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Abstract

Background Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number
of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated
the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from
Southwest China.

Methods Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes
databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest
China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were
identified by SNaPshot genotyping. The chi-square (x%) test was used to evaluate the relationship between VSD and
each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage
disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using
Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict
haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated
the correlation between mRNA secondary structure changes and ventricular septal defects.

Results The xz results showed that the allele frequency of FLT4 rs383985 (P=0.040) was different between the
control group and the case group (P<0.05). FLT4 rs3736061 (> =1), rs3736062 (r>=0.84), rs3736063 (r*=0.84) and FLT4
rs383985 were in high linkage disequilibrium (r*>0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene
led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the
secondary structure of mRNA and reduce the free energy.

Conclusions These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants
investigation in future studies.
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Introduction

Congenital heart diseases (CHDs) are abnormalities
in the structure of the heart and blood vessels, cardio-
vascular malformations are mainly caused by aberrant
cardiac development during foetal development [1, 2].
CHDs are the most frequent birth defects [3]. Globally,
the incidence is approximately 1 in 80 to 110 newborns
and accounts for 30-50% of all foetal losses [4, 5]. Not all
CHD patients can receive an early diagnosis, and the true
frequency may be greater than previously thought [6].
Our knowledge of the underlying aetiology of CHDs is
still unclear. A lot of data indicates that hereditary factors
play a significant role in CHDs, despite the longstanding
belief that the interaction between genetic and environ-
mental factors have a substantial impact on the devel-
opment of CHDs, despite the long-held belief that the
interplay and correlation between genetic and environ-
mental variables significantly influences the development
of CHDs [2, 7, 8]. Therefore, it is increasingly important
to discover the genetic pathogenesis of CHDs. The most
frequent type of CHD is VSD, which can occur alone, in
conjunction with other heart defects, or as a component
of more complicated combinations including functionally
univentricular hearts, tetralogy of Fallot (TOF), double
outlet right ventricles, transposition, or other structural
abnormalities [9], which are characterized by a hole or
defect in the septum that separates the heart’s left and
right ventricles [10]. VSD occurs in approximately 1.5 to
3.5 per 1000 live births [11], and accounts for approxi-
mately 34% of all CHDs [12]. In Asia, it is estimated that
2.63 per 1000 children are born with VSD [13]. However,
despite efforts to uncover the mechanism of VSD forma-
tion [14, 15], the details remain largely unknown.

The process of cardiac development is intricate and
multifaceted. The formation of the ventricular septum
involves intricate interactions between cells derived from
various lineages, as well as the regulation of apoptosis,
specification, migration, differentiation, and prolifera-
tion of these cells [16]. For example, dysregulated vas-
cular endothelial growth factor (VEGF), which regulates
cell proliferation, plays an important role in the patho-
genesis of VSD. Studies have shown that it is associated
with an increased risk for isolated VSD [17]. Additionally,
the varying levels of gene expression related to energy
metabolism, cell cycle regulation and growth, cytoskel-
etal organization, and cell adhesion are significant factors
influencing the progression of VSD [18, 19]. Given the
studies that have already been reported, it is reasonable to
investigate the genetic factors contributing to VSD. Prior
research has indicated that genetic alterations associated
with the regulation of cell growth, skeletal formation,

and cell adhesion could impact cardiac development.
Numerous genes implicated in susceptibility to VSD are
known to participate in these biological pathways [16, 20,
21]. Based on 34 congenital heart disease whole-exome
sequencing and gene function candidate strategies, we
selected 10 SNPs in 9 genes for genotyping. FNI encodes
fibronectin, a protein that plays a crucial role in cellular
adhesion and migration mechanisms, particularly dur-
ing embryonic development [22, 23]. DNAHS encodes
dynein, which is part of the microtubule-associated
dynein complex [24]. The FLT4 gene is responsible for
encoding tyrosine kinase receptors that bind to vascu-
lar endothelial growth factors [25]. Polymorphisms in
FLT4 have been linked to TOF [26]. LAMC3 belongs to
laminin, which is involved in cell adhesion, differentia-
tion, migration, signal transduction, neurite growth and
metastasis [27]. IQGAPI encodes scaffold proteins and
is involved in cytoskeletal rearrangement, cell adhesion,
cell proliferation gene transcription and cell polarization
[28]. HYDIN encodes an axonal and cilial protein found
primarily in the foetal heart and bronchial ciliated epithe-
lium [29]. B9D1 is involved in cilia formation [30]. Subse-
quently, 10 selected SNPs were validated in 618 samples
(285 VSD patients and 333 normal controls) from South-
west China to identify the genetic association with VSD.

Methods and materials

Subjects

A total of 285 non-consanguineous individuals with
isolated VSD were selected for a case-control study
from patients treated at Fuwai Yunnan Cardiovascu-
lar Hospital from 2017 to 2021. The clinical diagnosis
was performed by a cardiologist based on the clinical
and echocardiography findings with the surgical notes,
and these people were confirmed as VSD patients after
undergoing surgery. The control group comprised 333
non-consanguineous healthy subjects with no history of
congenital heart disease. The participants in this study
were exclusively sourced from Yunnan Province in south-
western China. Individuals with additional CHDs, hyper-
tension, coronary heart disease, cardiac valve disease,
tachyarrhythmia, Alzheimer’s disease, acute viral myo-
carditis, or systemic illnesses were deliberately excluded
from the research cohort. The study complied with the
Declaration of Helsinki and was approved by the Ethics
Committee of Fuwai Yunnan Cardiovascular Hospital
(No. 2017-BG006). Prior to their involvement in the trial,
the subjects provided written informed consent.
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SNP selection and genotyping

This research conducted a preliminary screening of
potential SNPs within the population of Southwest
China by utilizing whole-exome sequencing data from
34 individuals diagnosed with congenital heart disease
(novogene, Beijing City, China), The 34 individuals with
congenital heart disease include 20 individuals with
VSD and 14 individuals with atrial septal defects (ASD).
Genomic DNA was extracted by the AxyPrep Blood
Genomic DNA MiniPrep Kit (Axygen, Hangzhou City,
China), 0.4 ug genomic DNA from blood were used to
construct liberty by Agilent SureSelect Human All Exon
V6 (Agilent USA), and sequenced on Illumina platforms
with PE150 strategy in Novogene Bioinformatics Tech-
nology Co., Ltd (Beijing, China). The sequencing results
were converted into fastq format, and the adapter and
low-quality reads were removed to obtain clean reads.
Clean data was mapped to the reference genome GRCh37
(Homo sapiens) by Burrows Wheeler Aligner (BWA)
software [31]. SAMtools [32] was used to call germ-
line SNPs and annotated by ANNOVAR [33]. The 1000
Genomes database was used as controls. The allele fre-
quencies between the VSDs & controls, ASDs & controls,
and all 34 patients & controls were assessed through the
X2 test, the False Discovery Rate (FDR) was employed for
the purpose of correcting P value. Then selected the posi-
tive SNPs (FDR<0.05) for making an intersection analy-
sis of three comparisons. A total of 10 SNPs from the
nine genes (rs6707530 in FNI, rs12659700 in DNAHS,
rs383985 in FLT4, rs710074 in LAMC3, rs3124309 in
COL5A1, rs598893 in COL4A1, rs2589941 in IQGAPI,
rs7198975 and rs1774266 in HYDIN, rs11650112 in
B9D1) were selected. Following this, individual geno-
typing was conducted on patients with VSD and control
groups to validate the correlation with VSD. A total of
ten candidate SNPs were genotyped using the SNaPshot
method [34, 35].

Following the patient’s informed consent, the DNA
from the peripheral venous blood sample was extracted
in order to conduct targeted amplification of the can-
didate SNPs, supplementary Table 1 shows the primer
sequences.

Linkage disequilibrium and haplotype blocks

Based on these genotype results, SNPs of positive genes
were selected from the 34 congenital heart disease
whole-exome sequencing results, and SNP information
was retrieved from the NCBI dbSNP database (https://
www.ncbinlm.nih.gov/snp/). The selected SNPs were
analysed using linkage disequilibrium (LD). The haplo-
type reconstruction results were calculated by Haploview
v3.32. Haploview used the confidence interval method
to perform LD assessment. We used an r? threshold
of 0.8. SNPs were selected as the markers for our study
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and further plotted using a bioinformatics online tool
(http://www.bioinformatics.com.cn). The ELB algorithm
of Arlequin V3.5.2.2 predicted haplotypes of the bins
of SNPs that were in very strong linkage disequilibrium
with a specified r? threshold. ViennaRNA v2.5.1 [36] per-
formed mRNA secondary structure prediction for these
haplotypes.

Statistical analysis

The Statistical Package for Social Sciences (SPSS version
19, IBM Corporation, Armonk, NY) was utilized for con-
ducting statistical analysis in this study. The age data are
presented as the median (25% Percentile, 75% Percentile),
categorical data are presented as the number (%), other
quantitative data are presented as the meanzstandard
deviation (SD), and comparisons between the two groups
were carried out using the Student’s t-test. Qualitative
data and allele frequency were compared using the x> test
and Mann-Whitney test, and the genetic analysis model
(dominant, recessive and additive) was employed to
assess the relationship between candidate SNPs and the
susceptibility to congenital heart disease. The odds ratio
(OR) and 95% confidence interval (95% CI) were used to
express the relative risk of disease. All statistical analyses
were two-tailed and were conducted using Plink 1.9. A
significance level of P<0.05 was considered statistically
significant.

Results

Basic characteristics of the study subjects

A total of 617 subjects were recruited, including 285 VSD
individuals and 333 healthy individuals. VSD was diag-
nosed by cardiologists according to echocardiographic
results and surgical records. The final patients’ parents
included in the study are: have no history of alcohol
abuse, mothers have no history of smoking and obvious
symptoms of infection during pregnancy and no history
of gestational diabetes, no history of gestational hyper-
tension. There were 148 males and 137 females with VSD,
and the median age was 7 years (IQR 3-10 years), there
are 83.51% for perimembranous VSD, 3.16% for muscu-
lar VSD, and 13.33% for subpulmonary VSD. There were
121 males and 212 females in the control group, and the
median age was 48 years (IQR 38-61 years) (Table 1).
The levels of blood glucose, haemoglobin, red blood cells,
white blood cells, platelets, and neutrophils did not sig-
nificantly differ between the two groups.

Typing and analyses of SNPs

In the all 34 samples, the Q30 (quality scores greater than
30) was 95.49+1.32%. Total 265,763 SNPs were identi-
fied. The X2 tests were performed between the VSDs &
controls, ASDs & controls, and all 34 patients & con-
trols, and adjusted P (FDR) were got. The positive SNPs
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Table 1 Comparison of clinical characteristics between patients
with normal people

Character-  Overall VSD samples Normal Pvalue
istic (n=618) (n=285) samples

(n=333)
Demographic characteristics
Age (years) 33(7,51.3) 7(3,10) 48 (38,61) <0.0001
Male (%) 269 (43.53%) 148(51.93%) 121(36.34%) <0.0001
Weight (kg)  50.03+£27.83 2624+1653 7039+1503 <0.0001
BMI (kg/mz) 2183+1321 17.29+7.86 2603+£16.55 <0.0001
Laboratory examination
GLU 497+0.72 493+0.51 501+0.86 0.166
(mmol/L)
Hb (g/L) 1354141355 13467+13.70 136.03+1342 0214
RBC (10'%/)  4.85+045 488+045 483+045 0.266
WBC (10%/L)  7.59+261 7.67+262 7.53+£2.60 0.486
PLT (10°/L) 306.37+8344 309+8343 303.59+8347 0372
NEUT (10%L) 3.28+1.60 3224162 334+£158 0.321
Clinical classification of surgery findings
Perimembra- 238 (38.51%) 238(83.51%) 0 (0.00%) NA
nous VSD
Muscular 9 (1.46%) 9 (3.16%) 0 (0.00%) NA
VSD
Subpulmo- 38 (6.15%) 38(13.33%) 0 (0.00%) NA
nary VSD

The age data are presented as the median (25% Percentile, 75% Percentile),
categorical data are presented as the number (%), other data are presented
as mean (SD). P value in boldface indicates statistical significance (P < 0.05),
VSD, ventricular septal defect; BMI, body mass index; GLU, blood glucose; Hb,
haemoglobin; RBC, red blood cell; WBC, white blood cell; PLT, platelet; NEUT,
Neutrophil

(FDR<0.05) in these three comparisons were intersected.
SNPs on genes that are potentially functionally related
to heart development are selected. At last, 10 SNPs in 9
genes were found. All participants underwent genotyp-
ing using the SNaPshot method, achieving a 100% call
rate. In both the control and case cohorts, all 10 selected
SNPs adhered to Hardy-Weinberg equilibrium, with
minor allele frequencies exceeding 0.05. The x> test was
employed to compare the allele frequencies of the 10
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SNPs between the 285 cases and 333 controls, with sta-
tistical significance set at P<0.05. The findings in Table 2,
revealed a notable distinction in FLT4 rs383985 between
the VSD and control groups. In the broader population,
alleles with low frequencies are often considered to arise
through mutations, thus, the low-frequency alleles C
and T in the FLT4 rs383985 (C, T, G) were combined for
correlation analysis [37], and the minor allele frequency
(MAF) was statistically lower than that in the control
group. Although the difference disappeared after Bon-
ferroni correction, congenital heart disease is a complex
condition caused by multiple genes, and this complexity
can cause some risk alleles to be statistically borderline
between positive and negative. Therefore, if there is other
evidence suggesting that the FLT4 rs383985 may be asso-
ciated with the development of the ventricular septum,
the effects of these mutations should still be considered.

Analysis of genetic models examining the association
between candidate SNPs and VSD

The study assessed the relationship between the identi-
fied significant SNPs mentioned above and the risk of
VSD using three genetic inheritance models. These mod-
els included a dominant model (MM+MW vs. WW),
a recessive model (MM vs. WW+MW) and an addi-
tive model (MM vs. MW vs. WW), where M represents
a low-frequency allele. The findings are presented in
Table 3. According to our dominant model analysis, FLT4
rs383985 showed a significant association with VSD
(P=0.029), with an odds ratio of 0.69 (95% CI: 0.50-0.90).
This indicates a protective effect of FLT4 rs383985 in
relation to the rare allele, reducing susceptibility to VSD.

Linkage disequilibrium and haplotype blocks

A total of 75 SNPs in the FLT4 gene were selected from
34 congenital heart disease whole-exome sequencing
results as the markers for our study. The detailed haplo-
type block information and linkage disequilibrium plot

Table 2 Comparison of the gene frequency of 10 SNPs in the VSD population and normal population

Gene SNP Minor/Major MAF (VSD) MAF (control) Alle HWE-P
P value
FNT rs6707530 T/G 0.21 0.26 0.060 0.249
DNAH5 rs12659700 T/C 0.11 0.13 0.271 0.742
FLT4 rs383985 (C+T)/G 0.19 0.24 0.040 0.444
LAMC3 rs710074 C/A 035 0.36 0.515 0.730
COL5AT rs3124309 T/C 0.50 049 0.778 0.872
COL4AT rs598893 /T 0.20 0.21 0.812 0310
IQGAP1 rs2589941 /T 0.17 0.15 0.342 0.305
HYDIN 151774266 A/G 043 042 0.686 0.265
rs7198975 A/G 043 042 0.726 0.237
BID1 rs11650112 T/C 0.17 0.13 0.087 0.103

P value in boldface indicates statistical significance (P < 0.05), SNP, single nucleotide polymorphism; MAF(VSD), Minor allele frequency in VSD patients; MAF (control),
Minor allele frequency in normal controls; HWE-P, P value of Hardy-Weinberg equilibrium
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Table 3 Genetic model analyses of the candidate SNPs in VSD
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Table 4 The SNP markers selected in the 34 CHD samples

and normal populations Gene Symbol dbSNPID Genomic Position (GRCh37) Function
Gene (SNP) Genotype VSDFreq Control P OR (95% FLT4 rs3736061  Chr5:180057231 Exon 4
Fre g  value () FLT4 rs383985  Chr5:180055862 Intron 8
FLT4(rs383985) FLT4 rs3736062 Chr5:180052946 Exon 10
Dominant MM+MW 034 043 0.029  069(0.50~ FIT4 rs3736063 Chr5:180052817 Intron 11
0.90)
Ww 0.66 0.57
Recessive MM 004 005 0531 analysis, which was predicted using the ELB algorithm
MW+WW 096 095 based on Arlequin V3.5.2.2, the four-locus haplotype
Additive MMvs.  004vs.  005vs. 0355 consisted of FLT4 rs383985, rs3736063, rs3736062, and
MW vs, 030vs.  038vs. rs3736061. The four-locus haplotypes in FLT4 were
ww 0.66 0.57 obtained: CGGG, ACAA, ACGG, and CTGG. Since

P value in boldface indicates statistical significance (P < 0.05). SNP, single
nucleotide polymorphism; Freq, frequency; OR, odds ratio; Cl, confidence
interval

are shown in Fig. 1A. FLT4 rs383985 was strongly linked
with rs3736061, rs3736062 and rs3736063 (r*>0.8).
A total of 4 SNPs were selected as the markers for our
study. Figure 1B; Table 4 depict the characteristics of the
SNPs in FLT4, including dbSNP ID, genomic position and
genomic function. The FLT4 rs3736061 and rs3736062,
which cause a synonymous change in the amino acid,
were not in the protein domain structures (Fig. 1C).

mRNA analysis

Based on 34 congenital heart disease whole-exome
sequencing results, FLT4 rs383985 and its strongly linked
loci were selected for haplotype analysis. In the haplotype

B

1rs3736061

1s383985

1s3736062 1rs3736063

- Exon

Intron

o R Rl

only rs3736061 and rs3736062 are located on the exon,
only the different sites on the mRNA can be obtained.
Three two-locus haplotypes consisted of rs3736061 and
rs3736062: CG (carrier frequency=89.7%), AA (carrier
frequency=8.8%), and AG (carrier frequency=1.5%).
Among them, the CG haplotype with the highest fre-
quency is consistent with the reference sequence in the
database and carries FLT4-positive polymorphism link-
age sites in the AG haplotype and AA haplotype. The
first 1600 nucleotides of FLT4 were selected, and the
secondary structure of mRNA was predicted using Vien-
naRNA V2.5.1 software. Detailed secondary structure
information of mRNA (the centroid secondary struc-
ture) is shown in Fig. 2. The secondary structure of
mRNA carrying the highest frequency of the CG haplo-
type (Fig. 2A) was used as the control, with a minimum
free energy of -550.44 kcal/mol. In the AG haplotype

. R I
5 <
Y 80 A8
L16.9L Y4ﬁY

=

169231 314 448 559 657 765 845 1169 1317 1363

Transmembrane region
Low complexity region

m Immunoglobulin domain
M Immunoglobulin I-set domain
B VEGFR-2 Transmenbrane domain

Protein tyosin and serin/threonin kinase

Fig. 1 Haplotype structure of FLT4 and genomic position of FLT4. (A) Greyscale indication: black represents D "= 1; white represents D '=0; 0<D '< 1,
the darker the colour, the bigger D 'is. r? values times 100 are shown in the square. The red circle marks the location of FLT4 rs383985, and the red arrow
marks the strong linkage r? value and corresponding site location. (B) The positions of the high linkage disequilibrium SNPs annotated using the NCBI
dbSNP database and lollipop labels show that FLT4 rs3736061, rs383985, rs3736062 and rs3736063 were discovered in the GRCh37 assembly. (C) Protein
polymorphism map. Lollipop labels show that FLT4 rs3736061 and rs3736062 SNPs, which cause a synonymous change in the amino acid, were located

at 169 and 448
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Fig. 2 mRNA secondary structure (centroid secondary structure). the structure is colored by base-pairing probabilities. (A) CG haplotype; (B) AG haplo-
type; (C) AA haplotype. Several differences (black circle) in the AG haplotype and AA haplotype compared with the mRNA secondary structure from the

CG haplotype

with only one allele changed, the mRNA secondary
structure was changed (Fig. 2B), and the minimum free
energy decreased to -655.14 kcal/mol. In the AA hap-
lotype with two changed alleles, the mRNA secondary
structure changed even more (Fig. 2C) with a minimum
free energy of -675.10 kcal/mol, and the decrease was
more obvious. Compared with the reference haplotype
(Fig. 2A), the more allele changes there are, the greater
the change in the mRNA secondary structure of the cor-
responding haplotype, the more obvious the free energy
decrease, and the more stable the mRNA structure.

Discussion

VSD is a prevalent type of CHDs, with research indicat-
ing that the occurrence of VSD may be influenced by
genetic variation, genetic polymorphisms, and environ-
mental factors [2, 16]. The present study aims to identify
the genetic variation and aetiology of genetic polymor-
phisms involved in VSD. In our study, FLT4 rs383985
was found to be associated with VSD in the population
of southwest China. The human FLT4 gene is comprised
of 34 exons and is situated on chromosome 5q35.3. This
gene is responsible for encoding the receptor for vascular
endothelial growth factor 3 (VEGER3), a crucial compo-
nent of the VEGF signaling pathway [38]. Vascular endo-
thelial growth factor receptors (VEGFRs) play a crucial
role in regulating the formation and upkeep of the car-
diovascular and lymphatic vascular systems. Anomalies
in their expression or malfunction have been linked to
various human ailments [39-41]. Early embryonic mouse
hearts have been shown to exhibit the Vegfr3 protein
throughout the heart at E12.5 and in the endocardium at
E9.5 [42]. Moreover, mice with a complete knockout of

VEGFR3 exhibited cardiovascular failure at E9.5. Given
the prevalence of this severe cardiovascular phenotype,
the receptor plays a unique function in the development
of the cardiovascular system in the early stages [43].
Moreover, it is possible that VEGFR3 plays a role in con-
trolling the expression of Vascular Endothelial Growth
Factor Receptor 2 (VEGFR2), which is the main regula-
tor of the process of angiogenesis [44]. Through promot-
ing paracrine communication between endothelial cells
and cardiomyocytes during normal cardiac development,
VEGFR2 plays a major role in the process of cardiomyo-
cyte hypertrophy. Recent studies provide compelling
evidence indicating that uncommon harmful polymor-
phisms in FLT4 increase the likelihood of spontaneous,
nonsyndromic TOF [45], the majority of FLT4 variations
associated with TOF tend to lead to the truncation of
the protein-coding sequence. This truncation can occur
through the introduction of stop codons, frame shift
polymorphisms, or the disruption of conserved splice
site regions responsible for removing intronic sequences
from transcripts prior to translation [41]. Xie et al. [46]
identified copy number variations (CNVs) of FLT4 in
individuals with pulmonary atresia within a cohort of
patients with VSD. These results indicate that FLT4 likely
contributes significantly to the development of VSD.

In this study, we examined the proposition that varia-
tions in the FLT4 gene may play a role in the predispo-
sition to isolated VSD, FLT4 rs383985 is associated with
susceptibility to VSD in the southwest region, and carry-
ing the low-frequency C or T allele is a protective factor
for VSD (OR=0.69, P=0.029). FLT4 rs383985 is located
between exon 8 and exon 9 and close to exon 8. The LD
analysis indicates a significant association between this
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site and FLT4 rs3736061, rs3736062, and rs3736063, in
which FLT4 rs3736061 and rs3736062 are located in exon
4 and exon 10, although both cause amino acid synony-
mous variations. Recent studies have shown that even the
synonymous variation does not change the protein struc-
ture and affects protein expression by changing mRNA
levels. Synonymous variations play nearly the same role
in causing disease as nonsynonymous variations [47].
Therefore, the two-locus haplotypes in FLT4 (rs3736061
and rs3736062) predicted the mRNA secondary struc-
ture. The AG haplotype, which accounted for approxi-
mately 1.5% of our sample, had altered mRNA secondary
structure and decreased the minimum free energy rela-
tive to the reference haplotype CG. The AA haplotype
had an estimated frequency of 8.8%, suggesting that the
mRNA secondary structure changed more and that the
minimum free energy decreased even more relative to the
reference haplotype, CG. As the allele changes increased,
the mRNA secondary structure changes increased, the
minimum free energy decreased more, and the mRNA
structure was more stable. This suggests that the syn-
onymous variation of FLT4 may make mRNA difficult
to degrade and allow it to exist for a longer time, which
plays a certain role in the prevention of VSD.

Congenital heart disease is a multifaceted genetic dis-
order with a polygenic nature, making the identification
of its causative genes a challenge. Generally, gene asso-
ciation analysis is employed to investigate the impact of
genetic variation on the susceptibility to complex dis-
eases. The presence of genetic diversity among popula-
tions can pose challenges in replicating pathogenic genes
or loci across different races or geographical regions.
Therefore, it is significant to perform association an anal-
ysis of susceptibility to VSD in populations with diverse
genetic backgrounds. This is the first reported association
between FLT4 SNPs and isolated VSD. It is important to
identify the aetiology associated with genetic polymor-
phisms, and improving the understanding of their patho-
genesis and supporting genetic causes may be important
for designing prenatal screening and genetic counselling
for high-risk families. In addition, this research will aid
in the advancement of novel diagnostic and therapeutic
approaches.

Conclusion

In this study, FLT4 rs383985 and its strongly linked syn-
onymous variations were found to be associated with
the occurrence of isolated VSD. Hence, further investi-
gation is necessary to validate the functional correlation
between genetic variations and vulnerability to VSD, a
potential avenue for enhancing the identification and
treatment of congenital heart disease.
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