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anistic and genetic programming
approach to modeling pilot NBR production:
influence of feed compositions on rubber Mooney
viscosity†

Ge He, ab Tao Luo,*a Yagu Dang,a Li Zhou,a Yiyang Daia and Xu Ji*a

Mooney viscosity is an essential parameter in quality control during the production of nitrile-butadiene

rubber (NBR) by emulsion polymerization. A process model that could help understand the influence of

feed compositions on the Mooney viscosity of NBR products is of vital importance for its intelligent

manufacture. In this work, a process model comprised of a mechanistic model based on emulsion

polymerization kinetics and a data-driven model derived from genetic programming (GP) for Mooney

viscosity is developed to correlate the feed compositions (including impurities) and process conditions to

Mooney viscosity of NBR products. The feed compositions are inputs of the mechanistic model to

generate the number-, weight-averaged molecular weights (Mn, Mw) and branching degree (BRD) of NBR

polymers. With these generated data, the GP model is used to output the optimal correlation for the

Mooney viscosity of NBR. In a pilot NBR production, Mooney viscosity data of NBR predicted by the

process model agree quite well with experimental values. Furthermore, the process model enables the

analyses of the univariate and multivariate influence of feed compositions on NBR Mooney viscosity, and

the variables include the contents of vinyl acetylene and dimer in 1,3-butadiene, as well as the mass flow

rate of the chain transfer agent (CTA) in the process. Based on the results, it is recommended to control

the content of vinyl acetylene in the 1,3-butadiene feed below 14 ppm and the content of dimer below

1100 ppm. This developed process model would help stabilize NBR viscosity for a better control of the

product quality.
1. Introduction

Nitrile butadiene rubber (NBR) is an important raw material for
the production of oil-resistant rubbery articles indispensible for
the automobile, aeronautics and petroleum industries, due to
its excellent oil- and air-proof, heat-resistant physicochemical
properties. In industry, NBR is produced generally by a contin-
uous cold emulsion polymerization process with two types of
monomers: 1,3-butadiene (Bd) and acrylonitrile (ACN). The
product NBR as a polymer has certain averaged molecular
weights and its distribution, and also certain branching degrees
(BRD) of polymer chains. Mooney viscosity (MV) is a standard
parameter for characterizing the elastic properties of rubbery
materials, and can be regarded as a measure of rubber molec-
ular weight. It is not only widely used in the quality control of
non-vulcanized rubbers,1 but also is a vital indicator
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meaningful for the industrial mixing or molding process of
these materials. Therefore, real-time and precise detection of
the product Mooney viscosity in the continuous industrial
production of NBR is paramount for the quality control of
product and its processability thereaer.2 However, in practice
the online detection of Mooney viscosity is nowadays not
possible, while standard characterization procedures with the
Mooney machine in laboratory is labor-intensive and also takes
time,3 a time lag exists. On the other hand, a reasonable alter-
native would be prediction of NBR Mooney viscosity via a reli-
able process model, for which direct correlation with good
accuracy between the feed compositions including impurities
or process conditions and the Mooney viscosity of nal NBR
products is therefore of both scientic and practice importance.
Compared to group contribution, quantitative structure–prop-
erty relationship (QSPR) models etc., the hybridmodel proposed
in this study is more suitable for industrial application, and is
of reference value for the academic research due to the accuracy
and effectiveness of the hybrid model. The developed process
model is expected to facilitate the intelligent manufacture of
NBR, and rubbery materials alike.
RSC Adv., 2021, 11, 817–829 | 817
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There have been continuous efforts from the industry and
academia devoted to modeling the emulsion polymerization
process of NBR, though comprehensive and coherent under-
standing of this complicated process has not yet been reached.
Vega et al.,4,5 Minari et al.6,7 and Penlidis et al.8–13 have reported
mechanistic models for the NBR production, based on emul-
sion polymerization kinetics. These mechanistic models could
output NBR properties like number-averaged (Mn) and weight-
averaged molecular weight (Mw), however excluding Mooney
viscosity. Conventional empirical correlations could relate Mn

andMw of a polymer to its (Mooney) viscosity. Such an approach
that combines a mechanistic model based on polymerization
kinetics and the empirical correlation for Mooney viscosity has
been applied by Zubov et al. in the dynamicmodeling of styrene-
butadienen rubber production, to directly correlate the feed
compositions and process parameters to Mooney viscosity of
rubber products.14 This approach has not yet been employed in
modeling the NBR production. Moreover, it is proved that the
accuracy of conventional Mooney viscosity correlation is not
satisfactory for industrially produced polymers, which is mostly
due to ignorance of chain branching degree of polymers in the
correlation.14,15 For directly investigating the inuence of feed
compositions and process parameters on Mooney viscosity of
NBR, Scott et al.16 performed principal component analysis
(PCA) for the process. Only a few data are necessary for PCA, and
this method is effective in identifying determing parameters for
Mooney viscosity from a large number of parameters. They
found that in stationary industrial production of NBR the
determing parameters of Mooney viscosity include the compo-
sitions of feed and assistant agents, especially the contents of
vinyl acetylene and dimer in the monomer 1,3-butadiene.16

Though the PCA method is simple and convenient, it is not able
to reect the inherent characteristics of the emulsion poly-
merization process, and no process model that predicts NBR
Mooney viscosity has been proposed in the report.16 Meanwhile,
machine learning methods (data models) in the eld of data
science, including extreme learning machine,3,17 Generalized
Regression Neural Networks (GRNN),18 Discounted-
measurement Recursive Partial Least Squares-Gaussian
Process (DRPLS-GP),19 Ensemble Deep Correntropy Kernel
Regression (EDCKR)20, Gaussian Process Regression (GPR)21–23

can also be employed to build the model that correlates feed
composition, process conditions and product properties, for
fast and accurate prediction of Mooney viscosity. The advan-
tages of this type of method include easy access to input data,
less training time, high accuracy of model predictions and
convenience to be applied. These advantages make such
methods the general option for online prediction of Mooney
viscosity (so measurements) and for the control and optimi-
zation of industrial processes. Notably, the variables and
process conditions in the industrial rubber production are non-
linear, distributed, and uctuating over time, and are with time-
lags, these make the process very complex and intertwined.
Data models are strongly dependent on the data set used for the
model construction. For example, the data set might only
represent some stationary conditions, in which some important
variables were stable during the data collection while these
818 | RSC Adv., 2021, 11, 817–829
variables actually shied over even a longer period. However,
incorporating more and more variables and considering even
longer time period are further complicating the model. There-
fore, combing machine learning methods to construct semi-
mechanism models, namely hybrid models, can offer accurate
predictions for diversied feed composition and process
conditions. The model prediction is robust and the results are
interpretable.24–26 We think, for accurately predicting Mooney
viscosity of NBR produced in an industrial process, one has to
combine a mechanistic model and a data-driven model for
Mooney viscosity correlation. The mechanistic model is based
on emulsion polymerization kinetics for simulating the
number-averaged and weight-averaged molecular weight (Mn,
Mw), as well as branching degree (BRD) of polymers since for the
correlation of Mooney viscosity BRD shall also be integrated.

The combination of mechanistic and data-driven models is
well suited for the descriptive however strongly-intertwined
problems in the chemical industry. As reported in open litera-
ture,8–12 mechanistic models based on emulsion polymerization
kinetics have been shown predictive for the NBR production
process. Compared to mechanistic models, data-driven models
can be built easier without knowing the detailed mechanisms of
the process.27,28 So, the branching degree of polymers can be
easily integrated into the correlation between Mooney viscosity
and Mn, Mw of polymers, with a data-driven model. Genetic
Programming (GP) is able to generate non-linear mapping
between inputs and outputs,17,29,30 consequently it is a powerful
tool to deal with the Mooney viscosity correlation of non-linear
characteristics. GP has been applied successfully in the eld of
chemical engineering and materials science,31 like building
stationary32,33 and dynamic34,35 process models, optimization of
distillation sequences,36 predicting properties of inorganic
materials,37–42 and building vapor–liquid equilibrium models.43

GP could search for the optimal formula and parameters
simultaneously, resulting in compact and explainable repre-
sentations,44 which are in turn ideal for the integration with
mechanistic models.43 For the direct prediction of NBR Mooney
viscosity based on feed compositions and process parameters,
we propose the approach to combing sequentially a mechanistic
model and a data-driven model derived from GP. First, the
mechanistic model is used for describing the emulsion poly-
merization process of NBR, and then the data-drivenmodel is to
quantify the inuence of Mn, Mw and BRD of NBR polymers on
Mooney viscosity.15 Finally, the two models are integrated for
the direct prediction of viscosity.

In this work, the continuous emulsion polymerization of
NBR is simulated via a mechanistic model based on polymeri-
zation kinetics, with information of feed compositions, process
parameters and experimental data of products from a pilot NBR
production process. The mechanistic model is stationary and is
used for analyzing the inuence of variations in feed composi-
tions and process parameters on the properties of nal NBR
products, including the molecular weight and its distribution,
branching degree of polymers, and the contents of acrylonitrile
in NBR polymers, as illustrated by step A1 in Fig. 1. Then,
a Mooney viscosity correlation is generated via GP, and also
validated with experimental data of Mn, Mw and BRD of NBR
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 A flowsheet illustrating the construction of the process model. A1 is the first step representating the prediction of nitrile-butadiene rubber
(NBR) characteristics (4) from feed compositions and process parameters via a mechanistic model based upon emulsion polymerization kinetics.
4 stands for number-averaged (Mn), or weight-averaged molecular weight (Mw), or branching degree of polymer chains (BRD). In the function 4

¼ f1(T, P, Q,.), T, P, Q stands for temperature, pressure and mass flow rate of a raw material, respectively. A2 is the second step in which the
Mooney viscosity of NBR is correlated to the NBR polymer characteristics via genetic programming (GP). The correlation function of Mooney
viscosity (MV) is represented as MV¼ f2(Mn,Mw, BRD). Step A is the sequential combination of Step A1 and A2, and it builds the processmodel that
directly relates feed compositions, process parameters to the NBR Mooney viscosity, briefly expressed as MV ¼ F(T, P, Q,.).
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polymers, as shown by step A2 in Fig. 1. Finally, the mechanistic
model for emulsion polymerization and the data-driven model
for Mooney viscosity are combined to build the process model
connecting feed compositions and process parameters to NBR
Mooney viscosity (step A in Fig. 1). With the developed process
model, univariate and multivariate analyses are possible for
quantitatively studying the inuence of variations in the feed
compositions and process parameters on the Mooney viscosity
of NBR products. The specic variables include vinyl acetylene
and dimer contents in the monomer 1,3-butadiene, and the
ow rate of chain transfer agent (CTA, functions as the molec-
ular weight mediator) in the middle of the reactor train (Fig. 2).
This work is expected to support the intelligent manufacture of
NBR in industry.
2. Mechanistic NBR polymerization
model

The mechanistic model is based on emulsion polymerization
kinetics with data from the NBR production line with an
annual capacity of 50 kt located at Lanzhou Petro of Petro-
China Company. The relevant polymerization process is
Fig. 2 The flow scheme of emulsion polymerization process for NBR pr
reactor of a train of seven reactors, where the polymerization takes place
the flow scheme of the chain transfer agent and its feeding locations in

© 2021 The Author(s). Published by the Royal Society of Chemistry
schematically shown in Fig. 2. Seven reactors in a train are
used for the continuous cold emulsion polymerization of 1,3-
butadiene (Bd) and acrylonitrile (ACN) at 5 �C, and the volume
of each reactor is identically 40.88 m3. The pressure within the
rst ve reactors (R-1 to R-5 in Fig. 2) is 0.33 MPa, and it is
0.32 MPa in the last two. The monomers, assistant agents
(including the CTA, surfactants and dispersion agents) and
water at ambient temperature and pressure are mixed in
a premixer, and then introduced into the rst reactor. Initiator
and activator are introduced separately into the rst reactor.
The stationary rating data of feed compositions for NBR
production as shown in Table 1. The CTA is introduced,
besides into the rst reactor, also into the 4th till the 7th ones
respectively. The total amount of CTA introduced into the 4th

till the 7th reactors is dened as the intermediate CTA amount.
The nal conversion of monomers (at the outlet of the 7th

reactor) is controlled to be below 75%, for a better control of
the latex product quality. Analysis data of key additives,
including sodium dodecylbenzene sulfonate, b-naph-
thalenesulfonic acid-formaldehyde condensate, diisopro-
pylbenzene hydroperoxide, tert-dodecyl mercaptan and
formaldehyde condensates are shown in Part 1 of ESI.†
oduction. Monomers and assistant agents are introduced into the first
. NBR as products are bled from the 7th reactor. The orange lines show
the process: inlets of the 1st, 4th till 7th reactors in the train.

RSC Adv., 2021, 11, 817–829 | 819



Table 1 The stationary rating data of feed compositions for NBR production. (unit: kg h�1)

# Feed Value Function

1 1,3-Butadiene 3244 Monomer
2 Acrylonitrile 1457
3 b-Naphthalenesulfonic acid–formaldehyde

condensate
93.95 Liquid soap

4 Sodium dodecylbenzene sulfonate 11.75
5 Diisopropylbenzene hydroperoxide 0.64 Activator
6 Sodium formaldehyde sulfoxylate 1.27
7 EDTA–FeNa 0.21
8 EDTA–tetrasodium salt 1.33
9 Hydroxylamine sulphate 2.35 Terminator
10 Isopropylhydroxylamine oxalate 4.70
11 Phosphite ester 22.85 Anti-aging agent
12 Phenol 11.42
13 tert-Dodecyl mercaptan 4.78 Chain transfer agent and deoxidant
14 Sodium hyposulfate 0.42
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2.1. General assumptions and polymerization kinetics

In modeling the NBR emulsion polymerization process, general
simplifying assumptions as reported in literature6,10,14 are also
adopted. Since the nal monomer conversion is controlled to be
below 75%, only stages I and II of the Smith–Ewart theory for
emulsion polymerization are considered. The polymerization
reactions are conned in the polymer particles. The number of
polymer particles per unit volume of water (Np) is modeled via
correlation to the initiator concentration (for simplicity
excluding the surfactant concentration), as suggested by the
Smith–Ewart theory.45 The average number of radicals per
polymer particle (�n) is simulated via the mass balance by
considering initiator decomposition, radical desorption and
termination, similar to the procedure describe in literature.10

Each reactor in the train is treated as an isothermal well stirred
tank reactor. Model equations, forming a system of differential-
algebraic equations (DAEs), were solved simultaneously for all
reactors of the cascade using Aspen Polymer Plus™.

The mechanism of NBR emulsion polymerization is free
radical polymerization, and important elementary reactions
include the propagation reactions, radical transfer reactions,
radical termination reactions. Those reactions considered in
our modeling are sorted and listed in Appendix A (Table 5). It is
necessary to note that the involvement of vinyl acetylene and Bd
dimers are also considered in the elementary reactions. The
experimentally measured contents of Bd dimers and vinyl
acetylene in the feed are chosen as the input values of these two
impurities during simulation. Therefore, the model is capable
of capturing the inuence of these two impurities in the feed.
The reaction kinetics parameters, including reaction rate
constants (ki) and activation energies (Ea), reect the inuence
of stoichiometry, temperature and pressure on the reaction
rates of elementary reactions and consequently on the average
molecular weight of NBR products. Therefore, the accuracy and
reliability of the predicted average NBRmolecular weight via the
mechanistic model relies on training these polymerization
kinetics parameters. To this end, an array of 29 sets of data from
820 | RSC Adv., 2021, 11, 817–829
the pilot NBR production process are used to progressively
regress the kinetics parameters of each elementary reaction.
The data include the feed compositions and process parameters
(intermediate CTA amount), as well as experimental results of
Mn, Mw, BRD and ACN contents in the NBR copolymers. The
data base for the starting values of these kinetics parameters is
as summarized in literature;10 for those missing, an arbitrary
value of the same order of magnitude as similar elementary
reactions is assumed. When the object function Z expressing
the difference between the modeled and experimental values of
Mn,Mw, BRD and ACN contents are at minimal, the regression is
terminated. So, the objective function Z is dened as:

Z ¼ (Msim
n � Mexp

n )2 + (Msim
w � Mexp

w )2 + (BRDsim � BRDexp)2

+ (xsimACN � xexpACN)
2 (1)

The regressed values of the kinetics parameters are also lis-
ted in Appendix A (Table 5).
2.2. Molecular weight and branching degree of NBR
polymers

The aim of the mechanistic model is to output Mn, Mw, BRD of
NBR polymers. These parameters are simulated via Aspen
Polymer Plus™ package, with important formula shown
below.10 The tri- and tetra-functional branching frequencies of
NBR polymers (BN3; BN4) have to be computed prior to the
calculation of the average branching degree BRD.

Mn ¼ Meff

VpQ1

VpQ0

(2)

Mw ¼ Meff

VpQ2

VpQ1

(3)

BN3 ¼ VpQ0BN3

VpQ0

(4)
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Parity plots between experimental Mooeny viscosity values and those predicted by the linear regression model. (a) The training set
contains 34 groups of experimental data. (b) The test set contains 24 groups of experimental data. The ordinate indicates the predicted values
and the abscissa the experimental ones. The dashed diagonal line stands for parity.
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BN4 ¼ VpQ0BN4

VpQ0

(5)

BRD ¼ ðBN3 þ BN4Þ=Mw (6)

where Meff stands for the effective molecular weight of mono-
mers; VpQ0, VpQ1, VpQ2 are the rst three moments of the
molecular weight distribution (MWD) dened on a mole basis
and are states of the model; Vp is the volume of the polymer
particle; VpQ0BN3, VpQ0BN4 are the zeroth moments of the tri-
and tetra-functional branching distributions.10
3. The predictive model for Mooney
viscosity

The data-driven model in this work is for correlating the Mn,
Mw, BRD of NBR to its Mooney viscosity, with the experimental
data of NBR products from the last reactor in the train (Fig. 2).
Based on the fundamental work of Kramer and co-workers46

correlated log Mn, log Mw of styrene-butadiene rubber to its
log MV by tting the experimental data, which led to
Table 2 The training and test data set used for establishing Mooney
viscosity model

Input variables

Training set Test set

min max min max

Mn (Da) 59 409 10 7500 69 529 101 773
Mw (Da) 178 856 503 023 18 8050 364 558
BRD (�106) 0.518902 3.449261 1.622368 3.446222

© 2021 The Author(s). Published by the Royal Society of Chemistry
MV ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MnMw

p þ b. In this correlation, a and b are constants,
and the coefficient of determination in the linear regression (R2)
is 0.94.46 Later on, this correlation has been widely adopted in
the study of NBR. Our analyses with the experimental data of
NBR in this work, however, show that this correlation is rather
poor and the R2 of the regression is only 0.763 (cf. Fig. S1 in
ESI†). As a result, it is necessary to establish an optimal corre-
lation with the experimental data.

For establishing an optimal correlation for NBR Mooney
viscosity, we employ two empirical modeling techniques: GP
and linear regression model, with the latter as a benchmark. A
total of 58 groups of experimental data are randomly put into
a training set and a test set, with a size ratio of 6 : 4. This
means that 34 groups of data are for training the model, while
the rest 24 groups are used to assess the generalization of the
model. The experimental data includeMn,Mw, BRD of NBR, as
briey shown in Table 2. Either with the training set or with
the test set, the Mooney viscosity values predicted by the
model are compared to corresponding experimental ones, and
mean square errors (MSE), mean absolute errors (MAE) and
coefficients of determination (R2) are calculated.
Table 3 Fitted parameters of the linear regression model for Mooney
viscosity

Constants Parameters Fitted value

A 0.3577
B1 M*

n �0.23055
B2 M*

w 0.472269
B3 BRD* �0.096426

RSC Adv., 2021, 11, 817–829 | 821
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3.1. The linear regression model

The linear regression model for Mooney viscosity is expressed
as:

y* ¼ Aþ
X

i¼1

Bix
*
i (7)

where A, Bi are model parameters, y*is log MV as the model
output, x*i the logarithm of inputs. The model has 3 variables as
inputs (N ¼ 3), namely Mn, Mw, BRD of NBR. For simplicity,
numerical values 106 times the original ones of BRD are used in
the calculation. Table 3 lists the tted parameters of the linear
regression model for viscosity.

According to these tted model parameters, the correlation
for Mooney viscosity can be written as follows:

MV ¼ 2.279Mn
�0.23055Mw

0.472269BRD�0.096426 (8)

Fig. 3 shows the comparison between experimental and
tted values with data in the training and test sets. For the
training set (Fig. 3a), MSE ¼ 0.86, MAE ¼ 0.70, R2 ¼ 0.965; and
Fig. 4 Illustration of the GP algorithm used for correlating NBR polyme

822 | RSC Adv., 2021, 11, 817–829
for the test set (Fig. 3b), MSE ¼ 1.44, MAE ¼ 0.89, R2 ¼ 0.937. It
is therefore clear that the accuracy of the linear regression
model for the Mooney viscosity prediction requires further
improvement.

3.2. The genetic programming model

GP is a relatively new development in the eld of evolutionary
computation, it extends traditional genetic algorithms to symbolic
regression.47 Symbolic regression is one type of machine learning
techniques that aims at searching for the optimal mathematic
formula describing a correlation. Fig. 4 shows the algorithm of GP,
it starts by building a population of naive random formulas to
represent a relationship between known independent variables
and their dependent variable (targets) in order to predict new data.
Each successive generation of programs is then evolved from the
one that came before it by selecting the ttest individuals from the
population to undergo genetic operations. Such a characteristic of
GP makes it well suited for identifying the optimal mathematic
formulas describing the relationship betweenMn,Mw, BRD of NBR
and its Mooney viscosity.
r characteristics to its Mooney viscosity.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 The final conversion ofmonomers, experimentally measured or
simulated via the mechanistic model, for the continuous emulsion
polymerization process of NBR. The experimental data are measure-
ment results of samples collected periodically over 29 days in
sequence.

Table 4 Parametes for genetic programming

Parameters Value

Dataset Experimental data
Function library +, �, *, /, ^, exp, log
Fitness evaluation function Mean absolute error
Population size 1000
Tournament size 20
Maximum number of generations 275
Probability of crossover 0.7
Probability of performing subtree mutation 0.01
Probability of performing hoist mutation 0.05
Probability of performing point mutation 0.01
Parsimony coefficient 0.001
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In this work, we use the toolkit gplearn in Python, this toolkit
extends the machine learning library of scikit-learn and is able
to excute GP via symbolic regression. The parameters for the GP
algorithm are listed in Table 4. The data sets, function library
and the tness function are problem-specic. Here the data sets
are the collection of experimental data characterizing each
grade of the NBR products, including the Mn, Mw, BRD and
corresponding Mooney viscosity values of NBR. The selection of
mathematic operators in the function library should be as
simple as possible, starting from basic operators (+, �, *, /) and
progressively evolving with square root, exponential, loga-
rithmic and power functions. The nal set of math operators is
xed by evaluation of the accuracy of the model training results.
The tness function for GP is the mean absolute error of the
tting results for Mooney viscosity. The population size,
maximum number of generations, probability of crossover and
mutation, termination conditions shall also be dened for GP.
The population size is the search domain, can be obtained aer
Fig. 5 Parity plots between experimental Mooeny viscosity values and th
of experimental data. (b) The test set contains 24 groups of experimenta
experimental ones. The dashed diagonal line stands for parity.

© 2021 The Author(s). Published by the Royal Society of Chemistry
multiple runs of the program. The maximum number of
generations is the iteration counts, which determines whether
the population could evolve to the optimal state. The bigger the
population size and the larger the maximum number of
generations, the easier to acquire the optimal solution to the
problem, however it takes longer for the program to run. The
convergence rate of the calculation lies on the probability of
mutation. In the GP model to be developed here, it is set at 0.7
to protect the optimal individuals, and such a mutation prob-
ability is expected to be efficient and also a balance between the
mutation frequencies and the protection of optimal individuals.
ose predicted by the GP model. (a) The training set contains 34 groups
l data. The ordinate indicates the predicted values and the abscissa the

RSC Adv., 2021, 11, 817–829 | 823
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According to the preferred criteria of accuracy, simplicity,
transparence for a good model, our GP yields such an optimal
correlation for NBR Mooney viscosity:

MV ¼ 67:724� 25:76
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðMnÞ þ BRD

p
þ 0:244Mw

0:4343

þ 0:021BRD5:1695462 (9)

The parity plots showing the comparison between experimental
and simulated values are shown in Fig. 5. For the results of the
training data set (Fig. 5a), MSE ¼ 0.33, MAE ¼ 0.45, R2 ¼ 0.986;
while for test data set (Fig. 5b),MSE¼ 0.29,MAE¼ 0.38,R2¼ 0.987.
4. Results and discussions
4.1. The accuracy of mechanistic model for NBR emulsion
polymerization

To build the mechanistic model based on emulsion polymeri-
zation kinetics, experimental data of the polymer characteristics
and the monomer conversion rates are necessary to optimize
the reaction rate constants (k0) and activation energies (Ea) of
each elementary reactions as listed in Appendix A (Table 5). In
Fig. 7 The characteristics of NBR products, experimentally measured or s
contents in NBR copolymers. The experimental data are measurement r

824 | RSC Adv., 2021, 11, 817–829
a pilot NBR production line, the feed compositions, process
parameters and characteristics of NBR polymers in some reac-
tors (mostly the 7th reactor, as shown in Fig. 2) were monitored
continuously for 29 days by periodic sampling and subsequent
analyses. Experimental data thus collected are used for the
model optimization. The experimentally analyzed characteris-
tics of NBR polymers includeMn, polydispersity index (PDI,Mw/
Mn), BRD and ACN contents in the copolymers. For the calcu-
lation of BRD, the Mark–Houwink correlation as reported in
literature48 is used. The radii of gyration (Rg) for NBR polymers
of different molecular weights, necessary for the calculation, are
directly obtained by GPC-MALLS-Viscometer (gel permeation
chromatography – multi angles laser light scattering - visco-
meter).The average branching degrees of NBR polymers, BRD,
are calculated with experimental data as reported.49 The tech-
nical details of GPC-MALLS-Viscometer are shown in Part 4 of
ESI.† Fig. 6 and 7 show the simulated and experimental values
of nal monomer conversion rate, Mn, PDI, BRD and ACN
contents in NBR copolymers, and the MSEs of them are 1.66,
0.79 � 104, 0.15, 0.33 � 10�6 and 0.41, respectively. The
comparison demonstrates that the developed mechanistic
imulated via themechanisticmodel: (a)Mn, (b) PDI, (c) BRD and (d) ACN
esults of samples collected periodically over 29 days in sequence.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Comparison between the experimental Mooeny viscosity
values of NBR over 15 days, and the predicted values from two process
models: one is the combination of mechanistic model with GP-
derived Mooney viscosity correlation, in the other one the GP-derived
correlation is replaced by the correlation resulted from linear regres-
sion. The excellent predictive capability of the developed process
model is demonstrated.
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model based on emulsion polymerization kinetics is accurate
and reliable.
4.2. The accuracy of the process model for predicting
Mooney viscosity

The combination of the mechanistic model based on NBR
emulsion polymerization kinetics (Section 4.1) and the optimal
viscosity correlations generated via either linear regression or
GP (Section 3.2) has established the process model for pre-
dicting NBR Mooney viscosity. The process model is then used
to predict NBR viscosity directly from a new set of feed
compositions, and the comparison between predicted and
experimentally measured viscosity values are shown in Fig. 8.
The results validate the excellent predictive capability of the
process model. The simulation results agree notably better with
the experimental data when the GP-derived viscosity correlation
(eqn (9)) is used, as compared to when the correlation derived
from linear regression (eqn (8)) and Kramer correlation is used.
The MSE values for the GP-derived, linear regression-derived
models and Kramer correlation are 4.64, 6.85 and 8.63,
respectively; and the MAE values are 1.40, 1.78 and 2.38,
respectively. These results prove two things: (a) the parameter,
average branching degree of NBR polymers (BRD), shall be
incorporated into the viscosity correlation for better accuracy of
the process model. (b) GP, compared to traditional linear
regression method, is able to further improve the accuracy of
the viscosity prediction via the process model.

Minimization of the variation in the product Mooney viscosity
during the production of NBR with a specic grade is a primary
aim for the process control. As shown in Fig. 8, aer 10 days the
product viscosity has two undesirable large jumps, which is due
to observed large uctuations of the vinyl acetylene contents in
the feed ofmonomer Bd. The developed processmodel is capable
© 2021 The Author(s). Published by the Royal Society of Chemistry
of capturing this important feature, which is key to under-
standing the process and to optimizing the operation scenarios
for the stabilization of product viscosity. To sum up, the predic-
tive process model for NBR Mooney viscosity is proved to be able
to quantify directly the inuence of feed compositions on the
nal product viscosity, and the prediction accuracy is excellent
towards optimal control of the product quality.
4.3. The inuence of feed impurities on NBR Mooney
viscosity

Two impurities, vinyl acetylene and Bd dimers, in the monomer
feed Bd for the emulsion polymerization have inuence on the
characteristics of polymerized NBR polymers, consequently also
on their Mooney viscosity. Vinyl acetylene would promote cross-
linking reactions, this results in more branched polymers of
larger molecular weight, and nally larger NBR Mooney
viscosity. Bd dimers could retard the polymerization and
consume many radicals from the initiator or bound to growing
chains, which lowers the molecular weight and decreases the
Mooney viscosity.16 In building the process model as described
above, the integration of the mechanistic model based on
emulsion polymerization kinetics makes it possible to include
the effect of such two impurities on the polymerization process,
and then to predict the Mooney viscosity of NBR products.
Besides, the added amount (ow rate) of chain transfer agent,
functioning as a molecular weight mediator, is the main means
to articial control the product viscosity. Thus, the developed
process model is employed to analyze the univariate and
multivariate inuence of feed compositions on NBR Mooney
viscosity, and the variables include the contents of vinyl acety-
lene and dimer in Bd, as well as the intermediate mass ow rate
of CTA in the process (Fig. 2).

4.3.1. Univariate sensitivity analyses of Mooney viscosity.
The univariate sensitivity analyses are based on the developed
process model for analyzing the inuence of variables include
vinyl acetylene contents, Bd dimer contents and the interme-
diate mass ow rate of CTA. As shown in Fig. 9(a), there is
positive correlation between the vinyl acetylene content and
NBR Mooney viscosity. When its content is larger than 14 ppm,
the correlation deviates signicantly from linear relationship.
From the viewpoint of stabilizing NBR viscosity, it is suggested
to keep the vinyl acetylene content in Bd under 14 ppm. Fig. 9(b)
show negative correlation between the Bd dimer content and
viscosity. Under the conditions that the dimer content is below
1100 ppm, the relationship is linear; above such a critical value,
the relationship is obviously non-linear. Therefore, 1100 pm is
the suggested threshold value for the Bd dimer content in the
feed. As shown in Fig. 9(c), the relationship between the inter-
mediate mass ow rate of CTA and the NBR Mooney viscosity is
ideally linear, and a 1 kg h�1 increase of CTA ow rate results
a decrease of 2.3 in product viscosity. The predictive process
model developed in this work enables quantitative analyses of
the inuence of such three variables on the product viscosity,
which would serve as a numerical platform for controlling the
NBR product quality.
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Fig. 10 The model-aided optimization of operation scenarios for a constant NBR Mooney viscosity of 59.1. (a) The response surface of NBR
Mooney viscosity, the independent variables include the vinyl acetylene content, the Bd dimer content and the intermediate CTA. The color
indicates the Bd dimer content. (b) A contour map for viscosity. The color means when the Bd dimer content is almost constant at a certain value,
the domain for the other parameters that leads to a constant NBR Mooney viscosity of 59.1.

Fig. 9 The univariate analyses of the impurities in polymerization monomer Bd, (a) vinyl acetylene, (b) Bd dimer, and (c) the intermediate mass
flow rate of CTA in the process on the Mooney viscosity of final NBR products. (Note: the variation in Mooney viscosity is the difference between
those when the impurity contents or the intermediate CTA flow rate have changed and their original values.)
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4.3.2. Multivariate sensitivity analyses of Mooney viscosity.
As a successor of the previous section, and considering the real
situation in NBR production, we also perform multivariate
analyses with the help of the developed process model to inves-
tigate the interwined inuence of the above 3 parameters on NBR
Mooney viscosity. The collection of points representing the
various conditions where NBR product of the targeted Mooney
viscosity at 59.1 is plotted in Fig. 10(a). The various conditions are
explicitly the vinyl acetylene content, the Bd dimer content and
the intermediate mass ow rate of CTA. The collection of points
in the coordinate space is the response surface of viscosity, which
might also be called iso-viscosity plane. It is necessary to note
that in selecting the data points generated via the process model
for a target Mooney viscosity of 59.1, we actually use the data
points that represent conditions leading to Mooney viscosity in
the range of 58.6–59.6. When it is enough to only consider the
inuence of two parameters on NBR Mooney viscosity, for
example the uctuation of Bd dimer content in the feed is
negligible, a contour map for viscosity as shown in Fig. 10(b) can
be used. In Fig. 10, the color indicates the vinyl acetylene content.
With the help of such response surface or contour map, it is
straightforward to know the optimal operation scenarios for
stabilizing NBR Mooney viscosity. As an example, in the contin-
uous production process of NBR, on-line detection of the vinyl
acetylene content and the Bd dimer content in the feed would
allow swi prediction, via the developed process model, of the
Mooney viscosity of NBR products to be produced. By altering the
intermediate mass ow rate of CTA accordingly, it is convenient
to stabilize the Mooney viscosity of NBR products that actually
produced. This would facilitate the process control and optimize
the NBR product quality.

Therefore, we suggest that the optimal methodology to build
models for the prediction of NBR rubber Mooney viscosity is the
combination of mechanism model for the emulsion polymeri-
zation process and the data model for the correlation of NBR
rubber Mooney viscosity. This approach is not only able to
realize the direct prediction of NBR rubber Mooney viscosity
from the feed composition and process conditions, but is also
able to reveal the polymerization mechanism for a better
understanding of the emulsion polymerization process. This
approach is suitable for the accurate prediction of product
properties with diversied feeds and process conditions.

The mathematic model for the NBR production process
established in this work is capable of directly relating the feed
compositions and process parameters to the Mooney viscosity of
nal products. If the on-line detection of the vinyl acetylene
content, the Bd dimer content in the feed and the CTA content
via, e.g. infra-red spectrometry is available, the establishedmodel
can be employed to realize on-line detection and simultaneous
optimization, and advanced process control of the industrial
emulsion polymerization process for NBR production, towards
the realm of “intelligent manufacture”.

The hybrid model proposed in this work can be further
improved on two aspects: rstly, more experimental Mooney
viscosity data with wider range could be collected for the
modeling with GP; secondly, the mechanism model about the
© 2021 The Author(s). Published by the Royal Society of Chemistry
emulsion polymerization process can be enriched with more
details, and this is the focus of future research and how to inte-
grate data science algorithms into the establishment of more
detailed mechanism models is also an interesting direction.
5. Conclusions

A process model comprised of a mechanistic model and a data-
driven model in sequence is built to predict the Mooney
viscosity of nitrile-butadiene rubber (NBR) directly from the
feed compositions and process parameters of the emulsion
polymerization process. The mechanistic model is based on
emulsion polymerization kinetics, and is well suited to describe
the polymerization process. While the data-driven model for
correlating the molecular weight and branching degree of
polymers is derived from genetic programming (GP). The
proposed process model in this work serves to help stabilize the
viscosity of NBR products, and supports its “intelligent
manufacture”.

In building the data-driven model for the correlation
between number-, weight-averaged molecular weight (Mn, Mw)
of NBR polymers and their Mooney viscosity, GP is chosen to
integrate the polymer branching degree into the model. Under
such conditions, the predicted viscosity results provided by the
data-driven model match better with experimental values, as
compared to the situations when the polymer branching degree
is not included in the model, or when only simple power
functions are used to correlate the Mooney viscosity. With the
developed process model, it is possible to analyze the inuence
of three dominant parameters on the Mn, Mw of NBR polymers,
and consequently on theMooney viscosity of NBR products. The
three dominant parameters are the contents of vinyl acetylene
and dimers in the monomer 1,3-butadiene, and the mass ow
rate of chain transfer agent in the middle of the process. The
simulated results show that NBR Mooney viscosity is positively
and negatively proportional to the contents of vinyl acetylene
and dimers, respectively, and the relationship deviates obvi-
ously from linearity when the content in both cases is above
a threshold value. To stabilize the product Mooney viscosity and
improve its quality, it is suggested to keep the contents of vinyl
acetylene and dimer in the feed below 14 ppm and 1100 ppm,
respectively.

The proposed mathematic model in this work correlates
directly the feed compositions, process parameters to the
Mooney viscosity of NBR products. If combined with on-line
detection of the vinyl acetylene and dimer contents of the
feed, it can be envisaged that optimization and advanced
control of the process is readily achievable, which would nally
lead to the realm of intelligent manufacture featuring efficient
conversion of materials and energy.
Appendix A. Kinetics parameters of
elementary reactions
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Table 5 Reaction kinetics equations and fitted parameters

Code Reactions Mechanism Pre-exp Act-energy kJ mol�1

1 Pn[An] + An / Pn+1[An] Propagation 6.9 � 108 16.245
2 Pn[An] + Bd / Pn+1[Bd] 3.9 � 109 16.162
3 Pn[An] + C4H4 / Pn+1[C4H4] 6.87 � 108 37.723
4 Pn[Bd] + An / Pn+1[An] 1.31 � 109 37.723
5 Pn[Bd] + Bd / Pn+1[Bd] 6.87 � 108 37.723
6 Pn[Bd] + C4H4 / Pn+1[C4H4] 6.87 � 108 37.723
7 Pn[C4H4] + An / Pn+1[An] 6.87 � 108 37.723
8 Pn[C4H4] + Bd / Pn+1[Bd] 6.87 � 108 37.723
9 Pn[C4H4] + C4H4 / Pn+1[C4H4] 6.87 � 108 37.723
10 Pn[An] + An / Dn + P1[An] Transfer to monomer 10 800 28.799
11 Pn [An]+Bd / Dn + P1[Bd] 10 800 28.799
12 Pn [An]+ C4H4 / Dn + P1[C4H4] 15 500 28.799
13 Pn [Bd]+An / Dn + P1[An] 10 800 28.799
14 Pn[Bd] + Bd / Dn + P1[Bd] 10 800 28.799
15 Pn[Bd] + C4H4 / Dn + P1[C4H4] 15 500 28.799
16 Pn[C4H4] + An / Dn + P1[An] 16 000 28.799
17 Pn[C4H4] + Bd / Dn + P1[Bd] 15 000 28.799
18 Pn[C4H4] + C4H4 / Dn + P1[C4H4] 15 000 28.799
19 Pn[An] + CH–B / Dn + R* Transfer to CTA 135 000 16.744
20 Pn[Bd] + CH–B / Dn + R* 90 000 16.744
21 Pn[C4H4] + CH–B / Dn + R* 90 000 16.744
22 Pn[An] + Pm[An] / Dn+m Termination 460 000 10.465
23 Pn[An] + Pm[Bd] / Dn+m 460 000 10.465
24 Pn[An] + Pm[C4H4] / Dn+m 460 000 10.465
25 Pn[Bd] + Pm[An] / Dn+m 460 000 10.465
26 Pn[Bd] + Pm[Bd] / Dn+m 460 000 10.465
27 Pn[Bd] + Pm[C4H4] / Dn+m 460 000 10.465
28 Pn[C4H4] + Pm[An] / Dn+m 460 000 10.465
29 Pn[C4H4] + Pm[Bd] / Dn+m 460 000 10.465
30 Pn[C4H4] + Pm[C4H4] / Dn+m 460 000 10.465
31 Ca–b + Ca–d[re.] / nR* + Ca–d[ox.] + [by-products] Oxidation 14 16.744
32 Ca–c + Ca–d[ox.] / Ca–d(re.) + [by-products] Reduction 1000 0
33 Pn[Bd] + Dm / Dn + Pm[An] Transfer to polymer 800 000 37.757
34 Pn[An] + Dm / Dn + Pm[Bd] 800 000 37.757
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Nomenclature
ACN
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Acrylonitrile

Bd
 1,3-Butadiene

MV
 Mooney viscosity

xACN
 Cumulative copolymer composition of

acrylonitrile/content of -copolymerized
acrylonitrile
DP
 Degree of polymerization

Mn, Mw
 Cumulative number- and weight-averaged

molecular weight (g mol�1)

MWD
 Molecular weight distribution

PDI
 Poly-dispersity index (Mw/Mn)

Meff
 The effective monomer molecular weight

VpQ0, VpQ1,
VpQ2
The rst three moments of the molecular
weight distribution (MWD) dened on a mole
basis and are states of the model
Vp
 The polymer particle volume

VpQ0BN3,
VpQ0BN4
Zeroth moments of the tri- and tetra-functional
branching distributions
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