesized to lead to greater signal variability, influencing the
distinctiveness of neural representations and, ultimately, perfor-
mance (Mohr and Nagel 2010; Samanez-Larkin et al. 2010). The
stabilizing role of dopamine can also be observed in diseases
associated with dopaminergic dysfunction, such as Parkinson’s
disease (PD), attention deficit hyperactivity disorder (ADHD),
and schizophrenia. In PD for instance, cell death in substantia
nigra leads to reduced dopaminergic transmission, with exten-
sive motor symptoms. Intriguingly, dopamine depletion in PD
is associated with reduced cortico-striatal functional connectiv-
ity patterns and reduced gait automaticity (Gilat et al. 2017).
Similarly, in ADHD, reduced dopamine signaling is associated
with deficits in goal-directed behavior and reward learning (del
Campo et al. 2013).

Finally, the present results draw attention to an overlooked
assumption of graph-based models of brain structure and func-
tion: that all nodes are identical, except for their connectivity
patterns. In other words, graph representations often ignore
important inter-regional differences that could influence neural
activity and synchrony, including morphology, cytoarchitec-
tonics, gene expression, and receptor densities (Lariviere et al.
2018). How dopaminergic modulation interacts with modula-
tion by other neurotransmitters is an exciting open question
(Shine et al. 2018).

Measuring Signal Variability

Finally, we note that several recent reports have also investi-
gated the role of dopaminergic signaling in the context of local

signal dynamics, but drew an altogether different conclusion:
that dopamine up-regulation “increases” signal variance.
Specifically, Alavash et al (2018) reported that L-dopa adminis-
tration increased BOLD standard deviation during an auditory
working memory task (a syllable pitch discrimination task).
Similarly, Garrett and colleagues (2015) reported that d-amphet-
amine administration also increased signal standard deviation
during a working memory task (a visual letter n-back task).
Although we used a different method to manipulate dopamine
(APTD vs. L-dopa and d-amphetamine) and to record hemody-
namic activity (resting state vs. task), we believe that the pri-
mary difference between these studies and our own is how
signal variability was operationalized. Namely, both Alavash
et al. (2018) and Garrett et al. (2015) defined signal variability in
terms of standard deviations. The results shown in Figure 1
and Figure S4 demonstrate that sample entropy and variance
based measures (e.g., standard deviation) capture different
aspects of signal variability. Most importantly, because of the
way that sample entropy is used to detect repeating patterns in
a signal, we find that in practice, the two measures are often
anti-correlated, which explains the seemingly different results.
Altogether, these studies demonstrate a need to further refine
the concept of signal variability and for greater plurality of
methods (Fulcher and Jones 2017). While some measures are
sensitive to signal dispersion (e.g., standard deviation), others
are sensitive to temporal regularity (e.g., sample entropy).

Methodological Considerations

Our results may depend on a number of methodological
choices and potential limitations, which we consider in detail
here. Methodological choices include the type of parcellation
and resolution, intrinsic network definition, and parameter set-
tings for SE. The reported effects are consistent across 5 resolu-
tions (from 83 to 1015 nodes; Fig. S1), 3 network partitions
(detected using clustering, Infomap, and Louvain methods;
Fig. S3) and a range of parameter settings (Fig. S2). Although we
took steps to mitigate concerns about these choices, the pres-
ent results are based on a finite sampling of a multifactorial
methodological space.

More generally, we studied the effects of dopamine depletion
in the context of task-free, resting state fMRI, which presents 3
significant challenges for interpretation. First, dopaminergic
transmission is inherently related to specific cognitive functions,
which may be accessible without overt task demands. We find
evidence that dopamine depletion affects information transfer
in two intrinsic networks with specific functional properties, but
more research is necessary to investigate how dopamine affects
the function of these networks in the presence of task demands.
Second, dopaminergic transmission within specific subcortical
and cortical circuits occurs at time scales that may be inaccessi-
ble with BOLD imaging. The present results can be used to draw
conclusions about slow, modulatory effects of dopamine, but
more electrophysiological evidence is necessary to relate these
effects to faster phasic dopaminergic responses. Third, the pres-
ent data were collected during an eyes-open resting state scan,
which may potentially entail different neurocognitive demands
than eyes-closed, including recruitment of visuomotor and
attention networks (Jao et al. 2013; Patriat et al. 2013).

Summary

Our results support a link between local node dynamics and
network architecture. Pharmacological perturbation may
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selectively target and disconnect specific networks without
altering their internal cohesion. These results demonstrate that
the effect of dopamine on synaptic signaling ultimately mani-
fests at the level of large-scale brain networks.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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Mišić B, Betzel RF, Nematzadeh A, Goñi J, Griffa A, Hagmann P,
Flammini A, Ahn Y-Y, Sporns O. 2015a. Cooperative and
competitive spreading dynamics on the human connec-
tome. Neuron. 86(6):1518–1529.
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