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Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization
in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI,
EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and
its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and
classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20–63 years).
Weighted and directed connectivity was computed bymeans of Partial Directed Coherence based on a General Linear Kalman filter
approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting
networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to
randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according
to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification
of the subjects by means of such indices returns an accuracy greater than 80%.

1. Introduction

In the last years, several anatomical, functional neuroimag-
ing, and electrophysiological studies have investigated the
resting-state connectivity in order to understand the effects
of aging on the human brain. Functional connectivity studies
have suggested that aging is related to decreased connec-
tivity patterns in the Default Mode Network (DMN; [1–4])
but influences also attention networks and sensory-motor
systems [5–8]. Also, in EEG field, this phenomenon has
been investigated confirming fMRI results [9–14]. Different
approaches based on graph theory applied to brain functional
networks have been used to describe the effects of aging on
cerebral processes. In particular, the resting-state network
organization is suggested to tend to a more random con-
figuration by a reduction of overall connectivity (decreased

clustering and increased path length): this phenomenon was
demonstrated in [10, 11] estimating brain connectivity by
means of Synchronization Likelihood and in [14] by means
of lagged-phase synchronization. In fact, among indices
describing the properties of a brain network, characteristic
path length (overall integration), clustering (local segrega-
tion), and small-worldness, defined as ratio between them,
represent some key topological metrics [15] describing the
organization of information flows in a network. On the basis
of such metrics, networks can be described as regular, small-
world, or random. Several anatomical, functional neuroimag-
ing, and electrophysiological studies demonstrated that brain
networks inferred from healthy individuals are characterized
by an optimal small-world organization [16, 17].

Furthermore, a description of the effective resting-state
networks during three different ages (children,mid-aged, and
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elderly) was proposed by Zhu et al. [12]: in this study, effective
connectivity was estimated starting from EEG signals, but
the aging effects in the effective resting-state networks were
investigated only in terms of hemispheres asymmetry.

The aim of the present study was to exploit a combination
of advancedmethods for the estimation of cortical connectiv-
ity, the use of directed andweighted graph theoretical indices,
and a classification approach to investigate differences in
resting-state networks related to age.

Partial Directed Coherence (PDC, [18]) is a powerful
estimator of effective connectivity: it returns information
about the existence, the intensity, and the direction of the
causal relations between EEG signals. In order to exploit
all the information returned by the PDC, in this study, we
computed the directed and weighted version of state-of-
the-art graph theory indices. We extracted salient indices
synthesizing the architecture of the connectivity networks
elicited during the rest condition in a group of 71 healthy
adults, of age ranging from 20 to 63 years. A first investigation
was conducted by mean of correlation study in order to
find the topological properties that are related to age. A
second step focused on the characterization of two subgroups
(young andmiddle-aged adults) and aimed to identify indices
showing statistical differences between the two groups, to
be used as features for classifying resting-state patterns in
relation to the age of the subject.

2. Methods

2.1. Experimental Design. 71 healthy subjects took part in the
study (age ranging from 20 to 63 years). EEG signals were
collected from 61 positions, assembled on an electrode cap
(according to an extension of the 10–20 International System)
during one minute of eyes-closed resting-state condition. We
avoided scalp positioned reference electrodes, to minimize
the effect on the signal phases. Subjects were instructed to
relax and not to think of anything. After band-pass filtering
(1–45Hz + 50Hz Notch filter), muscular and environmental
artifacts were removed using a semiautomatic procedure,
based on the definition of a voltage threshold (±80 𝜇V), and
IndependentComponentAnalysis [19]was applied to remove
ocular artifacts related to involuntary twitch during eyes-
closed condition. Particular attention was put in avoiding
any preprocessing procedure that may induce changes in
the phase relations between channels. EEG traces were then
segmented in 1 s-epochs and the brain connectivity was
estimated by means of PDC: the obtained patterns were
averaged over frequency range of 1–30Hz. The frequency
band was selected in accordance with previous studies [12,
20].

2.2. Multivariate Autoregressive Modeling of Brain Signals.
Suppose that thefollowingmultivariate autoregressive (MVAR)
model is an adequate description of the dataset 𝑌:

𝑝

∑

𝑘=0

Λ (𝑘) 𝑌 (𝑡 − 𝑘) = 𝐸 (𝑡) , (1)

where 𝑌(𝑡) is the data vector in time, 𝐸(𝑡) is a vector of
multivariate zero-mean uncorrelated white noise processes,

Λ(𝑘) is the matrix of model coefficients at lag 𝑘, and 𝑝 is
the model order that can be chosen by means of the Akaike
Information Criteria (AIC) for MVAR processes [21]. For the
dataset used in this study, the resulting optimal model order
was around 20 for each subject. We checked that the amount
of data points was at least an order of magnitude higher than
the number of parameters to be estimated for the model. In
order to investigate the spectral properties of the examined
process, (1) is transformed to the frequency domain:

Λ (𝑓)𝑌 (𝑓) = 𝐸 (𝑓) ,

Λ (𝑓) =

𝑝

∑

𝑘=0

Λ (𝑘) 𝑒
−𝑗2𝜋𝑓Δ𝑡𝑘

,

(2)

where Δ𝑡 is the temporal interval between two samples.
An adaptive formulation for MVAR model (AMVAR)

is used in the study [22]. The time dependent parameter
matrices can be estimated by means of GLKF method
(described in the following).

2.3. Partial Directed Coherence. The PDC [18] is a full
multivariate spectral measure, used to determine the directed
influences between any given pair of signals in a multivariate
dataset. This estimator was demonstrated to be a frequency
version of the concept of Granger causality [23]. In this study,
we adopted the following formulation of PDC:

𝜋𝑖𝑗 (𝑓) =

Λ 𝑖𝑗 (𝑓)

√∑
𝑁

𝑘=1
Λ 𝑖𝑘 (𝑓)Λ 𝑖𝑘 (𝑓)

, (3)

where Λ(𝑓) is the matrix containing the coefficients of
associated MVAR model and

𝑁

∑

𝑛=1


𝜋𝑖𝑛 (𝑓)



2
= 1. (4)

Due to the normalization reported in (4), PDC values are in
the interval [0 1] . With respect to the original definition
of PDC [18], according to which the estimator is normalized
according to the amount of connectivity emitted from the
“source” channel, here, we normalized the estimator accord-
ing to the total connectivity incoming to the “target” channel
(row-wise normalization instead of column-wise one), to
avoid the fact that PDC from given electrode is decreased
when multiple signals are emitted from it.

The formulation of the estimator proposed in [18] is
based on the hypothesis of stationarity of signals included in
the estimation process. Unfortunately, such hypothesis leads
to a complete loss of the information about the temporal
evolution of estimated information flows. For overcoming
this limitation, a time-varying adaptation of PDC was intro-
duced. The adaptation consisted of modifying the original
formulation of PDC by including dependence from the time
in the MVAR coefficients. Thus, the adaptive PDC estimator
can be defined as follows:

𝜋𝑖𝑗 (𝑓, 𝑡) =

Λ 𝑖𝑗 (𝑓, 𝑡)

√∑
𝑁

𝑘=1
Λ 𝑘𝑖 (𝑓, 𝑡) Λ 𝑘𝑖 (𝑓, 𝑡)

, (5)
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where 𝑡 refers to a dependence of theMVAR coefficients from
time and Λ 𝑖𝑗(𝑓, 𝑡) represents the 𝑖𝑗 entry of the matrix of
MVAR model coefficients Λ at frequency 𝑓 and time 𝑡.

In this study, we used the squared formulation of PDC
due to its higher accuracy and stability [24].

2.4. General Linear Kalman Filter. The coefficients of the
AMVAR model were estimated by means of General Linear
Kalman Filter (GLKF). In the GLKF, an adaptation of the
Kalman Filter to the case of multitrial time series is provided
[25]. In particular, the equations at the basis of the algorithm
are

𝑄𝑛 = 𝐺𝑛−1𝑄𝑛−1 + 𝑉𝑛,

𝑂𝑛 = 𝐻𝑛𝑄𝑛 +𝑊𝑛,

(6)

where 𝑂𝑛 represents the observation, 𝑄𝑛 is the state process,
𝐻𝑛 and 𝐺𝑛 are the transition matrices, and 𝑉𝑛 and 𝑊𝑛

are the additive noises. To obtain the connection with the
time-varying MVAR, it is necessary to make the following
associations:

𝑄𝑛 =

[
[
[
[

[

Λ 1 (𝑛)
𝑇

.

.

.

Λ 𝑝 (𝑛)
𝑇

]
]
]
]

]

,

𝑂𝑛 = (

𝑦
(1)

1
(𝑛) ⋅ ⋅ ⋅ 𝑦

(1)

𝑀
(𝑛)

.

.

. d
.
.
.

𝑦
(𝑇)

1
(𝑛) ⋅ ⋅ ⋅ 𝑦

(𝑇)

𝑀
(𝑛)

) = 𝑌𝑛,

𝐺𝑛−1 = 𝐼𝑑𝑝,

𝐻𝑛 = (𝑂𝑛−1, . . . , 𝑂𝑛−𝑝) ,

(7)

where 𝑇 denotes the number of trials, whereas 𝑀 is the
dimension of the measured process. The details of the
algorithm are provided in [25]. The quality of estimation is
related to the definition of two adaptation parameters, 𝑐1
and 𝑐2, which regulate the compromise between the quality
of estimation and the speed of adaptation to transitions.
This algorithm was developed for time-varying connectivity
estimation but it can be also applied in the stationary case, to
provide high stability and accuracy with multichannel data
[25]. In this case, the appropriate choice of the adaptation
constants allows for strengthening the estimator accuracy
(𝑐1 = 𝑐2 = 0.001).

2.5. Support Vector Machine (SVM). The Support Vector
Machine (SVM) was first proposed by Vapnik and has since
attracted a high degree of interest in the machine learning
research community [26]. SVMs are supervised learning
models used for classification and regression analysis. In
order to perform a binary classification (two separate classes),
this method needs training data, marked as belonging to one
of two categories, for introducing a separating hyperplane:
this hyperplane must maximize the margin between the

two classes and it is known as the optimum separating
hyperplane. The details of the method are provided in [27].

2.6. Graph Theory Approach. A graph is an abstract repre-
sentation of a network that consists of a set of vertices (or
nodes) linked by means of edges (or connections) indicating
the presence of some sort of interaction between the vertices.
The adjacency matrix 𝐴 is the mathematical representation
of a graph. It contains the information about the connectivity
structure of the graph: the entry 𝑎𝑖𝑗 is different from 0 if there
is an effective link between nodes 𝑖 and 𝑗 and equal to 0 if no
link exists.

Several indices based on the elements of such matrix can
be computed for the characterization of the main properties
of brain networks [28]. In this study, we used weighted
versions of the indices, to take into account strength and
direction of the connectivity links returned by PDC.

2.6.1. Node Strength. The strength index 𝑠 represents the
total intensity associated with arcs that involve the node 𝑖,
both ingoing ones (in-strength, 𝑠in) and outgoing ones (out-
strength, 𝑠out):

𝑠 (𝑖) = 𝑠in (𝑖) + 𝑠out (𝑖) = ∑

𝑗=𝑉,𝑗 ̸=𝑖

𝑤𝑗𝑖 + ∑

𝑗=𝑉,𝑗 ̸=𝑖

𝑤𝑖𝑗, (8)

where 𝑤𝑖𝑗 is the intensity of the link from node 𝑗 to node 𝑖.

2.6.2. Characteristic Path Length. The characteristic path
length is the average shortest path length in the network [29].
Its weighted and directed version can be defined as follows:

𝐿
𝑤
=
1

𝑛

∑

𝑖∈𝑁

𝐿 𝑖 =
1

𝑛

∑

𝑖∈𝑁

∑𝑗∈𝑁,𝑗 ̸=𝑖 𝑑
𝑤

𝑖𝑗

𝑛 − 1

,

𝑑
𝑤

𝑖𝑗
= ∑

𝑎
𝑢V∈𝑔
𝑤

𝑖→𝑗

𝑓 (𝑤𝑢V) ,

(9)

where 𝐿 𝑖 is the average distance between node 𝑖 and all other
nodes, 𝑑𝑖𝑗 is the distance between node 𝑖 and node 𝑗, 𝑓 is
a map (i.e., the inverse) from weight to length, and 𝑔𝑤

𝑖→𝑗
is

the directed shortest path from 𝑖 to 𝑗 (the superscript “𝑤”
indicates that the equation is associated with the weighted
version).

2.6.3. ClusteringCoefficient. Theclustering coefficient describes
the intensity of interconnections between the neighbors of a
node [29]. It is defined as the fraction of triangles around a
node or the fraction of node’s neighbors that are neighbors
of each other. The weighted directed version of clustering
coefficient is defined as follows:
𝐶
𝑤

=
1

𝑛

∑

𝑖∈𝑁

𝑡
𝑤

𝑖

(𝑘
out
𝑖
+ 𝑘

in
𝑖
) (𝑘

out
𝑖
+ 𝑘

in
𝑖
− 1) − 2∑𝑗∈𝑁𝑤𝑖𝑗𝑤𝑗𝑖

,

(10)

where 𝑡𝑖 represents the number of triangles involving node 𝑖,
𝑘
in
𝑖
and 𝑘out
𝑖

are the number of incoming and outcoming edges
of nodes 𝑖, respectively, and 𝑤𝑖𝑗 is the entry of connectivity
matrix (i.e., weight of connection from node 𝑗 to node 𝑖).
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2.6.4. Global Efficiency. The global efficiency is the average
of the inverse of the geodesic length (shortest path between
two nodes in the network) and represents the efficiency of
the communication between all the nodes in the network
[30]. The weighted and directed formulation is shown in the
following equation:

GlobEff𝑤 = 1
𝑛

∑

𝑖∈𝑁

∑𝑗∈𝑁,𝑗 ̸=𝑖 (𝑑
𝑤

𝑖𝑗
)

−1

𝑛 − 1

, (11)

where 𝑑𝑤
𝑖𝑗
is the weighted distance between node 𝑖 and node

𝑗.

2.6.5. Local Efficiency. The local efficiency is the average of
the global efficiencies computed on each subgraph belonging
to the network and represents the efficiency of the communi-
cation between all the nodes around the node 𝑖 in the network
[30]. Its weighted and directed version is defined as follows:

LocEff𝑤 = 1

2𝑛

∑

𝑖∈𝑁

∑𝑗,ℎ∈𝑁,𝑗 ̸=𝑖 (𝑤𝑖𝑗 + 𝑤𝑗𝑖) (𝑤𝑖ℎ + 𝑤ℎ𝑖) ([𝑑
𝑤

𝑗ℎ
(𝑁𝑖)]

−1

+ [𝑑
𝑤

ℎ𝑗
(𝑁𝑖)]

−1

)

(𝑘
out
𝑖
+ 𝑘

in
𝑖
) (𝑘

out
𝑖
+ 𝑘

in
𝑖
− 1) − 2∑𝑗∈𝑁𝑤𝑖𝑗𝑤𝑗𝑖

, (12)

where 𝑤𝑖𝑗 is the entry of connectivity matrix (i.e., weight
of connection from node 𝑗 to node 𝑖), 𝑘in and 𝑘

out are
the number of incoming and outcoming edges of node 𝑖,
respectively, and 𝑑𝑤

𝑖𝑗
is the weighted distance between node

𝑖 and node 𝑗.

2.6.6.Weight. Theweight is themean value of all connections
in the filtered network:

Weight =
∑𝑗,𝑖∈𝑁𝑤𝑗𝑖

𝐿

, (13)

where 𝑤𝑗𝑖 is the entry of weighted connectivity matrix and 𝐿
is the number of filtered connections.

2.7. Statistical Analysis. Aweighted directed adjacencymatrix
was extracted for each subject by applying a threshold able
to maintain the 20% of the stronger connections. As a first
step of analysis, a correlation study (Spearman correlation)
was performed between age and each global index (all the
indices described in the previous section except for the local
index node strength) for the whole population (71 healthy
subjects).Then, two subgroupswere selected for classification
analysis with respect to age: “young” group (20 subjects with
age: 23.8 ± 1.05 years) and “middle-aged” group (20 subjects
with age: 46.05 ± 5.27 years). To characterize the resting-
state connectivity patterns elicited by the two age groups,
a first investigation was performed by means of the local
index. The node strength was computed for each subject and
a Grand Average was performed for each group in order to
identify the brain regions mainly involved in the resting-state
network. Furthermore, to quantify the differences related to
the network architecture of the two groups of subjects, the
global graph indices described above were subjected to the
following steps:

(1) Statistical comparison (two-sample Student’s 𝑡-test)
for a significance level of 5% between indices from
young and middle-aged subjects networks.

(2) Classification of the extracted features by means of
SVM classifier [26] (linear kernel).

Before computing the first step, the hypothesis of normal
distribution was verified applying the Kolmogorov-Smirnov

one-sample test. 𝑡-tests were performed for investigating
which indices were significantly different between the pop-
ulations: this step was important to allow for choosing the
features to be used in the classification process. For the second
step, a Leave One Out approach has been implemented
to perform the classification. In particular, graph indices
extracted from a single subject were used for classifying
him/her in one of the two groups, using the indexes achieved
by other randomly chosen 30 subjects (15 young and 15
middle-aged adults) as training data for SVM classifier.
Each subject was tested singularly for 50 times and each
iteration was characterized by a different combination of
the 30 subjects used for the classifier training. During each
iteration, the algorithm returned score equal to 1 for right
classification and 0 otherwise.The classification performance
was obtained for each subject among the iterations; then,
total, young, and middle-aged performances were computed
by performing the average of the performances among all the
subjects belonging to each group, respectively.

3. Results

All the investigated indices correlate with age: in particular,
Spearman’s correlation coefficient 𝑅 is negative in all cases
except for the path length (Figure 1) indicating that in the
effective resting-state networks the communication (mea-
sured bymeans of efficiencies, path length, and clustering) and
the global strength (measured by means of weight) tend to
decrease with the age.

After the preliminary investigation about the network
properties in relation to the age, we focused on the charac-
terization of effective resting-state networks related to two
age subgroups (young and middle-aged). In Figure 2, the
Grand Average of the node strength index is shown on a
scalp map for each group. Figure 2(a) shows the strength
map for the young individuals: the obtained pattern reveals a
symmetric behavior with respect to the hemispheres and the
parieto-occipital areas aremainly involved in the resting-state
network (regions characterized by stronger connections),
with weaker sources in frontal region. Instead, Figure 2(b)
shows the strength Grand Average obtained for middle-aged
subjects: also, in this case, the frontal and parieto-occipital
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Figure 1: Results of the correlation analysis: (a) Global Efficiency-Age (Spearman’s correlation coefficient 𝑅 = −0.51, 𝑝 < 10−3), (b) Path
Length-Age (Spearman’s correlation coefficient 𝑅 = 0.46, 𝑝 < 10−3), (c) Local Efficiency-Age (Spearman’s correlation coefficient 𝑅 = −0.58,
𝑝 < 10

−3), (d)Clustering-Age (Spearman’s correlation coefficient𝑅 = −0.56,𝑝 < 10−3), and (e)Weight-Age (Spearman’s correlation coefficient
𝑅 = −0.53, 𝑝 < 10−3). Red squares denote subjects with age ranging from 20 to 40 years, whereas blue circles denote subjects with age ranging
from 41 to 65 years.



6 Computational Intelligence and Neuroscience

0.05

0.1

0.15

0.2

0.25

(a)

0.05

0.1

0.15

0.2

0.25

(b)

Figure 2: Grand Average of the node strength index: (a) young group, (b) middle-aged group.The scalp is seen from the above, with the nose
pointing to the upper part of the page. Color bars code for strength value.

areas characterize the pattern. However, this analysis reveals
that the strength values obtained for the young group are
higher than those obtained for the middle-aged group and
that these latter aremore balanced for the frontal and parieto-
occipital areas.

The global indices extracted separately from the two
subgroups were subjected to an independent 𝑡-test for a
significance level of 5%. Bar diagrams reported in Figure 3
show mean values of the indices achieved. In accordance
with the correlation results, the statistical comparison reveals
a significantly higher value of path length and significantly
lower values of the other indices in the middle-aged group
when compared to the young group.

At last, to validate at the single subject level the obtained
results, four different groups of indices were used as features
in the classification analysis (Figure 4(b)). Classification per-
formances reported in Figure 4(a) reveal accuracies higher
than 82% for all the examined cases.

4. Discussion

Studying the resting-state activity and connectivity has
gained more and more importance in the last years, as a
consequence of the definition of the so-called Default Mode
Network in functional MRI studies and, more importantly,
of its alterations in many different pathologies. However, its
neuroelectrical counterpart, though intensively studied, has
not provided stable and repeatable results. One of the most
difficult aspects of the problem is probably the high variability
intrinsic in neuroelectrical signals and their low Signal to
Noise Ratio.

In this paper, we described a methodology able to
combine advanced techniques for the estimation of sta-
ble, repeatable effective connectivity and graph theory for
describing and classifying age-related changes in resting-
state networks. The method we used for the estimation of

brain networks (a modified formulation of Partial Directed
Coherence, [18]) is able to return information about the
existence, the weight, and the direction of the connection
flow between brain regions. In the last years, different
formulations of PDC have been proposed [18, 31–33] with
the purpose to address specific issues related to the original
PDC, like the decrease of PDC from a given channel when
multiple signals are emitted from that channel, the effect of
differences in amplitude (e.g., signals of different nature, like
EEG and EMG, EEG, and LFP), and the interpretability of
connectivity values. In this paper, as the study focuses on the
variations of effective connectivity patterns in relation to the
age, a renormalization of the original PDC, performed with
respect to all connectivity links incoming to each channel,
was applied to signals recorded by means of high density
EEG during rest condition. As a general consideration, when
dealing with signals with different scales (like EEG and EMG,
EEG and LFP, and so on, or signals resulting from recordings
on patients) or when being interested in the interpretation
of the connectivity values, the use of gPDC or renormalized
PDC [31] should be preferred.

The use of a General Linear Kalman Filtering approach
[25] allowed for overcoming the limitation of the number of
channels simultaneously included in a single AMVARmodel,
permitting a full multivariate approach even with a high
number of nodes (61 EEG channels). The advantage of using
a multivariate approach with respect to a pairwise one is
significant, in terms of accuracy of the results and reduction
of false positives, as shown, for instance, in [34]. Its main
limitation is due to the amount of data necessary to provide
a correct estimation of a high dimensional model, with a
large number of parameters. This usually compels to an a
priori selection of regions or channels to be studied, which
is more difficult in a resting-state condition with respect to
task related data. Our GLKF approach, on the contrary, has
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Figure 3: Bar diagrams reporting indices mean value achieved for the two age-related groups. Two-sample 𝑡-test for a significance level of
5% was performed between the two populations: the symbol (∗) highlights a significant difference between the two groups.

shown excellent properties of stability and accuracy evenwith
a high number of channels (up to 100) and an amount of data
reduced to few minutes of recordings [24, 34].

The plethora of information returned by the connectivity
estimation and the complexity of the resulting networks
requires pointing to a graph theoretical approach to extract
and quantify the relevant information about the network
organization. An important aspect of this study is that we
used the directed and weighted formulation of main graph
indices, to exploit the richness of information provided by the
connectivity estimation.

All these methodological steps proved to be a valid pro-
cedure for the description of age-related changes in human

brain at rest. In fact, results of correlation study for the whole
group of 71 subjects indicated that the organization of brain
networks turns to a more random (less structured) condition
with the normal aging. A decrease of connections weight,
efficiencies, and clustering and an increase of the character-
istic path length denote that “middle-aged” networks are less
organized and characterized by lower power with respect to
young age.

The selection of two subgroups of subjects in accordance
with their “young” or “middle” age has revealed differences
in the resting-state EEG pattern. The use of the local node
strength index allowed for identifying the brain regions
mainly involved in the eyes-closed resting-state network.
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Figure 4: (a) Bar diagrams reporting classification accuracy achieved for the total group (40 subjects) and separately for the two age-related
groups (red for 20 young subjects, blue for 20 middle-aged adults). (b) Groups of indices used as features for classification analysis. (c) 3D
scatter plot for Features 1: red circles denote young subjects, whereas blue circles denote middle-aged subjects.

Indeed, in both groups, a prevalent role of frontal and parieto-
occipital areas characterizes the obtained patterns. However,
results showed a weakening of connections strength with the
aging (in agreement with the correlation between the weight
index and age): this behavior is more related to the parieto-
occipital area.

Furthermore, significant differenceswere found bymeans
of global network indices.This result is important not only in
the context of the study of normal ageing, but also in the study
of pathological alterations of the brain intrinsic organization.

In fact, such alterations are often expressed in terms of their
distance from a physiological conditions as represented by
healthy subjects. The use of normative databases of healthy
subjects is then desirable and it is important to understand
how such normative parameters have to be computed and
how homogeneous the population has to be to provide a
correct baseline.

Graph indices studied in this work proved to be good
descriptors for the architecture of human brain networks.
Their use of a combination of such indices as a vector of
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features for the classification analysis allowed for obtaining
high performances: in fact, in all the cases examined, the
accuracy is higher than 82%.

Results of this study show that the proposed approach
allows for evaluating age-related differences in neuroelectri-
cal resting-state activity and for classifying these differences
at single subject level just on the basis of 1-minute recordings
of eyes-closed resting condition. As for the physiological
conclusion, the results of this study suggest that the transition
from young to middle age impacts the topological config-
uration of resting-state networks towards a decrease of the
small-world configuration and to a tendency to the random
configuration (decrease of clustering and increase of path
length). This is in accordance with the literature [3, 10, 11, 14],
adding, at the same time, more details about the nature of
such changes (as conveyed by the weighted, directed indices)
and a stronger reliability of the data.

Future works will focus on an enlargement of the subjects
sample (including the 65–85 years’ range) to provide a
baseline for pathologies typically involving elderly age. The
suggested approach can be easily extended to more specific
topological properties of the resting-state network, in order
to answer questions related to the involvement of specific
circuits or regions of interest in view of the application to
specific clinical conditions, thus providing a versatile tool for
the study of the brain intrinsic organization starting just from
few minutes of noninvasive EEG recordings.
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