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Abstract
Background Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number 
of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated 
the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from 
Southwest China.

Methods Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes 
databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest 
China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were 
identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and 
each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage 
disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using 
Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict 
haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated 
the correlation between mRNA secondary structure changes and ventricular septal defects.

Results The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the 
control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 
rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene 
led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the 
secondary structure of mRNA and reduce the free energy.

Conclusions These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants 
investigation in future studies.
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Introduction
Congenital heart diseases (CHDs) are abnormalities 
in the structure of the heart and blood vessels, cardio-
vascular malformations are mainly caused by aberrant 
cardiac development during foetal development [1, 2]. 
CHDs are the most frequent birth defects [3]. Globally, 
the incidence is approximately 1 in 80 to 110 newborns 
and accounts for 30–50% of all foetal losses [4, 5]. Not all 
CHD patients can receive an early diagnosis, and the true 
frequency may be greater than previously thought [6]. 
Our knowledge of the underlying aetiology of CHDs is 
still unclear. A lot of data indicates that hereditary factors 
play a significant role in CHDs, despite the longstanding 
belief that the interaction between genetic and environ-
mental factors have a substantial impact on the devel-
opment of CHDs, despite the long-held belief that the 
interplay and correlation between genetic and environ-
mental variables significantly influences the development 
of CHDs [2, 7, 8]. Therefore, it is increasingly important 
to discover the genetic pathogenesis of CHDs. The most 
frequent type of CHD is VSD, which can occur alone, in 
conjunction with other heart defects, or as a component 
of more complicated combinations including functionally 
univentricular hearts, tetralogy of Fallot (TOF), double 
outlet right ventricles, transposition, or other structural 
abnormalities [9], which are characterized by a hole or 
defect in the septum that separates the heart’s left and 
right ventricles [10]. VSD occurs in approximately 1.5 to 
3.5 per 1000 live births [11], and accounts for approxi-
mately 34% of all CHDs [12]. In Asia, it is estimated that 
2.63 per 1000 children are born with VSD [13]. However, 
despite efforts to uncover the mechanism of VSD forma-
tion [14, 15], the details remain largely unknown.

The process of cardiac development is intricate and 
multifaceted. The formation of the ventricular septum 
involves intricate interactions between cells derived from 
various lineages, as well as the regulation of apoptosis, 
specification, migration, differentiation, and prolifera-
tion of these cells [16]. For example, dysregulated vas-
cular endothelial growth factor (VEGF), which regulates 
cell proliferation, plays an important role in the patho-
genesis of VSD. Studies have shown that it is associated 
with an increased risk for isolated VSD [17]. Additionally, 
the varying levels of gene expression related to energy 
metabolism, cell cycle regulation and growth, cytoskel-
etal organization, and cell adhesion are significant factors 
influencing the progression of VSD [18, 19]. Given the 
studies that have already been reported, it is reasonable to 
investigate the genetic factors contributing to VSD. Prior 
research has indicated that genetic alterations associated 
with the regulation of cell growth, skeletal formation, 

and cell adhesion could impact cardiac development. 
Numerous genes implicated in susceptibility to VSD are 
known to participate in these biological pathways [16, 20, 
21]. Based on 34 congenital heart disease whole-exome 
sequencing and gene function candidate strategies, we 
selected 10 SNPs in 9 genes for genotyping. FN1 encodes 
fibronectin, a protein that plays a crucial role in cellular 
adhesion and migration mechanisms, particularly dur-
ing embryonic development [22, 23]. DNAH5 encodes 
dynein, which is part of the microtubule-associated 
dynein complex [24]. The FLT4 gene is responsible for 
encoding tyrosine kinase receptors that bind to vascu-
lar endothelial growth factors [25]. Polymorphisms in 
FLT4 have been linked to TOF [26]. LAMC3 belongs to 
laminin, which is involved in cell adhesion, differentia-
tion, migration, signal transduction, neurite growth and 
metastasis [27]. IQGAP1 encodes scaffold proteins and 
is involved in cytoskeletal rearrangement, cell adhesion, 
cell proliferation gene transcription and cell polarization 
[28]. HYDIN encodes an axonal and cilial protein found 
primarily in the foetal heart and bronchial ciliated epithe-
lium [29]. B9D1 is involved in cilia formation [30]. Subse-
quently, 10 selected SNPs were validated in 618 samples 
(285 VSD patients and 333 normal controls) from South-
west China to identify the genetic association with VSD.

Methods and materials
Subjects
A total of 285 non-consanguineous individuals with 
isolated VSD were selected for a case-control study 
from patients treated at Fuwai Yunnan Cardiovascu-
lar Hospital from 2017 to 2021. The clinical diagnosis 
was performed by a cardiologist based on the clinical 
and echocardiography findings with the surgical notes, 
and these people were confirmed as VSD patients after 
undergoing surgery. The control group comprised 333 
non-consanguineous healthy subjects with no history of 
congenital heart disease. The participants in this study 
were exclusively sourced from Yunnan Province in south-
western China. Individuals with additional CHDs, hyper-
tension, coronary heart disease, cardiac valve disease, 
tachyarrhythmia, Alzheimer’s disease, acute viral myo-
carditis, or systemic illnesses were deliberately excluded 
from the research cohort. The study complied with the 
Declaration of Helsinki and was approved by the Ethics 
Committee of Fuwai Yunnan Cardiovascular Hospital 
(No. 2017-BG006). Prior to their involvement in the trial, 
the subjects provided written informed consent.
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SNP selection and genotyping
This research conducted a preliminary screening of 
potential SNPs within the population of Southwest 
China by utilizing whole-exome sequencing data from 
34 individuals diagnosed with congenital heart disease 
(novogene, Beijing City, China), The 34 individuals with 
congenital heart disease include 20 individuals with 
VSD and 14 individuals with atrial septal defects (ASD). 
Genomic DNA was extracted by the AxyPrep Blood 
Genomic DNA MiniPrep Kit (Axygen, Hangzhou City, 
China), 0.4  µg genomic DNA from blood were used to 
construct liberty by Agilent SureSelect Human All Exon 
V6 (Agilent USA), and sequenced on Illumina platforms 
with PE150 strategy in Novogene Bioinformatics Tech-
nology Co., Ltd (Beijing, China). The sequencing results 
were converted into fastq format, and the adapter and 
low-quality reads were removed to obtain clean reads. 
Clean data was mapped to the reference genome GRCh37 
(Homo sapiens) by Burrows Wheeler Aligner (BWA) 
software [31]. SAMtools [32] was used to call germ-
line SNPs and annotated by ANNOVAR [33]. The 1000 
Genomes database was used as controls. The allele fre-
quencies between the VSDs & controls, ASDs & controls, 
and all 34 patients & controls were assessed through the 
χ2 test, the False Discovery Rate (FDR) was employed for 
the purpose of correcting P value. Then selected the posi-
tive SNPs (FDR < 0.05) for making an intersection analy-
sis of three comparisons. A total of 10 SNPs from the 
nine genes (rs6707530 in FN1, rs12659700 in DNAH5, 
rs383985 in FLT4, rs710074 in LAMC3, rs3124309 in 
COL5A1, rs598893 in COL4A1, rs2589941 in IQGAP1, 
rs7198975 and rs1774266 in HYDIN, rs11650112 in 
B9D1) were selected. Following this, individual geno-
typing was conducted on patients with VSD and control 
groups to validate the correlation with VSD. A total of 
ten candidate SNPs were genotyped using the SNaPshot 
method [34, 35].

Following the patient’s informed consent, the DNA 
from the peripheral venous blood sample was extracted 
in order to conduct targeted amplification of the can-
didate SNPs, supplementary Table 1 shows the primer 
sequences.

Linkage disequilibrium and haplotype blocks
Based on these genotype results, SNPs of positive genes 
were selected from the 34 congenital heart disease 
whole-exome sequencing results, and SNP information 
was retrieved from the NCBI dbSNP database (https://
www.ncbi.nlm.nih.gov/snp/). The selected SNPs were 
analysed using linkage disequilibrium (LD). The haplo-
type reconstruction results were calculated by Haploview 
v3.32. Haploview used the confidence interval method 
to perform LD assessment. We used an r2 threshold 
of 0.8. SNPs were selected as the markers for our study 

and further plotted using a bioinformatics online tool 
(http://www.bioinformatics.com.cn). The ELB algorithm 
of Arlequin V3.5.2.2 predicted haplotypes of the bins 
of SNPs that were in very strong linkage disequilibrium 
with a specified r2 threshold. ViennaRNA v2.5.1 [36] per-
formed mRNA secondary structure prediction for these 
haplotypes.

Statistical analysis
The Statistical Package for Social Sciences (SPSS version 
19, IBM Corporation, Armonk, NY) was utilized for con-
ducting statistical analysis in this study. The age data are 
presented as the median (25% Percentile, 75% Percentile), 
categorical data are presented as the number (%), other 
quantitative data are presented as the mean ± standard 
deviation (SD), and comparisons between the two groups 
were carried out using the Student’s t-test. Qualitative 
data and allele frequency were compared using the χ2 test 
and Mann-Whitney test, and the genetic analysis model 
(dominant, recessive and additive) was employed to 
assess the relationship between candidate SNPs and the 
susceptibility to congenital heart disease. The odds ratio 
(OR) and 95% confidence interval (95% CI) were used to 
express the relative risk of disease. All statistical analyses 
were two-tailed and were conducted using Plink 1.9. A 
significance level of P < 0.05 was considered statistically 
significant.

Results
Basic characteristics of the study subjects
A total of 617 subjects were recruited, including 285 VSD 
individuals and 333 healthy individuals. VSD was diag-
nosed by cardiologists according to echocardiographic 
results and surgical records. The final patients’ parents 
included in the study are: have no history of alcohol 
abuse, mothers have no history of smoking and obvious 
symptoms of infection during pregnancy and no history 
of gestational diabetes, no history of gestational hyper-
tension. There were 148 males and 137 females with VSD, 
and the median age was 7 years (IQR 3–10 years), there 
are 83.51% for perimembranous VSD, 3.16% for muscu-
lar VSD, and 13.33% for subpulmonary VSD. There were 
121 males and 212 females in the control group, and the 
median age was 48 years (IQR 38–61 years) (Table  1). 
The levels of blood glucose, haemoglobin, red blood cells, 
white blood cells, platelets, and neutrophils did not sig-
nificantly differ between the two groups.

Typing and analyses of SNPs
In the all 34 samples, the Q30 (quality scores greater than 
30) was 95.49 ± 1.32%. Total 265,763 SNPs were identi-
fied. The χ2 tests were performed between the VSDs & 
controls, ASDs & controls, and all 34 patients & con-
trols, and adjusted P (FDR) were got. The positive SNPs 
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(FDR < 0.05) in these three comparisons were intersected. 
SNPs on genes that are potentially functionally related 
to heart development are selected. At last, 10 SNPs in 9 
genes were found. All participants underwent genotyp-
ing using the SNaPshot method, achieving a 100% call 
rate. In both the control and case cohorts, all 10 selected 
SNPs adhered to Hardy-Weinberg equilibrium, with 
minor allele frequencies exceeding 0.05. The χ2 test was 
employed to compare the allele frequencies of the 10 

SNPs between the 285 cases and 333 controls, with sta-
tistical significance set at P < 0.05. The findings in Table 2, 
revealed a notable distinction in FLT4 rs383985 between 
the VSD and control groups. In the broader population, 
alleles with low frequencies are often considered to arise 
through mutations, thus, the low-frequency alleles C 
and T in the FLT4 rs383985 (C, T, G) were combined for 
correlation analysis [37], and the minor allele frequency 
(MAF) was statistically lower than that in the control 
group. Although the difference disappeared after Bon-
ferroni correction, congenital heart disease is a complex 
condition caused by multiple genes, and this complexity 
can cause some risk alleles to be statistically borderline 
between positive and negative. Therefore, if there is other 
evidence suggesting that the FLT4 rs383985 may be asso-
ciated with the development of the ventricular septum, 
the effects of these mutations should still be considered.

Analysis of genetic models examining the association 
between candidate SNPs and VSD
The study assessed the relationship between the identi-
fied significant SNPs mentioned above and the risk of 
VSD using three genetic inheritance models. These mod-
els included a dominant model (MM + MW vs. WW), 
a recessive model (MM vs. WW + MW) and an addi-
tive model (MM vs. MW vs. WW), where M represents 
a low-frequency allele. The findings are presented in 
Table 3. According to our dominant model analysis, FLT4 
rs383985 showed a significant association with VSD 
(P = 0.029), with an odds ratio of 0.69 (95% CI: 0.50–0.90). 
This indicates a protective effect of FLT4 rs383985 in 
relation to the rare allele, reducing susceptibility to VSD.

Linkage disequilibrium and haplotype blocks
A total of 75 SNPs in the FLT4 gene were selected from 
34 congenital heart disease whole-exome sequencing 
results as the markers for our study. The detailed haplo-
type block information and linkage disequilibrium plot 

Table 1 Comparison of clinical characteristics between patients 
with normal people
Character-
istic

Overall
(n = 618)

VSD samples
(n = 285)

Normal 
samples
(n = 333)

P value

Demographic characteristics
Age (years) 33 (7, 51.3) 7 (3, 10) 48 (38, 61) < 0.0001
Male (%) 269 (43.53%) 148 (51.93%) 121 (36.34%) < 0.0001
Weight (kg) 50.03 ± 27.83 26.24 ± 16.53 70.39 ± 15.03 < 0.0001
BMI (kg/m2) 21.83 ± 13.21 17.29 ± 7.86 26.03 ± 16.55 < 0.0001
Laboratory examination
GLU 
(mmol/L)

4.97 ± 0.72 4.93 ± 0.51 5.01 ± 0.86 0.166

Hb (g/L) 135.41 ± 13.55 134.67 ± 13.70 136.03 ± 13.42 0.214
RBC (1012/L) 4.85 ± 0.45 4.88 ± 0.45 4.83 ± 0.45 0.266
WBC (109/L) 7.59 ± 2.61 7.67 ± 2.62 7.53 ± 2.60 0.486
PLT (109/L) 306.37 ± 83.44 309 ± 83.43 303.59 ± 83.47 0.372
NEUT (109/L) 3.28 ± 1.60 3.22 ± 1.62 3.34 ± 1.58 0.321
Clinical classification of surgery findings
Perimembra-
nous VSD

238 (38.51%) 238 (83.51%) 0 (0.00%) NA

Muscular 
VSD

9 (1.46%) 9 (3.16%) 0 (0.00%) NA

Subpulmo-
nary VSD

38 (6.15%) 38 (13.33%) 0 (0.00%) NA

The age data are presented as the median (25% Percentile, 75% Percentile), 
categorical data are presented as the number (%), other data are presented 
as mean (SD). P value in boldface indicates statistical significance  (P < 0.05), 
VSD, ventricular septal defect; BMI, body mass index; GLU, blood glucose; Hb, 
haemoglobin; RBC, red blood cell; WBC, white blood cell; PLT, platelet; NEUT, 
Neutrophil

Table 2 Comparison of the gene frequency of 10 SNPs in the VSD population and normal population
Gene SNP Minor/Major MAF (VSD) MAF (control) Alle HWE-P

P value
FN1 rs6707530 T/G 0.21 0.26 0.060 0.249
DNAH5 rs12659700 T/C 0.11 0.13 0.271 0.742
FLT4 rs383985 (C + T)/G 0.19 0.24 0.040 0.444
LAMC3 rs710074 C/A 0.35 0.36 0.515 0.730
COL5A1 rs3124309 T/C 0.50 0.49 0.778 0.872
COL4A1 rs598893 C/T 0.20 0.21 0.812 0.310
IQGAP1 rs2589941 C/T 0.17 0.15 0.342 0.305
HYDIN rs1774266 A/G 0.43 0.42 0.686 0.265

rs7198975 A/G 0.43 0.42 0.726 0.237
B9D1 rs11650112 T/C 0.17 0.13 0.087 0.103
P value in boldface indicates statistical significance (P < 0.05), SNP, single nucleotide polymorphism; MAF(VSD), Minor allele frequency in VSD patients; MAF (control), 
Minor allele frequency in normal controls; HWE-P, P value of Hardy–Weinberg equilibrium
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are shown in Fig. 1A. FLT4 rs383985 was strongly linked 
with rs3736061, rs3736062 and rs3736063 (r2 > 0.8). 
A total of 4 SNPs were selected as the markers for our 
study. Figure 1B; Table 4 depict the characteristics of the 
SNPs in FLT4, including dbSNP ID, genomic position and 
genomic function. The FLT4 rs3736061 and rs3736062, 
which cause a synonymous change in the amino acid, 
were not in the protein domain structures (Fig. 1C).

mRNA analysis
Based on 34 congenital heart disease whole-exome 
sequencing results, FLT4 rs383985 and its strongly linked 
loci were selected for haplotype analysis. In the haplotype 

analysis, which was predicted using the ELB algorithm 
based on Arlequin V3.5.2.2, the four-locus haplotype 
consisted of FLT4 rs383985, rs3736063, rs3736062, and 
rs3736061. The four-locus haplotypes in FLT4 were 
obtained: CGGG, ACAA, ACGG, and CTGG. Since 
only rs3736061 and rs3736062 are located on the exon, 
only the different sites on the mRNA can be obtained. 
Three two-locus haplotypes consisted of rs3736061 and 
rs3736062: CG (carrier frequency = 89.7%), AA (carrier 
frequency = 8.8%), and AG (carrier frequency = 1.5%). 
Among them, the CG haplotype with the highest fre-
quency is consistent with the reference sequence in the 
database and carries FLT4-positive polymorphism link-
age sites in the AG haplotype and AA haplotype. The 
first 1600 nucleotides of FLT4 were selected, and the 
secondary structure of mRNA was predicted using Vien-
naRNA V2.5.1 software. Detailed secondary structure 
information of mRNA (the centroid secondary struc-
ture) is shown in Fig.  2. The secondary structure of 
mRNA carrying the highest frequency of the CG haplo-
type (Fig. 2A) was used as the control, with a minimum 
free energy of -550.44  kcal/mol. In the AG haplotype 

Table 3 Genetic model analyses of the candidate SNPs in VSD 
and normal populations
Gene (SNP) Genotype VSD Freq Control 

Freq
P 
value

OR (95% 
CI)

FLT4(rs383985)
Dominant MM + MW 0.34 0.43 0.029 0.69(0.50–

0.90)
WW 0.66 0.57

Recessive MM 0.04 0.05 0.531
MW + WW 0.96 0.95

Additive MM vs. 
MW vs. 
WW

0.04 vs. 
0.30 vs. 
0.66

0.05vs. 
0.38vs. 
0.57

0.355

P value in boldface indicates statistical significance  (P < 0.05). SNP, single 
nucleotide polymorphism; Freq, frequency; OR, odds ratio; CI, confidence 
interval

Table 4 The SNP markers selected in the 34 CHD samples
Gene Symbol dbSNP ID Genomic Position (GRCh37) Function
FLT4 rs3736061 Chr5:180057231 Exon 4
FLT4 rs383985 Chr5:180055862 Intron 8
FLT4 rs3736062 Chr5:180052946 Exon 10
FLT4 rs3736063 Chr5:180052817 Intron 11

Fig. 1 Haplotype structure of FLT4 and genomic position of FLT4. (A) Greyscale indication: black represents D ’ = 1; white represents D ’ = 0; 0 < D ’ < 1, 
the darker the colour, the bigger D ’ is. r2 values times 100 are shown in the square. The red circle marks the location of FLT4 rs383985, and the red arrow 
marks the strong linkage r2 value and corresponding site location. (B) The positions of the high linkage disequilibrium SNPs annotated using the NCBI 
dbSNP database and lollipop labels show that FLT4 rs3736061, rs383985, rs3736062 and rs3736063 were discovered in the GRCh37 assembly. (C) Protein 
polymorphism map. Lollipop labels show that FLT4 rs3736061 and rs3736062 SNPs, which cause a synonymous change in the amino acid, were located 
at 169 and 448
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with only one allele changed, the mRNA secondary 
structure was changed (Fig.  2B), and the minimum free 
energy decreased to -655.14  kcal/mol. In the AA hap-
lotype with two changed alleles, the mRNA secondary 
structure changed even more (Fig. 2C) with a minimum 
free energy of -675.10  kcal/mol, and the decrease was 
more obvious. Compared with the reference haplotype 
(Fig.  2A), the more allele changes there are, the greater 
the change in the mRNA secondary structure of the cor-
responding haplotype, the more obvious the free energy 
decrease, and the more stable the mRNA structure.

Discussion
VSD is a prevalent type of CHDs, with research indicat-
ing that the occurrence of VSD may be influenced by 
genetic variation, genetic polymorphisms, and environ-
mental factors [2, 16]. The present study aims to identify 
the genetic variation and aetiology of genetic polymor-
phisms involved in VSD. In our study, FLT4 rs383985 
was found to be associated with VSD in the population 
of southwest China. The human FLT4 gene is comprised 
of 34 exons and is situated on chromosome 5q35.3. This 
gene is responsible for encoding the receptor for vascular 
endothelial growth factor 3 (VEGFR3), a crucial compo-
nent of the VEGF signaling pathway [38]. Vascular endo-
thelial growth factor receptors (VEGFRs) play a crucial 
role in regulating the formation and upkeep of the car-
diovascular and lymphatic vascular systems. Anomalies 
in their expression or malfunction have been linked to 
various human ailments [39–41]. Early embryonic mouse 
hearts have been shown to exhibit the Vegfr3 protein 
throughout the heart at E12.5 and in the endocardium at 
E9.5 [42]. Moreover, mice with a complete knockout of 

VEGFR3 exhibited cardiovascular failure at E9.5. Given 
the prevalence of this severe cardiovascular phenotype, 
the receptor plays a unique function in the development 
of the cardiovascular system in the early stages [43]. 
Moreover, it is possible that VEGFR3 plays a role in con-
trolling the expression of Vascular Endothelial Growth 
Factor Receptor 2 (VEGFR2), which is the main regula-
tor of the process of angiogenesis [44]. Through promot-
ing paracrine communication between endothelial cells 
and cardiomyocytes during normal cardiac development, 
VEGFR2 plays a major role in the process of cardiomyo-
cyte hypertrophy. Recent studies provide compelling 
evidence indicating that uncommon harmful polymor-
phisms in FLT4 increase the likelihood of spontaneous, 
nonsyndromic TOF [45], the majority of FLT4 variations 
associated with TOF tend to lead to the truncation of 
the protein-coding sequence. This truncation can occur 
through the introduction of stop codons, frame shift 
polymorphisms, or the disruption of conserved splice 
site regions responsible for removing intronic sequences 
from transcripts prior to translation [41]. Xie et al. [46] 
identified copy number variations (CNVs) of FLT4 in 
individuals with pulmonary atresia within a cohort of 
patients with VSD. These results indicate that FLT4 likely 
contributes significantly to the development of VSD.

In this study, we examined the proposition that varia-
tions in the FLT4 gene may play a role in the predispo-
sition to isolated VSD, FLT4 rs383985 is associated with 
susceptibility to VSD in the southwest region, and carry-
ing the low-frequency C or T allele is a protective factor 
for VSD (OR = 0.69, P = 0.029). FLT4 rs383985 is located 
between exon 8 and exon 9 and close to exon 8. The LD 
analysis indicates a significant association between this 

Fig. 2 mRNA secondary structure (centroid secondary structure). the structure is colored by base-pairing probabilities. (A) CG haplotype; (B) AG haplo-
type; (C) AA haplotype. Several differences (black circle) in the AG haplotype and AA haplotype compared with the mRNA secondary structure from the 
CG haplotype

 



Page 7 of 9Zhang et al. BMC Medical Genomics          (2024) 17:197 

site and FLT4 rs3736061, rs3736062, and rs3736063, in 
which FLT4 rs3736061 and rs3736062 are located in exon 
4 and exon 10, although both cause amino acid synony-
mous variations. Recent studies have shown that even the 
synonymous variation does not change the protein struc-
ture and affects protein expression by changing mRNA 
levels. Synonymous variations play nearly the same role 
in causing disease as nonsynonymous variations [47]. 
Therefore, the two-locus haplotypes in FLT4 (rs3736061 
and rs3736062) predicted the mRNA secondary struc-
ture. The AG haplotype, which accounted for approxi-
mately 1.5% of our sample, had altered mRNA secondary 
structure and decreased the minimum free energy rela-
tive to the reference haplotype CG. The AA haplotype 
had an estimated frequency of 8.8%, suggesting that the 
mRNA secondary structure changed more and that the 
minimum free energy decreased even more relative to the 
reference haplotype, CG. As the allele changes increased, 
the mRNA secondary structure changes increased, the 
minimum free energy decreased more, and the mRNA 
structure was more stable. This suggests that the syn-
onymous variation of FLT4 may make mRNA difficult 
to degrade and allow it to exist for a longer time, which 
plays a certain role in the prevention of VSD.

Congenital heart disease is a multifaceted genetic dis-
order with a polygenic nature, making the identification 
of its causative genes a challenge. Generally, gene asso-
ciation analysis is employed to investigate the impact of 
genetic variation on the susceptibility to complex dis-
eases. The presence of genetic diversity among popula-
tions can pose challenges in replicating pathogenic genes 
or loci across different races or geographical regions. 
Therefore, it is significant to perform association an anal-
ysis of susceptibility to VSD in populations with diverse 
genetic backgrounds. This is the first reported association 
between FLT4 SNPs and isolated VSD. It is important to 
identify the aetiology associated with genetic polymor-
phisms, and improving the understanding of their patho-
genesis and supporting genetic causes may be important 
for designing prenatal screening and genetic counselling 
for high-risk families. In addition, this research will aid 
in the advancement of novel diagnostic and therapeutic 
approaches.

Conclusion
In this study, FLT4 rs383985 and its strongly linked syn-
onymous variations were found to be associated with 
the occurrence of isolated VSD. Hence, further investi-
gation is necessary to validate the functional correlation 
between genetic variations and vulnerability to VSD, a 
potential avenue for enhancing the identification and 
treatment of congenital heart disease.
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