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The vaginal microbiome is an intricate and dynamic microecosystem that constantly
undergoes fluctuations during the female menstrual cycle and the woman’s entire life. A
healthy vaginal microbiome is dominated by Lactobacillus which produce various
antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp
decline in the total number of Lactobacillus and a corresponding marked increase in the
concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal
microbiota among women of reproductive age globally. BV is confirmed to be associated
with adverse gynecologic and obstetric outcomes, such as sexually transmitted
infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the
most common microorganism identified from BV. It is the predominant microbe in
polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes
from adverse host environments. Many efforts have been made to increase our
understanding of the vaginal microbiome in health and BV. Thus, improved novel and
accurate diagnosis and therapeutic strategies for BV have been developed. This review
covers the features of vaginal microbiome, BV, BV-associated diseases, and various
strategies of diagnosis and treatment of BV, with an emphasis on recent
research progresses.
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INTRODUCTION

The human body is a holobiont consisting of the host and multispecies microbes, and the
interdependency among them has been progressively enhanced in the approximately half a
billion years of human–microbial coevolution (Maynard et al., 2012; Lynch and Pedersen, 2016).
However, the previous knowledge of microbiota in holobionts is shaped by the researches where
culture-dependent methods are used to cultivate species. With the advent of new technologies,
scientists reveal that biodiversity is far beyond the microbial cells cultivated with culture-dependent
methods. In particular, high-throughput sequencing approach provides further understanding of
the spectrum of microbial community structure. Scientists have utilized omics approaches,
including metabolomics, glycomics, metaproteomics, metatranscriptomics, and metagenomics, to
verify that within a habitat, microorganisms exist in dynamic, interactive, and intricate microbial
communities. The oral cavity and intestinal tract have been the long-term focus of a large number of
researches on the microbial communities of human bodies. Although vaginal health is influentially
significant to human reproduction and public health, it has attracted less attention. In recent years,
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increasing emphasis has been put on the female health,
specifically in relation to vaginal microbiome (Ravel et al.,
2011; Fettweis et al., 2014). The vagina harbors a huge
microecosystem containing billions of microbes. A systematic
detection of the female reproductive tract microbial biomass was
conducted by 16S rRNA gene sequencing. Data from 110 persons
of reproductive age revealed that the vagina contains 1010–1011

bacteria (Chen et al., 2017).
In the ecosystem, a homeostatic and mutualistic relationship

exists between the microbiota and its human host. The host
provides a humid, nutritious, and warm habitat for the microbes,
whereas the resident microbiota produces antimicrobial and
anti-inflammatory factors. Thus, the first line of defense
against nonindigenous microorganisms is established.
Nevertheless, this balance can be broken by internal and/or
external factors. For internal factors, such as hormonal status
(Pekmezovic et al., 2019), age (Uchihashi et al., 2015), and
immune system (Ma et al., 2012), the alteration of the host
environment impairs its ability to control opportunistic
pathogens contained in the resident microbes that could
invade the human body and cause illness. External
interferences, such as antibiotics (Dethlefsen et al., 2008),
infections (Lloyd-Price et al., 2019), and environmental
microbial exposure (Shao et al., 2019), influence the microbiota
within the habitat and are potential risk factors for diseases. The
variations of these internal and/or external factors lead to the
breakdown of a balanced ecosystem, also known as dysbiosis.
According to DNA sequencing, reduced diversity in the
intestinal ecosystem is associated with disease (Manichanh
et al., 2006), whereas high diversity in the vaginal ecosystem is
linked to illnesses, such as bacterial vaginosis (BV) (Fredricks
et al., 2005). Furthermore, BV would trigger numerous health
disorders, including adverse pregnancy outcome, human
immunodeficiency virus (HIV), human papillomavirus (HPV),
and pelvic inflammatory disease (PID).

This review aims to describe the vaginal microbiome with
regards to female health, discuss BV characteristics, present a
strong association between BV and diseases, and outline the
requirement for comprehensive, accurate, and advanced
diagnosis and therapies to lower adverse health outcomes.
HEALTHY VAGINAL MICROBIOME

The vaginal microbiome is an intricate and dynamic
microecosystem that constantly undergoes fluctuations during
the female menstrual cycle and the woman’s entire life. The
vaginal mucosa is made up of a stratified squamous
nonkeratinized epithelium covered by cervicovaginal secretion
(Pekmezovic et al., 2019). The vaginal mucosa acquires oxygen,
glucose, and other nutrients from underlying submucosal tissues
through diffusion due to the limited blood supply (Linhares et al.,
2011). This establishes a relatively anaerobic habitat condition.
The vagina houses a complex microbial community that subsists
in a symbiotic relationship with the host. Thus, the indigenous
environment, microorganisms, and their genomes jointly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
compose the entire habitat, also known as the vaginal
microbiome (Marchesi and Ravel, 2015).

In women of reproductive age, physiological changes, such as
changes in hormone levels, cause fluctuations in the vaginal
microbiome (Hickey et al., 2012). Marked differences have been
reported between non-pregnant and pregnant women in terms
of the vaginal microbiome. According to the comparison results,
a sharp decline in the diversity and abundance of the vaginal
microbiome is observed in pregnant women. Moreover, the
predominance of Lactobacillus spp., Actinomycetales ,
Clostridiales, and Bacteroidales is observed in pregnant women.
In non-pregnant women, the predominance of Lactobacillus
spp., Actinobacteria, Prevotella, Veillonellaceae, Streptococcus,
Proteobacteria , Bifidobacteriaceae , Bacteroides , and
Burkholderiales is observed (Aagaard et al., 2012). Thus, the
vaginal microbiome would change temporally in a single person.
In addition, the vaginal microbiome differs largely among
individuals, and the differences are due to variations in sexual
activity (Noyes et al., 2018), douching (Schwebke et al., 1999),
chronic stress (Culhane et al., 2002), regional disparity (Gupta
et al., 2017), race (Ravel et al., 2011), and other factors (Nelson
et al., 2018). Based on high-throughput sequencing studies, five
community state types (CSTs) exist in terms of the vaginal
microbiome. Specifically, the research on 396 North American
asymptomatic women from four ethnic groups illustrates that
the majority of vaginal microbiomes are dominated by single or
multiple Lactobacillus species and are classified into five CSTs.
CSTs I, II, III, and V are dominated by L. crispatus, L. gasseri, L.
iners, and L. jensenii, respectively, whereas the CST IV refers to
high diversity of the microbial community characterized by
obligate anaerobic bacteria. High Nugent scores are usually
linked to CST IV but are also observed in other CSTs. Among
the five groups, the CSTs I, II, III, and V exist in 89.7% white
women and 80.2% Asian women, whereas these percentages are
61.9% and 59.6% in black and Hispanic women, respectively. A
shift in ethnic groups is apparent when CST IV dominated
(Ravel et al., 2011). The differences in vaginal microbiome by
race of women might be driven by host genetic factors, such as
immune system, ligands on the surface of epithelial cell, and the
quantity and components of vaginal discharge. Compared to
behavioral and cultural differences, host factors might play a
more crucial role in shaping the vaginal microbiome among
races (Ravel et al., 2011; Gupta et al., 2017). Currently, there are
few genotyping studies associated with healthy vaginal
microbiome. This is an area of research that would benefit
from further investigation.

Lactobacillus species flourish in the vaginal anaerobic
environment and produce various antimicrobial compounds,
such as lactic acid, hydrogen peroxide (H2O2), and
bacteriocins, thereby contributing to a healthy vaginal
microbiome and establishing a defense against the invading
pathogens. Lactobacillus species are the main source of L-lactic
acid and D-lactic acid that keep the pH value of the habitat lower
than 4.5 (Witkin et al., 2013; Witkin and Linhares, 2017),
whereas epithelial cells contribute about 20% L-lactic acid
(Boskey et al., 2001). Nonetheless, the role of H2O2 in the
April 2021 | Volume 11 | Article 631972
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vaginal microbiome remains controversial. Some studies have
demonstrated that it has positive effects on the inhibition of the
overgrowth of pathogenic microbes (Pararas et al., 2006; Atassi
and Servin, 2010; Sgibnev et al., 2015). O’Hanlon et al. found that
H2O2 at physiological levels displays the undetectable ability of
eliminating pathogenic microbes, whereas at high levels, it shows
greater antimicrobial ability toward Lactobacillus spp. than
pathogenic microbes (O’Hanlon et al., 2011). This finding
indicates that H2O2 is not a vital antimicrobial agent for
maintaining the homeostasis of the vaginal microbiome.
Lactobacillus also synthesizes bacteriocins, a type of
antimicrobial peptides that can permeabilize the microbial cell
membrane of nonindigenous microorganisms (Stoyancheva
et al., 2014). Furthermore, they can adhere to vaginal epithelial
cells and compete with other microbial cells for binding sites
(Neeser et al., 2000; do Carmo et al., 2016). This finding is
important, because the adhesion of pathogen to epithelial cells is
the first step and a crucial prerequisite of infection (Zárate and
Nader-Macias, 2006; Ribet and Cossart, 2015). Notably, the
dominant Lactobacillus species determines the extent of vaginal
ecosystem protection. For instance, dysbiosis and low stability
are usually related to the vaginal microbiota dominated by L.
iners. On the contrary, health and high stability of the vaginal
community are enhanced by L. crispatus that provides D- and L-
lactic acids (Petrova et al., 2015). Different from other
Lactobacillus species, L. iners cannot generate D-lactic acid,
which plays a more important role than L-lactic acid (Witkin
et al., 2013; Amabebe and Anumba, 2018; Edwards et al., 2019).
BACTERIAL VAGINOSIS

BV is a highly prevalent lower genital tract disorder among
women of reproductive age globally (Javed et al., 2019). It afflicts
23%–29% of women worldwide, and $4.8 billion is spent on
symptomatic BV treatment annually (Peebles et al., 2019). BV is
characterized by the loss or sharp decline in the total number of
Lactobacillus and a corresponding 100–1000 fold increase in the
concentration of facultative or obligate anaerobic microbes, such
as Gardnerel la, Prevotel la, Atopobium, Mobiluncus,
Bifidobacterium, Sneathia, Leptotrichia, and some novel
bacteria in Clostridiales order referred to as BV-associated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
bacteria (BVAB) 1–3 (Eschenbach, 1993; Fredricks et al., 2005;
Ling et al., 2010; Srinivasan et al., 2012; Muzny et al., 2018).

Gardnerella Species
Gardnerella is the most common microorganism identified from
the vaginal samples of women with BV (Fredricks et al., 2007;
Zozaya-Hinchliffe et al., 2010). It was first isolated by Leopold
from the cervix swabs of women and the urine of men in 1953
(Leopold, 1953). Later, it was found to be related to BV and
named Haemophilus vaginalis by Gardner and Dukes in 1955
(Gardner and Dukes, 1955). It is subsequently classified into the
genus Corynebacterium (Zinnemann and Turner, 1963).
Afterward, due to the results of two taxonomic researches, it
was placed into a new genus Gardnerella and renamed G.
vaginalis (Greenwood and Pickett, 1980; Piot et al., 1980).
Until 2019, G. vaginalis was the only identified species in the
genus Gardnerella. Recently, a whole genome sequence analysis
was performed on 81 Gardnerella strains, and results revealed the
existence of 13 disparate species of genus Gardnerella. In the
following additional physiological and chemotaxonomic analyses
supported by MALDI-TOF and biochemical activity studies,
three new Gardnerella species, namely, G. piotii, G. swidsinskii,
and G. leopoldii, were described, and the description of G.
vaginalis was amended (Vaneechoutte et al., 2019).

The close relationship between BV and G. vaginalis seems to
indicate that this microorganism is the sole pathogen in BV
(Schwebke et al., 2014). However, G. vaginalis has displayed
high sensitivity and low specificity when used to determine
whether BV is positive or negative (Krohn et al., 1989).
Healthy or asymptomatic women may also carry G. vaginalis
(Krohn et al., 1989; Briselden and Hillier, 1990), suggesting that
the presence of G. vaginalis in the vagina does not always result
in BV. Thus, it is important to have a proper understanding of
the role of G. vaginalis as a spectator, participant, or
causative agent of BV. In numerous studies that aimed to
determine the characteristics linked to virulence, various
approaches are utilized to analyze the phenotypic, genotypic,
and ecotypic diversity of G. vaginalis (Table 1). Based on
biochemical tests, 8 and 17 biotypes of G. vaginalis were
identified, respectively (Piot et al., 1984; Benito et al., 1986).
Much effort has been devoted to the exploration of the
association between its biotypes and BV, but the results remain
controversial (Piot et al., 1984; Benito et al., 1986; Briselden and
TABLE 1 | Types of G. vaginalis.

Type Numbers of
type

Methods Refs

Biotype 8 Tests of b-galactosidase, lipase, and hippurate hydrolysis (Piot et al., 1984)
4 groups

(17 biotypes)
Tests of hippurate hydrolysis, b-galactosidase and lipase, and fermentation of arabinose, galactose
and xylose

(Benito et al., 1986)

Genotype 4 (A1–A4) cpn60 sequencing (Hill et al., 2005)
4 (A–D) cpn60 sequencing (Paramel Jayaprakash et al.,

2012)
4 (1–4) Whole-genome sequencing (Ahmed et al., 2012)

Ecotype 3 Phylogenetic and functional analyses (Cornejo et al., 2017)
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Hillier, 1990; Aroutcheva et al., 2001; Udayalaxmi et al., 2011).
For genotyping, four clusters (A1 to A4) of G. vaginalis are
defined in the vaginal microbiota based on 60 kDa chaperonin
protein (cpn60) universal target region sequencing (Hill et al.,
2005). Recently, G. vaginalis has been classified into four
subgroups (A–D) with the use of cpn60 universal target
sequencing (Paramel Jayaprakash et al., 2012). Using whole-
genome sequencing, G. vaginalis can reportedly be divided into
clades 1, 2, 3, and 4 (Ahmed et al., 2012), corresponding to
cpn60-based subgroups C, B, D, and A, respectively
(Schellenberg et al., 2016). The relationship between G.
vaginalis genotypes and BV is controversial (Paramel
Jayaprakash et al., 2012; Pleckaityte et al., 2012; Balashov et al.,
2014; Hilbert et al., 2017; Janulaitiene et al., 2017; Shipitsyna
et al., 2019). In the only study about the ecotypes of G. vaginalis
in 2017, three ecotypes were identified as a result of the distinct
gene gain/loss of specific functions based on the combination of
phylogenetic structure and functional gene analysis (Cornejo
et al., 2017). Overall, these efforts have contributed to the
identification of the linkage between G. vaginalis and different
states (health, asymptomatic BV, and symptomatic BV), thereby
ultimately improving the approaches for the accurate diagnosis
of BV.

G. vaginalis harbors a variety of virulence factors associated
with pathogenic potential, wherein sialidase and vaginolysin are
the most widely investigated factors (Gelber et al., 2008; Santiago
et al., 2011; Zilnyte et al., 2015; Hardy et al., 2017b; Robinson
et al., 2019). Sialidase A gene is associated with BV and the
presence of biofilm (Hardy et al., 2017b). With the use of BLAST
searches, two more G. vaginalis sialidases (NanH2 and NanH3)
were identified. Regarding the substrate specificity of hydrolysis,
recombinant NanH2 and NanH3 were active on Siaa2-3/2-6-
linked N- and O-glycans containing mucosal substrates, whereas
recombinant sialidase A showed a limited ability to hydrolyze
mucosal and synthetic substrates (Robinson et al., 2019). G.
vaginalis uses sialidase to hydrolyze sialic acid residue from
mucus sialoglycans in the vagina and then catabolizes free
carbohydrate, thus contributing to the degradation of vaginal
mucus barriers (Lewis et al., 2013). Notably, some Gardnerella
spp., including G. swidsinskii, G. leopoldii, and a certain
subgroup of G. vaginalis, possess negative sialidase activity
(Santiago et al., 2011; Vaneechoutte et al., 2019). As for
vaginolysin, it is a pore-forming toxic compound belonging to
the cholesterol-dependent cytolysin family and facilitates the
lysis of target cells, such as vaginal epithelial cells (Gelber et al.,
2008; Zilnyte et al., 2015). Other virulence factors, such as
prolidase (Cauci et al., 2003) and glycosulfatase (Roberton
et al., 2005), are also reportedly associated with BV.

Biofilms
Biofilm is a structured community of microbes attached to the
abiological or biological surface and inlaid in their own secreted
polymeric matrix comprising carbohydrate, protein, and nucleic
acid (Costerton et al., 1999; Høiby et al., 2011; Flemming et al.,
2016). The formation of biofilms is an intricate, dynamic, and
interactive process associated with motile planktonic microbes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and microbial aggregates (Jung et al., 2017). A variety of bacterial
and fungal microbes, such as Gardnerella spp. and Candida spp.,
can form biofilms (Machado and Cerca, 2015; Gulati and Nobile,
2016). The biofilms produced by pathogenic microorganisms
shape an effective protection against host immune responses and
antimicrobials (Swidsinski et al., 2011; Thurlow et al., 2011). The
life cycle of biofilms comprises three phases, namely, attachment
to a surface, secretion of polymeric matrix and aggregation of
microbes for yielding mature biofilms, and dispersion by
detaching from biofilms (Machado and Cerca, 2015; Jung
et al., 2017).

The polymicrobial biofilms formed on vaginal epithelium
play a crucial role in the pathogenesis of BV (Hardy et al.,
2017a). G. vaginalis is considered the primary colonizer which
can establish a scaffold for the attachment of other BV-associated
microbes, thus enabling the development of polymicrobial
biofilms (Jung et al., 2017). Atopobium vaginae, one of the
second colonizers of polymicrobial biofilms, is a strict
anaerobic microbe with great predictability for BV (Hardy
et al., 2016; Castro et al., 2020). G. vaginalis biofilms have
higher tolerance to two common agents of health vaginal
discharge, namely, lactic acid and H2O2, than planktonic cells
(Patterson et al., 2007). This may shelter G. vaginalis and other
BV-associated microbes from adverse environments. With the
use of RNA sequencing, G. vaginalis biofilms are observed to
have decreased metabolic activity and down-regulated virulence
factor (vaginolysin), which are important for biofilm persistence.
These phenotypes are probably linked to the recurrent and
chronic BV characteristics (Castro et al., 2017). G. vaginalis
biofilms are reportedly present in fallopian tube and
endometrial samples, indicating that G. vaginalis biofilms
could move to the upper genital tract, thus leading to adverse
pregnancy outcomes (Swidsinski et al., 2013).

Immune Response
BV is considered a dysbiosis often presenting clinical symptoms
which can be caused by a large number of microbes with
proinflammatory features, coupled with the host immune
response (Onderdonk et al., 2016). Vaginal samples from
females with BV reportedly harbor high levels of immune
mediators, such as interleukin (IL)-8, IL-6, IL-1a, IL-1b, IL-
12p70, and TNFa (Platz-Christensen et al., 1993; Hedges et al.,
2006; Anderson et al., 2011; Jespers et al., 2017). Different
immunological factors might be adopted for various species
(Anahtar et al., 2015; Kyongo et al., 2015). For instance, L.
crispatus is associated with a marked increase in gamma-induced
protein 10 (IP-10), and a significant drop in IL-12 (p70), IL-8, IL-
1b, and IL-1a. Nevertheless, according to the analysis of vaginal
swabs, G. vaginalis is correlated with the decline in IP-10 and the
increase in IL-12 (p70), IL-8, IL-1b, and IL-1a. Similar to G.
vaginalis, A. vaginae is also associated with the increase and
decrease of the same factors (Kyongo et al., 2015). Greater levels
of IL-1b, IL-8, and interferon (IFN)-g have been observed in
females harboring a large quantity of Prevotella spp. (Anahtar
et al., 2015; Kyongo et al., 2015). The critical effect of IL-36G on
women with BV is verified. Consequently, IL-36G level increases
April 2021 | Volume 11 | Article 631972
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in vaginal samples of women with BV. IL-36G might play a vital
role in the immune response to BV and other diseases (Gardner
et al., 2020).
BV-ASSOCIATED DISEASES

BV is associated with adverse reproductive health outcomes,
such as sexually transmitted infections (STIs) and pelvic
inflammatory disease (PID) (Unemo et al., 2017; Ravel et al.,
2021). Moreover, preterm birth (PTB) (Hillier et al., 1995), low
birthweight (Svare et al., 2006), miscarriage (Leitich and Kiss,
2007), and other adverse obstetric outcomes are also linked
to BV.

Sexually Transmitted Infections
STIs are common acute conditions. Although the majority of
STIs are generally not fatal, they lead to a large burden of disease.
BV increases the risk of some of the STIs, such as herpes simplex
virus type 2 (HSV-2), HPV, HIV, and chlamydial, gonococcal,
and trichomonal infection. Women with Nugent scores of 9–10
are at the highest risk, whereas women with Nugent scores of 4–8
are at moderate risk of any bacterial STI (Neisseria gonorrhoeae,
Chlamydia trachomatis, and Trichomonas vaginalis) (Allsworth
and Peipert, 2011). Compared with women with normal vaginal
microbiota, women with BV were 4- and 3.4-fold more likely to
detect positive for N. gonorrhoeae and C. trachomatis,
respectively (Wiesenfeld et al., 2003). In a large longitudinal
study (n = 3620), BV is reportedly associated with 1.5–2 times
elevated risk for the acquisition of chlamydial, gonococcal, or
trichomonal infection (Brotman et al., 2010). In another cohort
study, temporal associations between STI and BV in both
directions were assessed. BV and gonorrhea/chlamydia are risk
factors for each other, which indicates treating either condition
might have a protective effect on the other (Gallo et al., 2012).
Women with BV are at higher risk of acquiring HSV-2 compared
with those without BV (Cherpes et al., 2003a; Cherpes et al.,
2003b; Cherpes et al., 2005). More recently, several studies have
also found that BV is linked to the elevated risk of STIs (Aghaizu
et al., 2014; Abbai et al., 2016; Bautista et al., 2017). Unlike the
abovementioned observational studies, two randomized trials
were performed to investigate whether periodic treatment of BV
can affect the incidence of STIs. The first study, which involved
women with asymptomatic BV, revealed that the incident
chlamydia infection is markedly reduced when intravaginal
metronidazole gel was used for 6 months (Schwebke and
Desmond, 2007). Another study involving women with BV
found that the incidence of N. gonorrhoeae, C. trachomatis, or
M. genitalium infection is reduced when intravaginal
metronidazole and miconazole were used for 12 months
(Balkus et al., 2016).

HIV infection is diagnosed in over 1 million females yearly,
and BV is a major risk factor of HIV infection (Klatt et al., 2017).
For instance, BV is linked to a greater risk of HIV infection (Taha
et al., 1998; Myer et al., 2005), and the level of HIV is greater in
the vaginal discharge of women who are infected with HIV and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
BV than in those of women who are infected with HIV but have
no BV (Cu-Uvin et al., 2001; Sha et al., 2005; Elwood et al., 2020).
In Uganda, compared with the frequency of HIV-1 in women
with normal vaginal flora (14.2%), a markedly elevated frequency
(26.7%) was observed in women with severe BV (Nugent scores
9–10) (Ledru et al., 1997). Similarly, a study on HIV-infected
Indian women showed the elevated risk of BV in HIV-infected
and HPV-positive women and the high prevalence of BV among
women infected with HIV (Joshi et al., 2020). Women with HIV-

BV+, HIV-BV-, HIV+BV-, and HIV+BV+ were compared in
terms of microbiota of the lower genital tract, and results
showed that HIV infection was linked to increased diversity
(Spear et al., 2008). Furthermore, vaginal microbial diversity is
important in HIV prevention. According to the results of the
clinical trial, the efficacy of tenofovir gel microbicide, which
prevents HIV transmission, is dependent on vaginal microbiota.
Tenofovir decreases the incidence of HIV by 61% in women with
Lactobacillus-dominant microbiota but merely by 18% in women
without Lactobacillus. Further, the concentrations of tenofovir
are lower in women without Lactobacillus and are negatively
correlated with BV-associated microbes that could degrade
tenofovir by metabolism (Klatt et al., 2017). In addition,
compared with women with lower levels of P. bivia, women
with higher levels (>1%) are linked to 13-fold increased
likelihood to become infected with HIV (Cohen, 2016).
Women with microbiota dominated by BV-associated
microbes have increased amount of HIV target cells, namely
CD4 T cells, in the genital mucosa. This may contribute to the
elevated HIV acquisition risk (Anahtar et al., 2015; Gosmann
et al., 2017).

Among young women, the most common sexually
transmitted infection is HPV, which contributes greatly to
cervical cancer (Dunne et al., 2007). HPV infection is affected
significantly by BV. CST IV-BV is a risk factor for persistent
HPV, and the biomarkers of persistent HPV are Atopobium spp.
and the sialidase gene of G. vaginalis (Di Paola et al., 2017). The
BV prevalence in the high-risk (HR)-HPV clearing group was
5.0%, which was lower compared with the increased BV
prevalence of 11.2% in the HR-HPV persistent group. Further,
women who currently have BV reported a lower clearance of
HPV than women without BV (Guo et al., 2012). Similarly, BV is
reportedly associated with delayed HPV clearance and elevated
risk of HPV incident and prevalence (King et al., 2011). In Korea,
increased bacterial diversity with decreased Lactobacillus spp.
was observed in women with HPV. Particularly, BV-associated
bacteria, namely Sneathia spp., is considered a possible
biomarker linked to HPV (Lee et al., 2013). In a study on
Nigerian women, a similar linkage was found between the
increased proportion of BV-associated bacteria, such as
Leptotrichia and Prevotella, with the decreased in Lactobacillus
spp. and HR-HPV (Dareng et al., 2016). Among Swedish HPV-
infected women, a large proportion of Megasphaera, Prevotella,
Sneathia, BVAB1, and BVAB2 was identified in the vaginal
microbiota. Women with a total loss of Lactobacillus in their
vaginal microbiota are 2-fold more likely to have oncogenic HPV
(Cheng et al., 2020).
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Pelvic Inflammatory Disease
PID is an infection-caused inflammation of the upper genital
tract. BV is considered a risk factor for PID that can cause
adverse reproductive sequelae, such as infertility, chronic pelvic
pain, and ectopic pregnancy (Brunham et al., 2015). BV-
associated microbes were reportedly linked to the elevated risk
of PID development, whereas non-BV-associated microbes
showed no effect on the risk of PID (Ness et al., 2005). Patients
with acute endometritis are more likely to possess BV and less
likely to carry lactobacilli (Haggerty et al., 2004). Compared with
women with normal vaginal microbiota, subclinical PID is 2.7
times more frequently identified in women with BV (Wiesenfeld
et al., 2002). The presence of A. vaginae, S. amnionii, BVAB1, or
S. sanguinegens is associated with PID and its sequelae, including
recurrent PID and infertility (Haggerty et al., 2016). In a recent
study of women at high risk of STI, the presence of BV-
associated microbes, such as A. vaginae, Megasphaera spp.,
Sneathia spp., Prevotella amnii, and Eggerthella-like bacterium,
in the vagina can increase the likelihood of PID development.
Further, a larger bacterial load of BV-associated microbes
predicted PID (Haggerty et al., 2020). The identification of
BV-associated microbes in PID indicated lower to upper
reproductive tract ascension. This finding may be due to the
enzymes produced by BV-associated microbes. These enzymes,
such as mucinase and sialidase, may degrade mucin barriers and
facilitate ascending infection, thereby leading to PID. (McGregor
et al., 1994; Soper, 2010).

Obstetric Outcomes
PTB, which refers to gestation within 37 weeks, has become a
serious health challenge worldwide. PTB occurs in about 15
million pregnancies each year and is a primary risk factor of
neonatal death (Blencowe et al., 2012; Liu et al., 2016). PTB and
other adverse obstetric outcomes have reportedly been associated
with BV (Hillier et al., 1995). BV is verified in a meta-analysis to
be powerful risk factor for late miscarriage and associated with
maternity infectious incidence rate and preterm delivery (Leitich
and Kiss, 2007). The BV in early pregnancy is linked to preterm
delivery or delivery of an infant with a low birthweight (Svare
et al., 2006). High levels of BV-associated microbes, such as A.
vaginae and G. vaginalis, are strongly related to the risk of PTB
(hazard ratio 3.3) (Menard et al., 2010). Other BV-associated
microbes, such as Sneathia sanguinegens, Atopobium, and
Mobiluncus curtsii/mulieris, are risk factors for spontaneous
PTB (Elovitz et al., 2019). A recent multi-omic study of large
samples showed that increased level of BV-associated microbes
and a sharp decline in the level of L. crispatus are observed in
women with PTB (Fettweis et al., 2019). As a method of
preventing PTB, BV treatment during pregnancy has been
evaluated in many studies. However, PTB incidence is not
always decreased by antibiotic therapy of BV (Brocklehurst
et al., 2013; Shimaoka et al., 2019). BV-associated microbes
might cause infection during gestation, because they could
move into the uterus before gestation (Goldenberg et al., 2008).

These abovementioned studies highlight the association
between BV and many diseases, such as STI, PID, and PTB.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
BV is a highly prevalent disorder. Thus, the interventions that
decrease BV incidence could reduce the incidence of BV-
associated diseases. The accurate and efficient diagnosis and
treatment of BV may be the key to preventing such diseases.
DIAGNOSIS AND TREATMENT OF BV

Diagnosis
BV can be diagnosed by performing two standardized tests,
namely, Amsel criteria and Nugent score, by using vaginal
swabs (Amsel et al., 1983; Nugent et al., 1991). Amsel criteria
is used for clinical diagnosis, and at least 3 of the following 4
characteristics are required to determine BV-positive patients:
homogeneous and milk–like vaginal fluid (Figures 1A, B),
increased vaginal pH, fishy odor, and the observation of clue
cells (vaginal epithelial cells covered with bacteria) through
microscopy (Amsel et al . , 1983). Nevertheless , the
characteristics above are often absent in some cases, and the
corresponding diagnosis is somewhat subjective (Klebanoff et al.,
2004). Nugent score relies on the quantitative analysis of the
morphotypes of different microorganisms, such as Lactobacillus
and Gardnerella, in Gram-stained vaginal discharge (Figures 1C,
D). This laboratory-based approach uses a score system, in which
the scores of 0–3, 4–6, and 7–10 are considered normal,
intermediate, and BV, respectively (Nugent et al., 1991).
However, 27% of asymptomatic women possess a high
diversity of microbial community dominated by obligate
anaerobic bacteria instead of Lactobacillus (Ravel et al., 2011).
Thus, the combination of the two approaches above with clinical
and microbiological morphology findings may result in a more
accurate and reliable diagnosis.

There are many point-of-care (POC) methods available for
the diagnosis of BV, such as FemExam card, OSOM BVBlue,
VGTest ion motility spectrometry (IMS), and wet mount.
FemExam card measures amines, proline aminopeptidase, and
pH of vaginal discharge (West et al., 2003). The OSOM BV Blue
approach is a chromogenic test that detects the level of sialidase
in vaginal discharge (Myziuk et al., 2003). VGTest-IMS can be
used as an electronic molecular sensor of biogenic amines in
vaginal discharge, particularly trimethylamine of BV
(Blankenstein et al., 2015). Given the limitations of the
aforementioned methods applicable to the diagnosis of BV,
attentions have been paid to molecular diagnostic approaches
which have the capability to detect and quantify fastidious
microbes. Commercially available molecular tests are direct
probe tests and nucleic acid amplification tests (Coleman and
Gaydos, 2018). Direct probe tests, such as Affirm VP test and
bacterial vaginosis/vaginitis panel, apply DNA probe to identify
the specific sequences of targeted microbes from vaginal
discharge. These tests are most useful for symptomatic women
since the targeted microbe for BV, namely G. vaginalis, may exist
in women with healthy vaginal microbiome (Redelinghuys et al.,
2020). Nucleic acid amplification tests include NuSwab,
SureSwab BV DNA quantitative real-time PCR, BD Max
vaginal panel, and BV panel. NuSwab meartures three positive
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indicators of BV diagnosis, namelyMegasphaera type 1, BVAB2,
and A. vaginae, and one negative indicator of BV diagnosis,
namely L. crispatus (Cartwright et al., 2012). SureSwab BV real-
time PCR is used in the detection of three H2O2-producing
Lactobacillus species (Lactobacillus acidophilus, L. jensenii, and
L. crispatus) and three BV-associated microbes (Megasphaera
spp, A. vaginae, and G. vaginalis) (Coleman and Gaydos, 2018).
BD Max vaginal panel can detect two Lactobacillus species (L.
jensenii and L. crispatus) and four BV-associated microbes (A.
vaginae, G. vaginalis, BVAB2, and Megasphaera type 1) (Gaydos
et al., 2017). BV panel identifies A. vaginae, G. vaginalis, and
Megasphaera type 1 and 2 as accurate predictors for diagnosis of
symptomatic BV (Hilbert et al., 2016).

The etiology of BV remains a persistent conundrum, and
consequently, developing and applying more comprehensive,
accurate, and advanced approaches for its diagnosis would be
necessary. The use of novel approaches, such as deep sequencing
of the 16S rRNA gene (Srinivasan et al., 2012), lipidomics (Oliver
et al., 2020), glycomics (Wang et al., 2015), metabolomics
(Yeoman et al., 2013), and proteomics (Ferreira et al., 2018),
provides further insight into the features of BV. Thus, the
improved methods will fuel the application of accurate
diagnostic strategies and will contribute critically to the
development and application of definitive diagnostic methods.
For example, based on high-throughput sequencing, women
with BV possess heterogeneous vaginal microbiota with high
species diversity and richness is observed (Srinivasan et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
2012). Afterward, with the use of the multi-omic approach
(16S rRNA gene sequencing and metabolomics) approach,
useful biomarkers (putrescine, cadaverine, 2-methyl-2-
hydroxybutanoic acid, and diethylene glycol) are identified for
the diagnosis of BV (Yeoman et al., 2013). In addition, artificial
intelligence, which refers to machine learning techniques, is
performed on the diagnosis of BV and is found to have high
interrater reliability and automaticity (Beck and Foster, 2014;
Drew et al., 2020).

In short, various diagnostic approaches can be used to
diagnose BV. Clinicians should choose a feasible method for
BV diagnosis in different cases based on the evaluation of
necessary time, cost, and accuracy. For instance, the high-
throughput sequencing method might be more suitable for
diagnosis among women with recurrent and intractable BV,
whereas the wet mount method is widely used for its rapid
results and low cost.

Treatment
Currently, according to Centers for Disease Control and
Prevention, the first-line therapeutic strategies are oral
metronidazole (500 mg twice a day for 7 days), intravaginal
metronidazole gel (5 g once a day for 5 days), and intravaginal
clindamycin cream (5 g once a day for 7 days) (Workowski et al.,
2015). Metronidazole is a 5-nitroimidazole originally used for the
treatment of trichomoniasis (Moffett and Mcgill, 1960) and is
found to be useful against anaerobic infection (Tally et al., 1975).
FIGURE 1 | Characteristics of BV (A, C) and normal (B, D) vaginal microbiome. (A, C) show the colposcopic and microscopic examination of BV vaginal
discharges, respectively. Homogeneous and milk-like secretions, Gardnerella-like microbes, and clue cells are observed. (B, D) show the colposcopic and
microscopic examinations of normal vaginal discharges, respectively. Homogeneous and clear secretions, Lactobacillus-like microbes, and no clue cells
are observed.
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Clindamycin is a lincosamide antibiotic that does not differ
greatly in terms of effectiveness against BV when compared
with metronidazole (Paavonen et al., 2000; Beigi et al., 2004).
Vaginal dequalinium is an alternative treatment regimen for BV
according to European International Union Against Sexually
Transmitted Infections World Health Organization.
Dequalinium chloride is a quaternary ammonium compound
that possesses cure rates similar to those of clindamycin
(Sherrard et al., 2018). Being an agent in the second-line
therapeutic strategy, tinidazole has few side effects and good
pharmacokinetic profile, and it is also an agent in 5-
nitroimidazole class (Dickey et al., 2009; Nyirjesy and
Schwebke, 2018). The food and drug administration has
recently approved the single-dose of 2 g secnidazole in granule
formation for the treatment of BV (Nyirjesy and Schwebke, 2018;
Abd El-Aziz et al., 2019). A research has revealed that 2 g
secnidazole and 500 mg metronidazole twice a day for 5 days
have the same effect (Bohbot et al., 2010). In addition, the single-
dose regimen of secnidazole may improve patient compliance.
Thus, this next-generation 5-nitroimidazole may serve as a
substitute for the 5–7 days therapeutic strategy against BV.

Although these antibiotics are effective against BV-associated
bacteria and somewhat relieve symptoms, the remission is
usually temporary, and many patients relapse after treatment
(Bradshaw et al., 2006; Hay, 2009; Mayer et al., 2015). The high
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
recurrence rate (50%–67%) may be the result of the inability of
antibiotics to eliminate the biofilm-associated bacteria of BV in
vagina (Figure 2) (Swidsinski et al., 2008; Swidsinski et al., 2011;
Javed et al., 2019; Ahrens et al., 2020; Verwijs et al., 2020). For
example, Ahrens et al. reported that G. vaginalis and other BV-
associated bacteria are eradicated or are largely decreased in 58%
of the patients treated with metronidazole. Meanwhile, none of
these bacteria are eliminated in the remaining half of the
patients. This phenomenon is attributed to the sheltering of G.
vaginalis and other bacteria by biofilms (Ahrens et al., 2020). In
addition, Swidsinski et al. observed the persistence of G. vaginalis
biofilms after oral metronidazole therapy (Swidsinski et al.,
2008). Therefore, a promising therapeutic strategy against BV,
i.e., adjuvant-based therapy with the ability to disrupt biofilms,
has been developed (Figure 2). Extracellular DNA is an
important integrant of G. vaginalis biofilms. The enzymatic
activity of DNase can be used to disrupt newly formed and
mature biofilms. DNase has shown its ability to release
microorganisms from biofilms to supernatant fractions and to
enhance the activity of metronidazole (Hymes et al., 2013).
Similarly, lysozyme can reportedly disrupt biofilms and
prevent their formation. The combination of lysozyme and
antibiotic (clindamycin or metronidazole) can potentiate both
the ability of antibiotics and biofilm disruption (Thellin et al.,
2016). In addition, the use of amphoteric tenside sodium
A

B C

FIGURE 2 | Diagram of the impact of different therapeutic regimens on vaginal microbiome. (A) BV vaginal microbiome before treatment. This vaginal microbiome
refers to high diversity of microbial community dominated by anaerobic bacteria instead of Lactobacillus. Meanwhile, the polymicrobial biofilms are formed on vaginal
epithelium. (B) Treatment with antibiotics alone reduces the microbial diversity and causes the recovery of Lactobacillus population, but the biofilms have not been
disrupted. (C) Treatment with antibiotics and adjuvant reduces the microbial diversity and causes the recovery of Lactobacillus population; moreover, the biofilms
have been disrupted.
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cocoamphoacetate causes degradation of the established biofilms
and enhances the effect of metronidazole (Gottschick et al.,
2016). Lauramide arginine ethyl ester and subtilosin reportedly
have great bactericidal effect on G. vaginalis biofilms (Turovskiy
et al., 2012). These two compounds have displayed a synergistic
effect with antibiotics (clindamycin and metronidazole) against
G. vaginalis biofilms (Algburi et al., 2015). Besides the
abovementioned adjuvants investigated with antibiotics, many
others have been studied individually. For instance, L. reuteri
RC-14 can degrade surface density, depth, and area of G.
vaginalis biofilms (Saunders et al., 2007). Thymol is effective in
the inhibition of mature and native G. vaginalis biofilms (Braga
et al., 2010). Endolysin (PM-477) can selectively and effectively
eliminate Gardnerella in native polymicrobial biofilm and in
cultures of isolated strains (Landlinger et al., 2021). Other
strategies involving the utilization of boric acid (Reichman
et al., 2009), octenidine (Swidsinski et al., 2015), cationic
amphiphiles (Algburi et al., 2017; Weeks et al., 2019), and
amphoteric tenside (WO3191) also reportedly have a positive
effect on BV-associated biofilms (Gottschick et al., 2017).

Microbial-based therapeutics have recently attracted an
increasing amount of interest owing to the beneficial effects to
the host health. As pivotal bacteria in the healthy vaginal
microbiome, Lactobacillus species can act as antimicrobial
adjuvants due to their ability to potentiate the effect of
antibiotics (Larsson et al., 2011; Bodean et al., 2013; Recine
et al., 2016; Bohbot et al., 2018; Cohen et al., 2020). In 2020, a
phase 2b trial (NCT02766023) was conducted on 228 women to
assess the efficiency of L. crispatus CTV-05 in preventing BV
relapse. When L. crispatus CTV-05 was used after antibiotic
treatment, a remarkably lower rate of BV recurrence was
observed at 3 months compared with placebo (Cohen et al.,
2020). Vaginal microbiota transplantation (VMT), in which
optimum vaginal microbiota is transplanted to patients, is
another microbial-based therapeutic strategy. In 2019, the first
exploratory research has reported the viability of utilizing VMT
as a long-term therapeutic regimen for women with intractable
BV (Lev-Sagie et al., 2019). In this study, five patients with
intractable BV were treated with VMT after antibiotic treatment,
and long-lasting relief was shown in four of these patients in the
follow-up period of 5–21 months after VMT. This finding
suggested the remarkable alleviation of symptoms and the
rebuilding of the vaginal microbiota with Lactobacillus spp.
dominance. The risks of this treatment include the acquisition
of antimicrobial-resistant microbes, sperms, undetected
pathogens, and other clinically silent phenotypes from the
donors. Overall, antibiotics, biofilm-disrupting agents,
probiotic Lactobacillus, and VMT can be utilized separately or
in combination to regulate the microbiome through the
reestablishment of vaginal eubiosis.

The intricate and dynamic vaginal microbiome brings the
challenge for diagnosis. The challenge for treatment is attributed
to inaccurate diagnostics, biofilm, antibiotic resistance, and the
simultaneous elimination of both pathogenic bacteria and
probiotics, such as Lactobacillus. It is expected that future
research should be conducted to target specific microbes, thus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
eliminating more pathogenic bacteria, but without affecting
probiotic microorganisms. In addition, it is necessary to
develop personalized diagnosis and treatment by taking
individual differences in vaginal microbiome into consideration.

Further, with increasing knowledge of BV-associated
epidemiology and pathogenesis, more improved novel
therapeutic strategies will be developed in the future.
CONCLUSION

The vaginal microbiome forms a homeostatic and mutualistic
relationship with human host and plays an important role in
vaginal health and disease. The variations of internal and/
or external factors lead to the breakdown of a balanced
ecosystem, which is also known as dysbiosis. Although
the increasing scientific knowledge has already provided
insights into the characteristics of vaginal microbiome and
its correlation with diseases, such as STIs, PID, PTB, there
is still inadequate understanding of interactions between
microbiota and the host. Efforts should be made to reveal the
mechanism of interactions between species and their impact on
vaginal microbiome.

As a highly prevalent dysbiosis, BV triggers numerous adverse
health outcomes and becomes a burden to individuals and public
health. G. vaginalis is the most common microorganism detected
in BV, but its presence in the vagina does not always lead to BV.
Other microorganisms, such as Atopobium and Prevotella, also
have a strong relationship with BV. These BV-associated
microbes can affect immune mediators, which may serve as
predictive biomarkers for dysbiosis , in the vaginal
environment. Although the epidemiology and pathogenesis of
BV is not fully understood, studies based on genomic, lipidomic,
glycomic, metabolomic, and proteomic techniques may provide
further insights. More improved novel and accurate diagnosis
and therapeutic strategies will be developed based on the
accumulated information on BV.
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