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We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support

the automatic identification of brain activity patterns using electroencephalographic

recordings. EKRA is a data-driven strategy that incorporates two kernel functions to

take advantage of the available joint information, associating neural responses to a given

stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted

to learning the linear projection that best discriminates the input feature set, optimizing

the required free parameters automatically. Our approach is carried out in two scenarios:

(i) feature selection by computing a relevance vector from extracted neural features to

facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced

feature selection to perform an additional transformation of relevant features aiming

to improve the overall identification accuracy. Accordingly, we provide an alternative

feature relevance analysis strategy that allows improving the system performance while

favoring the data interpretability. For the validation purpose, EKRA is tested in two

well-known tasks of brain activity: motor imagery discrimination and epileptic seizure

detection. The obtained results show that the EKRA approach estimates a relevant

representation space extracted from the provided supervised information, emphasizing

the salient input features. As a result, our proposal outperforms the state-of-the-art

methods regarding brain activity discrimination accuracy with the benefit of enhanced

physiological interpretation about the task at hand.

Keywords: relevance analysis, kernel method, brain activity, motor imagery, epileptic seizure detection

1. INTRODUCTION

The electroencephalogram (EEG) is the electrical activity of neurons in subcortical structures
recorded by a noninvasive electrode array placed on the brain scalp surface. Because of their
high temporal resolution and low cost, the biological EEG recordings have been found to be
effective in many neurophysiological applications related to brain-computer interfaces (Nicolas-
Alonso and Gomez-Gil, 2012), automated diagnosis of neurological diseases like epilepsy (Faust
et al., 2015), neuromarketing (Vecchiato et al., 2015), and sensorimotor restoration (Pisotta et al.,
2015), just to mention a few examples. As part of the data analysis in these applications, however,
it is essential to manage massive amounts of the input feature space that frequently holds large
dimensions (∼102–103 features) and limited numbers of samples (up to a few dozen) (Wang et al.,
2015). As a consequence of high-dimensional data, most of the machine learning algorithms may
cause inefficiency and low accuracy (Fang et al., 2016).
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In practice, feature extraction from EEG recordings is a
particular way of data reduction, which is carried out to represent
the brain states, enabling an efficient pattern identification and
translation of mental states. For the goal to feed the machine
learning classifiers, a variety of EEG features may be extracted.
Thus, the linear extraction methods are widespread, which are
more applicable to stationary signal processing, such as linear
Fourier-based spectral analysis, auto-regressive models, Time-
Frequency Distributions (Al-Fahoum and Al-Fraihat, 2014). In
the case of sudden and transient signal changes, more popular
methods areWavelet decomposition (Duque-Muñoz et al., 2014)
and empirical mode decomposition (Zhang et al., 2016). Due to
the high non-stationary and non-linearity of EEG data, nonlinear
extraction methods (e.g., Entropic and complexity measures) are
employed that usually provide a higher classification accuracy,
but at the cost of increased computational burden (Acharya et al.,
2012; Chen et al., 2015), without mentioning their complicated
suitability in multi-channel setups (Chen et al., 2016). Therefore,
each method has particular strengths and weaknesses, meaning
that the effectiveness of each feature extraction method depends
on the application.

1.1. Related Work
There are two alternative approaches to addressing the problem
of a large amount of EEG data (Naeem et al., 2009): (i)
Channel selection that intends to choose a subset of electrodes
contributing the most to the desired performance. Besides of
avoiding redundancy of non-focal/unnecessary channels, this
proceduremakes visual EEGmonitoringmore practical when the
number of needed channels becomes very few (Alotaiby et al.,
2015). A significant disadvantage of decreasing the number of
EEG channels is the unrealistic assumption that cortical activity
is produced by EEG signals coming only from its immediate
vicinity (Haufe et al., 2014). (ii) Dimensionality Reduction
that projects the original feature space into a smaller space
representation, aiming to reduce the overwhelming number of
extracted features (Birjandtalab et al., 2017).

Although either approach to dimensionality reduction can be
performed separately, there is a growing interest in minimizing
together the number of channels and features to be handled
by the classification algorithms (Martinez-Leon et al., 2015).
According to the way the input data points are mapped into a
lower-dimensional space, dimensionality reduction methods can
be categorized as linear or non-linear. The former approaches
(like Principal Component Analysis (Zajacova et al., 2015),
Discriminant and Common Spatial Patterns (Liao et al., 2007;
Zhang et al., 2015), and Spatio-Spectral Decomposition) are
popular choices for either EEG representation case (channels or
features) with the benefit of computational efficiency, numerical
stabilization, and denoising capability. Nevertheless, they face
a deficiency, namely, the feature spaces extracted from EEG
signals can induce significant and complex variations regarding
the nonlinearity and sparsity of the manifolds that hardly can
be encoded by linear decompositions (Sturm et al., 2016).
Moreover, based on their contribution to a linear regression
model, linear dimensionality reduction methods usually select

the most compact and relevant set of features, which might not
be the best option for a non-linear classifier (Adeli et al., 2017).

In turn, the non-linear mapping can more precisely preserve
the information about the local neighborhoods of data-points
by introducing either locally linearized structures or pairwise
distances along the subtle non-linear manifold, attempting
to unfold more complex high-dimensional data as separable
groups (Lee and Verleysen, 2007). Among machine learning
approaches to dimensionality reduction, the Kernel-based
analysis is promising because of the following properties (Chu
et al., 2011): (i) kernel methods apply a non-linear mapping to
a higher dimensional space where the original non-linear data
become linear or near-linear. (ii) The Kernel trick decreases
the computational complexity of high dimensional data as
the parameter evaluation domain is lessened from the explicit
feature space into the Kernel space. In practice, an open
issue is the definition of the kernel transformation that can
be more connected with the appropriate type of application
nonlinearity (Zimmer et al., 2015). Nevertheless, more efforts are
spent in the development of a metric learning that allows a kernel
to adjust the importance of individual features of tasks under
consideration, usually exploiting a given amount of supervisory
information (Hurtado-Rincón et al., 2016). Hence, the kernel-
based relevance analysis can handle the estimated weights to
highlight the features or dimensions relevant for improving the
classification performance (Brockmeier et al., 2014).

1.2. Our Contribution
Devoted to channel selection and dimension reduction of EEG
data, some issues remain open in employing Kernel-based
metric learning algorithms: (i) Adaptation to the complex neural
relationships is far from being an easy task, in particular, in
taking advantage of the supervised information by non-linear
methods (Fukumizu et al., 2004). (ii) A direct physiological
interpretability from a non-linear-based mapping is not always
possible. (iii) The selected or reduced feature sets with the
smallest size can provide a high rate of false alarms and missed
detections. This situation hinders a solid interpretation of the
mechanisms underlying the problem (Gajic et al., 2014). (iv)
The computational complexity is a strong constraint because
of the extensive processing time and parameter tuning (mainly
performed using heuristic methods). Thus, there is a need for
identifying themost discriminating features by finding a trade-off
between system complexity and accuracy (Bhattacharyya et al.,
2014). (v) High variability of channel performance across the
subjects (Feess et al., 2013). Due to the personal peculiarities, the
high inter-subject variability poses one of the biggest challenges
in brain activity identification.

In this work, we develop a kernel-based approach for
enhanced feature relevance analysis, termed Enhanced Kernel
Relevance Analysis (EKRA), aiming to identify brain activity
patterns automatically. In particular, the proposed relevance
analysis comprises two kernel functions to take advantage
of the actual joint information, attaching neural responses
to a given stimulus/conditions. In this regard, we employ a
Center Kernel Alignment (CKA)-based functional to learn a
linear projection that encodes all discriminative input features,
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benefiting from the non-linear notion of similarity behind the
studied kernels (Cortes et al., 2012). The present approach
is an extension of our previous Kernel Relevance Analysis
strategy describe in (Arias-Mora et al., 2015; Hurtado-Rincón
et al., 2016). In particular, EKRA can be implemented as
both feature selection (EKRA-S) and enhanced feature selection
(EKRA-ES) tool. The former introduces a feature relevance
vector index to quantify the contribution of each input feature
for discriminating the possible stimulus/conditions. The latter
adapts the relevance index vector to compute a representation
space favoring the brain activity patterns separability without
redundancy. Besides, an iterative gradient descent optimization is
applied to calculate the EKRA projection matrix and the required
kernel free parameters. From the attained results we conclude
that EKRA allows finding a suitable feature representation space
by ensuring the identification of brain activity patterns, at
the same time, favoring the physiological interpretation of the
studied phenomenon. Indeed, our proposal outperforms state-
of-the-art approaches that carry out the multivariate feature
selection and dimensionality reduction.

The rest of the paper is organized as follows: In Section 2,
we develop the theoretical background of the introduced EKRA.
Section 3 describes the experimental set-up for Identification of
Brain Activity Patterns, Section 4 discussed the obtained results,
and the concluding remarks are outlined finally in Section 5.

2. METHODS

2.1. Feature Extraction Using Centered
Kernel Alignment
Given that neural responses to brain activity tasks are contained
in a domainX , a kernel κX :X×X→R is assumed to be a positive-
definite function, which reflects an implicit mapping φ:X→HX ,
associating an element x∈X with the element φ(x)∈HX that
belongs to the Reproducing Kernel Hilbert Space (RKHS),
HX . For associating elements, kernel functions are built using
several bivariate measures of similarity, which are based on
the inner product between samples contained in a RKHS.
Although, various functions have been tested, the Gaussian
function is preferred in pattern classification and machine
learning applications since it aims at finding an RKHS with
universal approximating ability, not to mention its mathematical
tractability (Liu et al., 2011; Brockmeier et al., 2013). For
Gaussian kernels, each pairwise similarity distance between
samples x, x′∈X is computed as follows (Wang et al., 2016):

κX
(

x, x′; σ
)

= exp
(

− d2
(

x, x′
)

/2σ 2
)

(1)

where d(·, ·):X×X 7→R is a distance operator defined on the
neural response domain X , and σ∈R+ is the kernel bandwidth
that rules the observation window within the similarity distance
is assessed. Likewise, on the neural stimulus/condition space
L, which contains the target membership of the neural
responses (e.g., brain activity task labels), we also set a positive
definite kernel κL:L×L 7→HL that performs the a non-linear
mapping ϕ:L 7→HL. Thus, provided a sample set l, l′∈L, the
pairwise similarity for neural stimuli/conditions is defined like

κL
(

l, l′
)

=πll′ , where delta function is πll′=1 if l=l′, otherwise,
πll′=0.

It is worth noting that each defined above kernel reflects
a different notion of similarity. So, we apply two kernel
functions sequentially to assess the shared information between
the neural responses to a particular stimulus/condition and the
corresponding labels. Therefore, we must still evaluate how well
the kernel function, κX , matches the target kernel of labels, κL. To
this end, we introduce a kernel target alignment to appraise the
similarity between a couple of characterizing kernel functions,
employing the inner product of both kernels to estimate the
dependence between the jointly sampled data (Gretton et al.,
2005). Thus, the statistical alignment between κX and κL
(termed Centered Kernel Alignment – CKA) is computed as their
normalized inner product averaged across all realization pairs as
below (Cortes et al., 2012):

ρ (κX , κL) =
Exx′ ,l,l′

{

κ̄X
(

x, x′; σ
)

κ̄L
(

l, l′
)}

√

Exx′
{

κ̄2
X (x, x′; σ)

}

Ell′
{

κ̄2
L

(

l, l′
)}

, (2)

where notation Ex{·} stands for the expectation value operator
calculated over the random variable x∈X , and notation κ̄(·)
stands for the centered version of each kernel that is estimated
as follows, respectively:

κ̄X
(

x, x′; σ
)

= κX
(

x, x′; σ
)

−Ex′
{

κX
(

x, x′; σ
)}

−Ex

{

κX
(

x, x′; σ
)}

+ Exx′
{

κX
(

x, x′; σ
)}

, (3a)

κ̄L
(

l, l′
)

= κL
(

l, l′
)

− El′
{

κL
(

ll′
)}

− El

{

κL
(

l, l′
)}

+ Ell′
{

κL
(

l, l′
)}

. (3b)

Hence, the larger the similar pairs between the X and L spaces,
the higher their CKA alignment value ρ∈R[0, 1].

In practice, provided an input representation set X∈RN×P

(with X⊂X∈RP) together with a vector of respective
stimulus/condition labels l∈ZN (l⊂L∈Z), we extract each
characterizing kernel matrix, KX∈R

N×N and Kl∈R
N×N . The

former matrix holds elements kXnn′=κX (xn, xn′) with xn, xn′∈X,

while the latter matrix has elements klnn′=κL
(

ln, l
′
n

)

with ln, ln′∈l
(n, n′∈N[1,N]), where N∈N is the number of neural response
samples and P∈N is the amount of estimated features. Using
Equation (3), then, the empirical estimate for the CKA alignment
can be calculated as follows:

ρ̂ (KX ,Kl) =
〈K̄X , K̄l〉F

√

〈K̄X , K̄X〉F〈K̄l, K̄l〉F
, (4)

where notation K̄ stands for the centered kernel matrix calculated
as K̄=ĨKĨ, where Ĩ=I−1⊤1/N is the empirical centering matrix,
I∈RN×N is the identity matrix, and 1∈RN is the all-ones vector.
Notation 〈·, ·〉F denotes the matrix-based Frobenius norm.

Consequently, the alignment in Equation (4) is a data-
driven estimator that, from the input matrix X, allows
quantifying the similarity between the input sample space and the
stimulus/condition labels l.
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2.2. Enhanced Kernel-based Relevance
Analysis
For the implementation of selected Gaussian kernel κX , we
further rely on the Mahalanobis distance to perform the pairwise
comparison between samples xn and xn′ . Namely, the distance
function in Equation (4)is fixed as follows:

d2A(xn, xn′ )=(xn − xn′)AA
⊤ (xn − xn′)

⊤ , ∀n, n′ ∈ N (5)

where matrix A∈RP×M holds the linear projection in the form
yn=xnA, with yn∈R

M , being AA⊤ the corresponding inverse
covariance matrix, assuming M≤P. Therefore, intending to
compute the projection matrix A, the formulation of CKA-based
optimizing function in Equation (4) can be integrated into the
following kernel-based learning algorithm:

Â = argmax
A

log
(

ρ̂
(

KX(A, σ ),Kl

))

, (6)

where the logarithm function is here used just for mathematical
convenience. Note that we highlight the dependence of the kernel
matrix KX(A, σ ) concerning both the projection matrix A and
the Gaussian kernel bandwidth σ . In this work, we propose to
solve the optimization problem in Equation (6) using a recursive
solution based on the well-known gradient descent approach (See
Appendix A in Supplementary Material for further details).

After estimation of the projection matrix Â, we assess the
relevance of P input features extracted from X. To this end,
we assume that the most contributing features should have
higher values of similarity relationship with the provided neural
stimuli/condition. Specifically, the CKA-based relevance analysis
calculates the feature relevance vector index, ̺∈RP, having
elements ̺p∈R

+ that allow measuring the contribution of each

p-th input feature in building the projection matrix Â. So, we
use the stochastic measure of variability proposed in (Daza-
Santacoloma et al., 2009) as follows:

̺p = Em∈M

{

|apm|
}

, (7)

where apm∈Â indexes every element of matrix Â (p∈P,m∈M).
Therefore, this improvement of the feature extraction using

centered kernel alignment (termed Enhanced Kernel-based
Relevance Analysis– EKRA) counts on the interpretability
provided by its two central stages: (i) Seeking a feature relevance
vector ̺, relying on the averaged weight magnitudes of the CKA-
based rotation matrix that is directly related to the separability
contribution of p-th input feature (see Equation 7). In fact,
the larger the ̺p value, the higher the participation of p-th
feature to match the neural responses in the input space with
the stimulus/condition label set. So, we compute the matrix
X′∈RN×MS to select MS<P features, applying the threshold
value of separability contribution: ̺p>Em∈M

{

̺p
}

. As a result,
EKRA allows explaining the measured discriminating capability
provided by each feature since the obtained relevance vector
preserves the one-to-one relationship to the input space. (ii)
Linear projection of the achieved CKA relevance subset that
intends to enhance the stimulus/condition separability further,
based on the explained discrimination (ruled by the introduced

constraint ̺p>Em∈M

{

̺p
}

) that is measured by the input
neural responses. Concerning this, the mapped feature matrix
Y∈RN×ME is calculated as: Y=X′A′, where ME is the resulted
amount of relevant features, and A′∈RMS×ME is a rotation matrix
computed from X′, using Equation (6) and under the assumption
thatMS<ME.

3. EXPERIMENTAL SET-UP

For identification of the tested brain activity patterns, we validate
the proposed Enhanced kernel-based relevance analysis that
appraises the following training stages: (i) Feature extraction
from the preprocessed EEG recordings, (ii) EKRA computation
for the extracted feature set, and (iii) Detection performance of
brain patterns under stimuli/conditions.

3.1. Testing Datasets and Preprocessing
Intending to test two different tasks of brain activity, the
validating experiments are carried out on each one of the
following EEG databases:

Motor Imagery Database (MIDB)1. This collection that
is widely experimented in motor imagery tasks holds seven
subjects with EEG signals recorded from 59 channels. Firstly,
all recordings are submitted to a bandpass filter with bandwidth
ranging from 0.05 to 200 Hz, and then to a 10-order low-
pass Chebyshev II filter with stopband ripple of 50 dB down
and the stopband edge frequency of 49Hz. For emphasizing
the information enclosed in α and β rhythms extracted from
EEG data, a 5-order band-pass Butterworth filter is further
implemented for a bandwidth ranging from 8 to 30Hz. Besides,
an average reference is employed and the Common Spatial
Patterns algorithm is carried out as a data-driven supervised
decomposition of the EEG multi-channel data (He et al., 2012).
All recordings are further digitized at 1000Hz and down-sampled
to supply the sampling frequency at 100Hz. For each Motor
Imagery (MI) class, the whole session was conducted without
feedback, recording 100 repetitions per subject. Within the
segment of interest lasting 4 s long, the subject was instructed to
perform each MI task indicated by a pointing arrow on a screen.
The segments lasting 2 s are interleaved with a blank screen and a
fixation cross in the screen center.

“Klinik für Epileptology” Database (KEDB) (Andrzejak et al.,
2001). This dataset, widely used in the automated epileptic
seizure detection, consists of five subsets noted as A, B, C, D,
and E. Each subset holds 100 single channel EEG segments
lasting 23.6 s. Subsets A and B were acquired from five healthy
subjects with eyes opened and closed, respectively. All signals
from subsets C, D, and E came from five epileptic subjects.
Subsets C and D included seizures-free interictal signals, which
were measured on the epileptic zone and on the hemisphere
opposite to the hippocampal formation of the brain. Set E
contained epileptic signals recorded from each aforementioned
location during an ictal seizure. Subsets C, D, and E were
recorded intracranially. Besides, all provided EEG signals in

1http://bbci.de/competition/iv/desc_1.html. Dataset 1 used in the BCI competition

IV 2008
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KEDB were digitized at 173.61Hz and 12 - bit resolution. To
retain the relevant EEG information related to the studied normal
and epileptic conditions, an average reference is used and all
signals were filtered through a low-pass filter with a 40Hz cutoff
frequency. For the validation purpose, this data is tested on two
problems with medical interest (Tzallas et al., 2009): Bi-class
(2C), normal (A-type) and seizure (E-type) labeled recordings
are distinguished; and Three-class (3C), closely represents the
cases of actual medical applications, including three categories:
normal (A-type EEG segments), seizure-free interictal (D-type
EEG segments), and seizure (E-type EEG segments).

3.2. Extracted Feature Sets for
Identification of Brain Activity Patterns
For either case of tested neural activity task (motor imagery or
epileptic seizure detection), we validate the introduced EKRA
approach in the following feature sets extracted from each data
collection:

3.2.1. Testing Feature Set Extracted from MIDB
Let {Zn∈R

C×T} (n∈[1,N]) be a set of N EEG raw data trials
for each subject, where C∈N and T∈N are the number of
EEG channels and the amount of time samples, respectively.
For discriminating the MI classes, we obtain a set of short-time
features from each EEG trial Zn using the following extraction
principles (Alvarez Meza et al., 2015):

– Power Spectral Density-based parameters (PSD): We estimate
the PSD of each EEG channel based on the nonparametric
Welch’s method that calculates the widely known Fast
Fourier Transform algorithm. The number of frequency bins
is fixed according to the spectral band of interest [(4–
30)Hz], where the most discriminative information for MI
is concentrated (Rodríguez-Bermúdez et al., 2013). Due to
the non-stationary nature of EEG data, a piecewise stationary
analysis is carried out over a set of the extracted overlapping
segments that are further windowed by a smooth time
weighting window. Finally, the PSD includes the estimation
of a modified periodogram vector from the Discrete Fourier
Transform.

– Hjorth-based parameters: For each EEG channel, we compute
such a representation from a set of the extracted overlapping
segments. The set of Hjort parameters comprises Activity that
is directly described by the signal power variance, Mobility
that measures the signal mean frequency, and Complexity that
estimates the frequency variations as the signal deviation from
the sine shape (Arias-Mora et al., 2015).

– Continuous Wavelet Transform (CWT) parameters. Wavelet-
based methods have been heavily exploited in MI research to
capture the spectral dynamics of EEG trials that usually holds
non-stationary spectral components. The CWT comprises
an inner-product-based transformation that quantifies the
similarity between a given time-series and a previously fixed
base function, termed mother wavelet. Namely, the CWT-
based parameters are extracted from each EEG channel by
accomplishing their convolution with the scaled and shifted
mother wavelet. We select the Morlet wavelet for the CWT

analysis because its wave shape and EEG signals are alike and
it allows extracting features better localized in the frequency
domain (Aydemir and Kayikcioglu, 2011).

– DiscreteWavelet Transform (DWT) parameters. This principle
adequately addresses the trade-off between time and frequency
resolution in a non-stationary signal analysis. So, DWT
provides multi-resolution and non-redundant representation
by decomposing the considered time-series into some sub-
bands at different scales, yielding more precise time-frequency
information about the data. Aiming to extract the suitable
time-frequency information from each EEG channel, we
compute the detail coefficients as to include the (4–
30)Hz band, resulting in the second and third levels of
decomposition. Although there is a large selection of the
available mother functions, we test the Symlet wavelet (Sym-
7) that is closely associated with the electrical brain activity
and proved to be appropriate in similar applications (Alomari
et al., 2014).

Once we calculate all the short-time parameters, several of their
statistical measures are further considered to extract the input
feature matrix X∈RN×P. Namely, the mean, the variance, and
the maximum values are estimated. Consequently, the row vector
xn∈R

P (P= C×Q) concatenates all features extracted from each
n-th MI trial per channel, being Q∈N the number of provided
features. Thus, the total number of features per channel is 27 (6
for PSD, 9 – Hjort, 6 – CWT, and 6 for DWT). So, the size of the
concatenated feature vector is P = 59× 27, and the number of
samples is N = 200.

3.2.2. Testing Feature Set Extracted from KEDB.
The rhythms carrying out clinical and physiological interest fall
primarily within the following four spectral sub-bands: Delta
denoted as δ with frequencies f<4Hz, Theta (θ , f∈[4, 8]Hz),
Alpha (α, f∈[8, 13]Hz), and Beta rhythms (β , f∈[14, 30]Hz).
Then, we select the linear filter bank for representation of EEG
signals because they may be more accurately tuned to each
rhythm frequency bandwidth. Therefore, we use five cepstral
coefficients associated with δ, θ , α, and β rhythms, extracted as
dynamic features as in Duque-Muñoz et al. (2014). As a result,
instead of a widely used scalar-valued parameter set extracted
from the EEG signal, the neural activity relating to epileptic
seizures is detected by using a vector set of short-time rhythms.

All the baseline algorithms required to compute the features
were developed based on the Signal Processing toolbox of Matlab
2013b. Note that we perform validation on two different training
sets, intending to test the EKRA approach under very diverse
neural activity data, namely, motor Imagery discrimination and
epileptic seizure detection. Both sets are multiclass and cover
all the brain regions. Besides, the variability of the former
data collection is very broad, while the latter data hold more
concentrated dynamics along the time. This aspect is important
to test since EKRA benefits from the information about the
variability of the input space. Another regard to considering
is that either database is publicly available, and widely used
on state-of-the-art literature, making possible to compare their
performance with other used approaches of training.
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3.3. Validation of The Enhanced
Kernel-based Relevance Analysis
With the purpose of assessing the influence of each one of the
computation stages explained above, we conduct validation of the
proposed EKRA method for the following two training scenarios
of identification of brain activity patterns:

(i) The EKRA Feature selection method (noted as EKRA–S)
provides a better understanding of the input feature set, and
thus, facilitates the physiological interpretation task. To this
end, all relevance features are sorted in decreasing order of the
achieved contribution amplitude, yielding the ranking EKRA
vector ̺. Therefore, supplying to the validated classifier one-by-
one the ranked features, the accuracy dependence is performed
through a nested 10-fold cross-validation scheme, according to
the ranked, relevant features. It is worth noting that the use
of the ranking vector avoids the inclusion of any heuristic nor
greedy feature selection search (like the conventional forward-
backward approaches), demanding huge computational burden.
For comparison regarding the physiological interpretation, the
proposed EKRA is contrasted with a baseline Variance-based
Relevance Analysis (VRA) that ranks the short-time input
features grounded on a variability criterion. Namely, VRA
computes a relevance vector based on a linear transformation of
the input representation (Daza-Santacoloma et al., 2009).

(ii) The EKRA Enhanced feature selection (EKRA–ES)
incorporates the projection to the EKRA–S procedure, aiming
to raise the performed accuracy of brain activity identification
(see section 2.2). So, a mapped feature set is estimated to encode
more accurately the available discriminant neural patterns
through the embedding matrix Y as explained above.

For EKRA calculation in Appendix A in Supplementary
Material, the free parameters are fixed as follows: The initial
guess A0 is adjusted according to the well-known principal
component analysis approach, σ 0 is fixed to the median of the
input data Euclidean distances, the gradient descent tolerance is
set to 1e − 6, the maximum number of iterations is empirically
limited up to 300, and the number of relevant dimensions
(MS and ME) are adjusted as to hold 95% of the variance
explained. Note that EKRA learns two projection matrices (A
and A′), resulting in a computational complexity of O(N2).
However, this procedure is carried out off-line. The EKRA–
S and EKRA–ES Matlab implementation codes are publicly
available2.

In each task at hand, we primarily perform a visual inspection
as the simplest way of representing, graphically, the dependence
of the classification performance from the relevant features,
taking into consideration the applied feature extraction principle
as well as the measuring EEG channel or brain region.
Besides, the estimation of the classification performance is also
considered. In either scenario of validation, a k-nearest neighbor
classifier is employed to identify the brain patterns under
stimuli/conditions, for which the number of nearest neighbors
is tuned within the range {1, 3, 5, 7, 9, 11} based on the system
accuracy achieved, operating a nested 10-fold cross-validation to
avoid any over-fitting results.

2https://github.com/andresmarino07utp/EKRA-ES

4. RESULTS AND DISCUSSION

4.1. Validation Results on Motor Imagery
Tasks
4.1.1. Relevance Analysis Performed by the Feature

Selection Scenario
We initially consider the performed relevance analysis for the
feature selection as shown in Figure 1 that displays the estimated
relevance averaged through all tested subjects. In each 2D
representation, the abscissa indicates the cardinal assigned to
each one of 27 features, while the horizontal axis represents
the cardinal of the 59 channels labeled by the international
10–20 electrode location montage. The proposed subspace-
based methodology rests on measuring the covariance-based
evolution of underlying time-varying signals, providing the best
discrimination among the classes. To this end, EKRA quantifies
the short-time relevance, using the centralized kernel alignment
that is adjusted to learning the linear projection that best
discriminates a given input feature space, assessing the similarity
between the projected input data and stimulus/condition labels.
For the sake of comparison, validation also comprises the
baseline variance-based relevance analysis (VAR) that only
estimates the time-varying feature contribution in the original
input space over time, but regarding the unsupervised classifier
performance. Although the validation performed on two
data collections shows that the obtained preliminary results
are encouraging, some additional aspects should be further
considered:

The performed relevance by the VRA algorithm (left
column) allows to appraise the contribution from every single
electrodeposition, resulting in three channel groups of relevance
that can be spatially identified, namely, the channels numbered
as #1–13, #14–33, and #34–59. To quantify the contribution, we
calculate the marginal relevance per channel averaged through
all involved features. Thus, the first labeled 13 channels (placed
over the association cortex) perform the strongest contribution,
having even the lowest dispersion as can be seen in the
top plot of Figure 1. A lower relevance value is supplied by
the electrode positions that collect the neural activity in the
anterior parts of the anterior parietal cortex (#33–59). The
lowest relevance (having even the highest variance) is produced
by the electrode positions that relate to the precentral gyrus
(#14–28) and the dorsal lateral premotor area (#30–33). In the
case of EKRA–S, the three spatially distinct groups remain,
but the estimated relevance per channel is different from the
one assessed by VRA. As seen in the top plot of Figure 1,
the electrode positions labeled as #14– 32 now become the
most important succeeded by the group #33– 59. In contrast
to the VRA approach, the channels placed over the association
cortex (#1–13) perform the worst relevance. As regards the
relevance assessed by each principle of feature extraction, the
tested feature sets do not cluster so distinctly for either used
selection algorithm, though most of the characteristics behave
differently depending on the electrode position (see right-side
plots of Figure 1).

With the aim of further exploring the spatial distribution of
the carried out feature selection, all computed relevance values
are arranged in the 10–20 channel montage as displayed in the
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FIGURE 1 | 2D representation (top and bottom rows) and topoplots (middle row) of the performed relevance analysis on motor imagery task. The plot at the top

shows the marginal relevance (mean and standard deviation) per channel. The topoplots are computed by averaging the input feature relevance values in ̺ regarding

the EEG montage (channels). The right-side plot shows the marginal relevance averaged for all considered principles of feature extraction.
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topoplots of the middle row of Figure 1. It is worth noting that
we describe the MI brain activity performed by a hypothetical
medium person due to the estimated relevance planes are
averaged across all subjects. So, VRA produces the highest
contribution of relevance for the middle frontal gyrus that is
represented by channels F5, F3, F4, and F6. However, the middle
frontal gyrus should not be related to any imagery stimulation
(Hanakawa et al., 2003). Rather, this brain area activates as a
response to body movements, e.g., powerful EEG artifacts. In
other words, the presence of EEG channels with high-energy
disturbances may mislead the VRA estimator, identifying the MI
patterns wrongly. Instead, EKRA–S assigns the bigger values of
relevance to the EEG channels placed over two brain areas that
indeed are commonly related to MI tasks. Namely, the posterior
superior parietal cortex (P3, P1, PZ, and P2), and the left
precentral sulcus at the level of the middle frontal gyrus (CFC5,
C3, CFC3, C1, and CFC1). Furthermore, the middle frontal
gyrus has the lowest contribution, weakening the influence of
movement artifacts. To better visualize the joint channel-feature
relationship, we rearrange each 2D representation so that the
relevance estimates are now ranked in decreasing order along
the channel and feature extraction principle axes. Importantly,
all features that do not contribute to 95% of the variance
explained are zero-valued. Comparison of 2D representations
of the bottom row in Figure 1 allows concluding that each
employed relevance estimator associates the input training set
differently, playing a very significant role in appraising the
channel-feature contribution.

Therefore, the baseline VRA algorithm produces higher values
of the relevance marginal (see the top and right-side plots of
each 2D representation) in comparison to the proposed EKRA–
S, suggesting that the latter approach encodes the whole brain
activity task into a lower number of features. The following two
facts can explain this advantage of EKRA–S: (i) the use of the
MI label information to reveal features, which must be salient
regarding the studied paradigm. Thus, the brain activity patterns
are better localized. (ii) Representation through enhanced RKHS
allows dealing with complex neighboring data dependencies,
rejecting more efficiently redundant features and highlighting
coherent spatial regions (EEG channels) regarding the studied
MI paradigm. In contrast, VRA mainly explains the relevance
concerning its energy-based cost functional that emphasizes the
brain regions with intense activity, which are activated during the
time the stimuli goes. Yet, this assumption does not necessarily
hold for MI tasks.

With the aim of estimating the classification performance
of the contemplated MI tasks, we assume the selected training
set as the one containing the minimum amount of features
to reach the maximum classification accuracy. To this end,
the k-nearest neighbor classifier is fed by adding one by one
the relevant features, which have been previously ranked in
decreasing order. In average for all subjects, VRA performs an
accuracy close to ∼85.16 ± 3.88% and clearly falls behind the
EKRA–S algorithm that reaches ∼95.71 ± 3.01% as seen in
Figure 2. Moreover, the number of selected training features
is also shown for each subject. Regardless of the used feature
selection strategy, the performed accuracy has some fluctuations

due to the inter-subject variability that has been already reported
for spatial patterns and spectro-temporal characteristics of
brain signals in Motor Imagery tasks (Blankertz et al., 2007).
One more reason causing the performance fluctuations is the
simplicity of the employed knn classifier. Therefore, the use
more elaborate classifiers (like SVM) should deal better with
the fluctuations. Along with the MI discrimination performance,
another important aspect to explain is the number of selected
training features of the whole input set (1593). As displayed,
VRA chooses about 1, 410 features, but EKRA–S does only 275
features. Consequently, a dimension reduction is close to one and
5.8, respectively, averaged for all subjects. Therefore, EKRA–S is
as much as five times more efficient than the contrasted baseline
estimator, regarding the reduction dimension processing.

For both selected feature sets, a detailed analysis results in the
following findings:

– Apparently, the Hjorth principle of extraction supplies the
features with the highest relevance, contributing the most
to the discrimination of MI classes regardless of the used
relevance estimator. The remaining spectral characteristics
have a comparable contribution, though some differences
apply for EKRA–S.

– Regarding the proportion of features encoding MI
information (the superior parietal plus middle frontal
gyrus), EKRA–S produces a higher number of salient features.

– As one of the biggest challenges in BCI research, it is worth
mentioning the inter-subject variability of spatial patterns and
spectro-temporal characteristics of brain signals (Blankertz
et al., 2007). In the contemplated MI task, some subjects might
not focus their gaze in the proper direction, and thus, the EEG
recordings will not be reliable for meaningful interpretation.
From the comparison plots of relevance in Figure 3, it follows
that EKRA–S better adapts the BCI system for each particular
subject, at least, in terms of revealing the most discriminating
features. Also, the layout of Figure 1 is enhanced by including
a circular representation that embraces the subject variability
estimated for each channel, pointing out on the places where
the proposed technique captures better the individual patterns.

– Either relevance approach (VRA or EKRA–S) provides a high
variability among subjects, mainly focusing on two brain areas:
Posterior parietal cortex (SP) and left precentral sulcus at the
level of the middle frontal gyrus (MF). Note that both areas are
commonly related to MI tasks. However, the relevance, given
by EKRA–S to brain areas related to MI tasks (SP and MF),
is higher in each subject than the relevance assigned by the
VRA approach. In other words, though the variability among
subjects is similar in both methods, EKRA–S enhances the
relevance of brain areas that are more related to MI tasks.

4.1.2. Relevance Analysis Performed in Enhanced

Feature Selection Scenario:
In this case, we calculate the performance of the proposed
relevance analysis for both cases of consideration: feature
selection (EKRA-S) and enhanced feature selection (EKRA-ES).
Results are given regarding the classifier accuracy achieved for
the contemplated MI task for every subject. In the former case,
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FIGURE 2 | Motor Imagery discrimination accuracy performed by the feature selection strategy. The achieved average accuracy of classification is computed using a

nested cross-validation approach, adding one by one the features ranked. VRA, left column; EKRA-S, middle column; DR, right column. Results are displayed

concerning each studied subject.

FIGURE 3 | Contribution of the selected feature set to the Motor Imagery discrimination performance. VRA, left column; EKRA-S, right column Feature extraction

principle (PSD, Hjorth, CWT, and DWT parameters) - top row, Brain area (SP and MF) - bottom row. Results are displayed concerning each studied subject.

our proposal reaches an averaged accuracy 95.71 ± 03.01 and
96.71±01.84, respectively, outperforming the contrasted baseline
VRA that produces 92.86±03.77. For the sake of comparison, we
also include the accuracy estimated by the approach submitted
in Zhang et al. (2012) that selects an extracted spatio-temporal
feature set, from which a non-linear regression for predicting
the time-series of class labels is applied. Another compared work

is the one in (He et al., 2012) that uses an adaptive frequency
band selection of the spatial preprocessed features that feed an
SVM classifier. Lastly, we consider the approach in Higashi and
Tanaka (2013) involving common space-time-frequency patterns
to design the time-windows used for the MI task. As seen
in Table 1, all referred training strategies underperform the
proposed relevance analysis method.
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TABLE 1 | Performed classification accuracy for Motor Imagery discrimination (average ± standard deviation [%]).

Subject VRA EKRA-S He et al., 2012 Zhang et al., 2012 Higashi and Tanaka, 2013 EKRA-ES

# 1 91.50 ± 05.29 94.16 ± 05.30 67.70 ± 02.20 77.20 ± 00.03 92.30 ± 02.50 98.00 ± 02.58

# 2 96.50 ± 03.37 90.16 ± 05.88 70.70 ± 01.20 70.80 ± 00.02 90.60 ± 7.20 93.00 ± 05.37

# 3 91.50 ± 04.74 98.50 ± 08.57 83.90 ± 01.30 – – 97.50 ± 03.54

# 4 87.00 ± 06.32 94.50 ± 07.01 93.00 ± 01.20 – – 96.50 ± 04.12

# 5 91.50 ± 07.47 98.50 ± 04.60 93.20 ±01.20 – – 97.50 ± 03.54

# 6 98.50 ± 02.42 97.66 ± 04.82 – 76.80 ± 00.03 93.30 ± 03.60 98.50 ± 00.01

# 7 93.50 ± 07.09 96.50 ± 03.45 – 80.00 ± 00.03 94.10 ± 04.10 96.00 ± 03.16

Mean 92.86 ± 03.77 95.71 ± 03.01 81.70 ± 12.06 76.20 ± 03.87 92.58 ± 01.51 96.71 ± 01.84

Notation (-) stands for Not provided. Note that the accuracy of EKRA-S, EKRA-ES, and VRA is estimated as the highest value performed for each tested subject under a nested

cross-validation scheme. Bold values indicate the best results.

4.2. Validation Results on Epileptic Seizure
Detection
4.2.1. Relevance Analysis Performed in the Feature

Selection Scenario:
We test both, VRA and EKRA-S, approaches as a feature selection
tool of the spectral coefficients extracted from the physiological
rhythms (δ, θ , α, and β). Since the KEDB dataset only has one-
channel EEG recordings, the physiological interpretation of the
selected feature set only covers the influence of the physiological
waveforms on the two possible challenges of epileptic seizure
detection. The selected feature set is calculated as in the motor
imagery task for which the accuracy of the k-nearest neighbor
classifier is also performed through the nested 10-fold cross-
validation scheme.

As seen in Figure 4, either comparative approach of feature
selection attains the highest accuracy (100%) for the bi-class task.
Further, EKRA-S betters the baseline VRA for the tasks of three
classes (96.00 vs. 90.78%, respectively). Regarding the number
of selected training features, once again the EKRA-S approach
outperforms VRA in all tasks. Note that the VRA classification
accuracy increases as the number of features grow, requiring
the full input feature set to reach the maximum performance.
Meanwhile, the addition of more features drops the performance
once the EKRA-S approach gets the highest accuracy, indicating
that the inclusion of other features may be redundant. As a result,
the dimension reduction is two and three times bigger than the
one obtained by VRA for the 2C and 3C tasks, respectively.
This aspect can be of benefit for reliable online monitoring of
traces of interictal/ictal states of epilepsy since the demanded
time-window of EEG analysis may be remarkably shortened.

Figure 5 shows the normalized relevance values that are
estimated for each rhythm. By the VRA estimator, the selected
features make α and β waveforms the most relevant for all
considered tasks. At the same time, low-frequency rhythms (δ,
θ) exhibit modest values of relevance. Although EKRA-S infers a
similar contribution of the rhythms, the relationship between the
high to low-frequency rhythms decreases as the number of classes
increases. This result indicates on the energy redistribution,
taking place as the complexity of the task increases as has been
explained in similar works (Duque Muñoz et al., 2015).

For the sake of comparison, both proposed strategies for
relevance analysis (EKRA-S and EKRA-ES) are contrasted with

FIGURE 4 | Performed accuracy for epileptic seizure detection using each

compared approach of feature selection. The achieved average accuracy of

classification is computed using a nested cross-validation approach, adding

one by one the features ranked. VRA (continuous lines), EKRA–S (dashed

lines). The blue and green colors hold for the 2C and the 3C problem,

respectively.

some recent approaches for epileptic seizure detection. Although
this comparison may not be entirely fair due to different details
on the testing procedures (Kumar et al., 2010; Zandi et al., 2010),
it seems to be the best possible option. The best classification
accuracy achieved by each contrasted approach of epileptic
seizure detection is displayed in Table 2, showing that almost all
benchmarked approaches provide a high classification accuracy
that ranges from 99.5% to 100% for a Bi-class problem, and from
90.78 to 100% for a Three-class task. Note that we employ a
nested 10-fold cross-validation to avoid any over-fitting of the
discrimination system.

Another aspect to reflect is the influence of the parameter
tuning. As seen in Table 3 that shows the confidence of the
point classification estimates provided by the EKRA free meta-
parameter, there are small fluctuations in performance among
the training folds, which are calculated by the nested cross-
validation strategy to avoid any overestimation effect of the
performed accuracy. Hence, the proposed approach together
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FIGURE 5 | Relevant rhythms regarding the seizure detection tasks. DR - left column. The number of selected features is shown for each provided classification

problem (2C and 3C), in blue and red for VRA and EKRA, respectively. VRA-based rhythms selection - middle column, EKRA-S-based rhythms selection - right

column. The percentage of selected rhythms are shown in colors for the 2C and the 3C problems.

TABLE 2 | Accomplished classification results for epileptic seizure detection.

2-class 3-class

Authors Features/Classifier Accuracy Authors Features/Classifier Accuracy

Srinivasan et al., 2005 t-f analysis/RNN 99.6 Ghosh-Dastidar et al., 2008 PCA-RBF/ANN 96.60

Gandhi et al., 2011 WT/PNN 99.99 Naghsh-Nilchi and Aghashahi, 2010 EV/MLP NN 97.50

Polat and Gunes, 2007 PCA FFT/AIRS 100 Tang and Durand, 2012 PSD+CLZ/SVMA 98.72

Zafer et al., 2011 CC+PSD/vot. rule 100 Martínez-Vargas et al., 2012 TFR-2DPCA/k-nn 98.80

Martínez-Vargas et al., 2012 TFR-2DPCA/k-nn 100 Tzallas et al., 2009 t-f analysis/ANN 100

Tzallas et al., 2009 t-f analysis/ANN 100 Duque-Muñoz et al., 2014 short-time/k-nn 100

Duque-Muñoz et al., 2014 short-time/k-nn 99.5 Proposal EKRA-S 90.78

Proposal EKRA-S 100 Proposal EKRA-ES 96.00

Proposal EKRA-ES 100

The EKRA-S and EKRA-ES approaches are compared against state-of-the-art methods concerning the average classification accuracy [%]. Bold values indicate the best results.

with its optimization strategy allows extracting relevant brain
patterns, providing a solid classification accuracy.

5. CONCLUSIONS

We discuss a novel kernel-based approach for the feature
relevance analysis to enhance the automatic identification of
brain activity patterns. To this end, the proposed relevance
analysis incorporates two kernel functions to take advantage of
the available joint information associating neural responses to
an individual stimulus/conditions with the corresponding labels.
Then, kernel alignment learns all relevant patterns from the
short-time input features. Validation of the proposed Kernel-
based Relevance Analysis is carried out in two scenarios of
training: feature selection and enhanced feature selection. In
particular, two tasks of brain activity identification are studied
that exhibit highly non-stationary behavior: motor imagery
discrimination and epileptic seizure detection.

With the aim to encode two different notions of similarity,
the need for handling a couple of kernels encourages the use of

the well-known kernel alignment to unify both tasks into a single
optimization framework. Nonetheless, the selection of distances,
which implement each aligned kernel as well as the same
alignment, mostly determines the effectiveness of the kernel-
based approach for a given application. In the particular case of
brain activity identification, we rely on the Mahalanobis distance
to carry out the pairwise comparison between samples based on
the Gaussian kernel. Thus, a linear projection is further learned
from the employed CKA-based functional as an alternative to
highlight the salient input features, taking advantage of the non-
linear notion of similarity behind the selected kernels. For the
sake of simplicity, the iterative gradient descent optimization is
employed to calculate the projection matrix and the Gaussian
kernel free parameter.

To implement EKRA as a feature selection tool – (EKRA-
S), we introduce a feature relevance vector index devoted to
measuring the contribution of each one of the input features
in building the projecting CKA matrix. So, we assess the
selected feature set that satisfies a given stopping criteria
(namely, we fix the proportion of variance explained) by ranking
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TABLE 3 | EKRA free parameters values for each provided brain activity task. The average ± the standard deviation are presented.

Brain activity task MS ME k-neighbors σ

Motor imagery S1 796.00 ± 0.00 94.70 ± 1.64 4.20 ± 1.93 0.91 ± 0.00

S2 796.00 ± 0.00 108.90 ± 0.32 3.20 ± 0.63 0.91 ± 0.01

S3 796.00 ± 0.00 122.10 ± 0.32 3.40 ± 0.84 0.91 ± 0.00

S4 796.00 ± 0.00 116.90 ± 0.32 3.40 ± 1.26 0.93 ± 0.00

S5 796.00 ± 0.00 117.80 ± 0.42 3.20 ± 0.63 0.93 ± 0.00

S6 796.00 ± 0.00 104.20 ± 0.63 3.00 ± 0.00 0.92 ± 0.01

S7 796.00 ± 0.00 90.90 ± 1.45 3.80 ± 1.93 0.86 ± 0.01

Epileptic seizure detection 2-Class 516.00 ± 0.00 111.90 ± 0.74 3.00 ± 0.00 1.07 ± 0.02

3-Class 516.00 ± 0.00 143.50 ± 0.85 4.20 ± 2.15 1.10 ± 0.00

The number of selected and projected features in EKRA (MS and ME ), as well as the number of neighbors and the Gaussian kernel bandwidth in the k-nearest neighbor classifier (k and

σ ), are studied according to a nested cross-validation scheme.

this contribution. Thus, the feature selection using EKRA-S
demands small feature sets with the benefit of providing a
better interpretation of the space brain activity distribution
and the principle of employed feature extraction. Besides, the
EKRA-based ranking separates redundant features, which usually
tend to drop the system accuracy. As another advantage, the
EKRA-S approach adapts the relevance analysis to include
the inter-subject variability. This aspect remains one of the
most challenging issues of training for BCI systems. With
the purpose to improve interpretation on a neurophysiological
basis, the proposed Kernel-based Relevance Analysis is designed
to take advantage of the measured brain activity, associating
neural responses to a given stimulus condition and aiming
to assess the contribution of each spatial electrode location
to the identification performance. As a result, the EKRA-
based relevance mainly highlights those regions that are indeed
neurophysiologically related to the Motor imagery tasks with
the benefit of providing a confident and competitive accuracy
performance. So, the EKRA enhances the interpretability of brain
activity patterns, enabling to discuss, verify and even improve the
performed results. Therefore, EKRA as a feature selection tool
can reach a suitable classification accuracy with a high dimension
reduction factor, providing better physiological interpretation of
the brain activity patterns.

In the other training scenario of enhanced feature selection
(EKRA-ES), we use the relevance index vector to estimate
the representation space that optimizes a trade-off between
separability and no redundancy of the available neural
patterns. As a result, our proposal outperforms those compared
approaches that carry out the multivariate feature selection
and/or dimension reduction. Indeed, the EKRA-based enhanced
feature spaces handle the brain activity complexity to support
further classification stages regarding system accuracy and
reliability.

Regarding the EKRA shortcomings, we must clarify that its
current implementation, based on gradient descent optimization,
requires a considerable computational load of a large number
of samples (thousands). Besides, EKRA-based relevance analysis
could be biased under imbalanced data scenarios, due to the
CKA-based cost function tends to accentuate data relations
within the class with the highest number of samples.

As the future work, the authors plan to improve the EKRA
algorithm by introducing more elaborate alignment functions
and different kernel mappings with the aim to get a better
description of non-stationary signals, which can be immersed
in either Gaussian or non-Gaussian noise conditions. For
example, the measures based on information theory would
be of benefit (Giraldo et al., 2015). Besides, hidden inter-
channel relationships should be estimated to enhance the
extraction of brain activity patterns within the EKRA-based
framework (Dauwan et al., 2016). Alike, a more elaborate study
regarding the EKRA optimization process must be carried out
by including second derivatives and low-rank approximations
of the kernel matrices to favor its convergence, and weighting
approaches to deal with imbalanced tasks (Jian et al., 2016).
Furthermore, the EKRA benefits should be studied regarding
the EEG reference used, e.g., the average reference vs. the
Reference Electrode Standardization Technique; in particular, if
we intend to extend our proposal to other salient brain activity
applications (Yao, 2001; Chella et al., 2016; Yao, 2017).
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