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Abstract

Background: Bats receive increasing attention in infectious disease studies, because of their well recognized status as
reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance
dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species.
Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a
potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat
mortality is largely unknown and has been neglected in most studies published to date.

Methodology/Principal Findings: Between 2002 and 2009, 486 deceased bats of 19 European species (family
Vespertilionidae) were collected in different geographic regions in Germany. Most animals represented individual cases
that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments.
The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and
virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of
pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to
infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated.

Conclusions/Significance: Our data demonstrate the importance of diseases and infectious agents as cause of death in
European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that
maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology,
immunity and roosting behavior as risk factors for infection of bats.
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Introduction

Bats are among the most successful and diverse mammals on

earth. Approximately 1230 chiropteran species are found on every

continent except Antarctica and inhabit a multitude of diverse

ecological niches [1]. Bats play essential roles in maintaining

healthy ecosystems, as they act as plant pollinators, seed dispersers,

and predators of populations of insects including harmful forest

and agricultural pests [2]. Most bat species are listed in the IUCN

Red list of endangered species and almost half of these are

considered threatened or near-threatened [3]. To estimate and

prevent further population declines, research has been primarily

focused on bat biology, ecology and behavior, while disease

aspects were largely neglected [4].

In the last two decades, the importance of chiropteran species as

potential vectors of significant viral diseases especially in regard to

zoonoses has received growing attention. Besides bat rabies that

has been studied for more than half a century, extensive research

efforts identified a large number of microbial agents [5] including

important emerging zoonotic viruses detected in bats across the

world [6–12]. However, most studies are limited to the

identification of microorganisms detected and investigations

regarding infectious diseases and causes of death in bats are

sparse [13–16].

In Europe, research is predominantly focused on European bat

lyssaviruses [17,18] and coronaviruses [19,20], but first indications

of bat-pathogenic bacteria [13,14,21–23] and novel viruses [24,25]

isolated from deceased bats in Germany and Great Britain were

found. In this study, we provide new data on infectious diseases in

European bat species, considering factors likely to affect the

susceptibility of bats to infectious agents including effects of

seasonality, individual and species-specific heterogeneities, and

possible intra- and inter-species transmission dynamics.

Materials and Methods

All bat species in Europe are strictly protected under the Flora-

Fauna-Habitat Guidelines of the European Union (http://ec.europa.

eu/environment/nature/legislation/habitatsdirective/index_en.htm)

(92/43/EEC) and the Agreement on the Conservation of Populations
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of European Bats (www.eurobats.org) that prohibit invasive sampling

of bats for research purposes. For the animals investigated in this

study, carcasses of deceased bats found in Germany were kindly

provided by bat researchers and bat rehabilitation centers of different

federal states.

Study material
Between 2002 and 2009, a total of 486 deceased bats of 19

European vespertilionid species (i.e., Family Vespertilionidae) were

investigated (Fig. 1A, [26]). The bat carcasses originated from 6

different geographic regions in Germany, i.e. Berlin greater

metropolitan area (n = 223), Bavaria (n = 165), Brandenburg

(n = 38), Lower Saxony (n = 36), Thuringia (n = 21), and Baden-

Wuerttemberg (n = 3), and were collected by bat researchers and

bat rehabilitation centers. Most animals represented individual

cases that were found dead, injured or moribund near human

habitation. Thus, the species composition in this study predom-

inately reflected the urban and suburban bat fauna, which is

characterized by a disproportionate abundance of a few bat

species (Fig. 1A, [27,28]). Two groups of 2 and 21 adult noctules

(Nyctalus noctula), respectively, were collected from tree hibernacula

destroyed during wood logging. A further group of 25 deceased

adult N. noctula originated from a colony that was trapped in a rain

pipe in December. Nine dead juvenile Pipistrellus pipistrellus were

collected from a nursery roost.

If bats died in care or had to be euthanized for animal welfare

reasons, the carcasses were immediately stored at 220uC and were

shipped to the Leibniz Institute for Zoo and Wildlife Research,

Berlin, Germany, for diagnostic investigations. Of all carcasses

examined histo-pathologically, about 90% were suitable for

bacteriological investigation. A lesser extend (43%) was also

examined for selected viral agents at the Robert Koch Institute,

Berlin, Germany. In addition, a brain sample of each animal was

submitted to the Friedrich-Loeffler-Institute, Wusterhausen, Ger-

many, for rabies diagnosis.

Pathological investigation
A full necropsy was performed on each bat and all macroscopic

findings including ectoparasite infestation were recorded. For

histo-pathological examination, small slices of multiple organ

tissues (i.e., lung, liver, heart, kidney, adrenal gland, spleen,

intestine, pancreas, brain, tongue, larynx, salivary gland and

pectoral muscle) and tissues conspicuous for pathological changes

were fixed in buffered 4% formalin, processed using standard

methods and embedded in liquid paraffin. Sections were cut at 2–

5 mm and routinely stained with hematoxylin-eosin (HE). In

addition, special histological staining methods were used depend-

ing on microscopic findings, i.e. for the detection of bacteria

(Gram or Giemsa staining), fungi (periodic acid Schiff or Grocott’s

Gomori methenamine silver nitrate staining), iron (Prussian blue

stain), mineralization (von Kossa staining), connective and

collagen tissue (trichrome staining). Details on pathological results

are published elsewhere [26].

The causes of mortality were rigorously standardized with the

primary cause of death identified for each bat as the most serious

injury, disease or event subsequently fatal to the animal. To ensure

independence of primary and contributing causes of death, the

categorization was based on the severity of pathological findings.

Bacteriological investigation
Samples of lung, liver, heart and kidney, and tissues conspicuous

for pathological changes (e.g. enlarged spleen) of 430 bats were

plated onto Columbia (5% sheep blood), Chocolate, Gassner, and

MacConkey agar (Oxoid, Germany) and were incubated at 37uC

(Chocolate agar 5% CO2) for 24–48 h. Specific culture media and

conditions for the isolation of Yersinia, Salmonella and anaerobic

bacteria were used if appropriate. Primary identification of

bacterial strains was based on colony morphology, hemolysis,

Gram-staining, indol production, catalase and oxidase reaction.

Bacterial species identification was carried out using the relevant

commercial Api test system (bioMérieux, Germany). Additional

conventional biochemical tests [29,30] were applied to confirm

Api test results where necessary. In case of ambiguous biochemical

test results, 16S rDNA gene analysis was performed for final

identification [23]. Salmonella isolates were characterized at the

National Reference Laboratory for the Analysis and Testing of

Zoonoses (Salmonella) at the Federal Institute for Risk Assessment,

Berlin, Germany. Identification and characterization of Yersinia

and Pasteurella species have been reported earlier [22,23].

Virological investigation
Homogenized organ tissue of lung, liver, heart, kidney, spleen,

brain and salivary gland of 210 bats were pooled for each

individual and used for RNA/DNA extraction and further

molecular analysis by generic PCR assays detecting flavi- [31],

hanta- [32], corona- [33], and influenza A-viruses [34]. Also, PCR

assays specific for 8 previously described herpesviruses [24] from

European vespertilionid bats were used. For this purpose, RNA/

DNA was isolated using the NucleoSpinH RNA II Kit (Macherey-

Nagel, Germany) and the NucleoSpinH Tissue Kit (Macherey-

Nagel), respectively, according to the manufacturer’s instructions.

Because of limitations in sample volume, for 180 out of the 210

bats PCR assays could only be applied for 4 different bat

herpesviruses. Internal controls were used for all PCR assays to

test for inhibition. For confirmation, all retrieved fragments of bat

herpesvirus-specific PCR assays were checked for sequence

identity to previously published isolates [24].

For detection of lyssavirus antigen in brain tissue the fluorescent

antibody test (FAT) using a polyclonal antirabies conjugate (Sifin,

Germany) was used [35]. FAT-positive brain tissues were subject

of virus isolation in murine neuroblastoma cell culture (Na 42/13)

using the Rabies Tissue Culture Infection Test (RTCIT) as

described elsewhere [36]. Lyssaviruses isolated in cell culture were

characterized using both a panel of 10 anti-nucleocapsid

monoclonal antibodies (MAb) [37] and partial sequencing of a

fragment of the nucleoprotein gene after RNA extraction using

Trizol (Invitrogen, Germany) essentially as described [18].

Genetic identification of bat species
Genomic DNA was extracted from organ homogenates using

the NucleoSpinH Tissue Kit (Macherey-Nagel) according to

manufacturer’s recommendations. Genetic identification of the

bat species was performed by amplification and sequencing of a

241 bp fragment of the cytochrome B (cytB) gene [38] using

primers FM up (59- CCC CHC CHC AYA TYA ARC CMG

ART GAT A -39) and FM down (59- TCR ACD GGN TGY CCT

CCD ATT CAT GTT A -39). In addition, for differentiation of

the 2 distinct Pipistrellus species, P. pipistrellus and P. pygmaeus, a

rapid multiplex PCR assay was performed as described by Kaňuch

et al. [39] using primers PIP-F (59- CTC ATT CAT TGA YCT

ACC AGC -39), PIP-R (59- CAG CRA ATA GTA AAA TAA

CTC C -39) and Ppip-F (59- CAT CTG TTT GGG ACT ACA

GAT CC -39).

Statistical analysis
The bat data were categorized in regard to different explanatory

numeric and factor variables, e.g. bat species, sex and age class.

The variable ‘age class’ ranked between 1 and 4 with increasing
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age (i.e. neonates, juveniles, subadults, and adults) and was used as

numeric variable. For endoparasitic analysis, we defined a 3 level

variable ‘bat size’ according to the body size of a certain bat

species to reduce the degrees of freedom of the full model, i.e. large

species (N. noctula, Eptesicus serotinus, and Vespertilio murinus),

medium-sized species (E. nilssonii, Plecotus auritus, Myotis daubentonii,

M. nattereri, and P. nathusii) and small species (P. pipistrellus, and M.

mystacinus). To detect effects of seasonality, 4 different activity

periods were specified according to the date of sampling, i.e.

hibernation period (November to March), post-hibernation period

(April/May), maternity period (June to August), and swarming

period (September/October). As dependent binary variable for the

respective models we either classified the mortality cause being

disease or not (i.e. trauma), or the presence-absence of bacterial,

ecto- and endoparasitic infections.

We formulated 4 different hypotheses to test for individual and

species-specific differences in disease susceptibility and infection

rates: (A) Disease-related mortality in bats is influenced by sex, age

and species-specific differences, and degree of endoparasitic

infection. (B) Bacterial infection in bats is influenced by sex, age

and species-specific differences, occurrence of traumatic injuries

and cat predation. (C) Ecto- or (D) endoparasitic infection in bats

is affected by age, sex and species-specific differences. Seasonal

effects were not analyzed because of too many missing data points.

Because the long-term dataset was highly biased towards sampling

procedure, preservation of bat carcasses and following diagnostic

investigations, we split and filtered the full data into several subsets

reflecting the different analyses (Table 1).

All statistical analyses were performed using the R software V.

2.13.1 (R Development Core Team 2011, Vienna, Austria). We

used the chi-square test for given probabilities to evaluate

significant differences in the sex ratio among bats of different

species. For hypotheses A and B, we used a generalized linear

mixed modeling approach (binomial GLMM using function lmer

in library lme4) with bat species included as random effect. This

variable had not been significant as fixed effect (results not shown),

but from other studies we can assume that there are species-

specific differences in susceptibility of bats to certain infectious

agents and therefore included it as random effect. We further used

generalized linear models (GLM with logit link and binomial error

structure; for datasets with bat species .10 individuals) to test for

individual and species-specific differences in parasite infection

rates (hypotheses C and D).

We created a full model for each hypothesis (A–D) to examine

multiple and interaction effects of the specified variables. To select

the final model variables, we used a stepwise backward algorithm

(function stepAIC in library MASS) based on Akaike’s information

criterion (AIC) [40]. The DAIC of the final model was calculated

relative to a random intercept model to demonstrate the effect size

of the selected variables.

Results

Results of the diagnostic analyses follow the full data splitting

into several subsets (see section ‘Statistical analysis’ in Material and

Methods; Table 1).

Full dataset: Bat samples
All sampled bats belonged to 7 different genera (i.e. Pipistrellus,

Nyctalus, Myotis, Eptesicus, Plecotus, Vespertilio, and Barbastella) and 19

European vespertilionid species (Fig. 1A). Three bat species, the

common pipistrelle (P. pipistrellus, n = 138), the noctule bat (N.

noctula, n = 92), and the serotine bat (E. serotinus, n = 53) constituted

about 60% of all bat carcasses investigated in this study, whereas P.

pygmaeus, Nyctalus leisleri, Myotis brandtii, M. bechsteinii, M. dasycneme,

Plecotus austriacus and Barbastella barbastellus were represented in small

numbers of 1 to 4 animals. The overall sex ratio was 1.5 males to 1

female with significant species-specific differences (Fig. 1B). Animals

in their first year of life (neonates, juveniles, and subadults)

represented one third (32.5%, n = 158) of bat samples (Fig. 1C).

Table 1. Description of the data sets used for different analyses.

Analysis
Data set
(total n)

Sex
(% males)

Age
(% adults)

Bat species
(total n)

Full dataset Bat samples 486 55.6 67.5 19

Subset 1 Causes of death 433a 55.0 65.4 19

GLMM: disease- vs. trauma-related mortality (A) 289a 55.0 65.7 17

Subset 2 Bacteriological results 430 58.4 65.3 18

GLMM: bacterial infection vs. no infection (B) 377a 58.1 62.6 18

Subset 3 Virological results 210b 56.7 64.3 16

Subset 4 Parasitological results 433a 55.0 65.4 19

GLM: parasitic infection vs. no infection (C, D) 402a 54.7 65.2 10

GLMM, generalized linear mixed models with bat species included as random effect.
GLM, generalized linear models for datasets with bat species .10 individuals.
A–D: refers to the models analyzed on the different data sets (see chapter ‘Statistical analyses’).
aTo avoid overrepresentation of bat samples that were collected at the same time and location, a randomly selected individual of each group was included in the final
dataset.

bFor detection of lyssavirus antigen, brain tissue of all 486 bats was tested.
doi:10.1371/journal.pone.0029773.t001

Figure 1. Details on bats from Germany. (A) Bat species distribution among the study sample (n = 486). (B) Male-to-female ratio (bat species .10
individuals). Footnotes: 1) Chi-square test, x2 = 11.1, df = 1, p = 0.0009, 2) x2 = 8.8, df = 1, p = 0.003, 3) x2 = 4.0, df = 1, p = 0.05, 4) x2 = 3.5, df = 1, p = 0.06.
Abbreviations: Ppip, Pipistrellus pipistrellus; Pnath, Pipistrellus nathusii; Nnoc, Nyctalus noctula; Mmyst, Myotis mystacinus; Mdaub, Myotis daubentonii;
Mnatt, Myotis nattereri; Eser, Eptesicus serotinus; Enils, Eptesicus nilssonii; Paur, Plecotus auritus; Vmur, Vespertilio murinus. (C) Age-sex distribution
among the study sample (n = 486).
doi:10.1371/journal.pone.0029773.g001
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Subset 1: Causes of death
Overall, we were able to assign a cause of death to 70%

(n = 304) of bats investigated in this study. Two thirds of mortality

were due to trauma (n = 145) or disease (n = 144), while almost 4%

of bats had died of other non-infectious causes like pulmonary

edema, dehydration and hypoglycemia (Table 2). In 30% (n = 129)

no significant pathological findings could be found.

Among the 145 traumatized bats, additional mild (n = 42),

moderate (n = 28) and severe (n = 4) inflammatory organ changes

were noted in one half (50.9%) of individuals, and 23% of the bats

revealed bacterial (n = 19) and/or parasitic infections (n = 15)

(Table 3). Of the 144 bats considered as dying of disease, fatal

bacterial (n = 54), viral (n = 5) and parasitic infections (n = 2) were

observed in 42%. Besides, amniotic fluid aspiration was noted in a

neonate noctule bat (N. noctula), and a juvenile common pipistrelle

(P. pipistrellus) was euthanized because of severe forearm bone

deformation. The remaining 81 bats (56.3%) revealed moderate to

severe pathological changes of unknown etiology or unconfirmed

bacterial or viral cause (Table 2).

Based on the GLMM analysis, significant age- and sex-

dependent differences (DAIC = 23.13) were detected between the

general causes of mortality, disease and trauma (Table 4). The

disease presence in bat samples decreased continuously with

increasing age. Neonates and juveniles of both sexes were

significantly more affected by disease than older age classes

(Table 4; Fig. 2A). We also found a significant trend in disease-

associated mortality between the sexes, with adult females

displaying higher disease prevalence (52.5%) than males (36.4%)

(Table 4). No significant association was observed between a

certain cause of mortality (i.e. disease or trauma) and severity of

endoparasitic infection (DAIC = 0.75, result not shown). The

seasonal distribution of disease-related mortality cases (Fig. 2B)

described a trimodal pattern, with peaks in spring (April), summer

(June to August) and winter (December). The proportion of

traumatized individuals also increased obviously during the

summer months up to and including the swarming period, but

was low during the rest of the year.

Table 2. Causes of mortality of bats from Germany.

Age class Sex class

Cause of death n % Euthanasia ,1 Year Adult Female Male n.d.

Trauma 145 33.5 54 41 104 55 87 3

Unknown trauma cause 71 16.5 29 19 52 33 36 3

Cat predation 66 15.3 23 19 47 18 47 -

Roost destructiona 2 0.5 - - 2 2 - -

Trapped in rain pipea 1 0.2 - - 1 - 1 -

Trapped in window 1 0.2 - - 1 - 1 -

Trapped in lamp 1 0.2 - 1 - - 1 -

Trapped in fly strip 1 0.2 - 1 - 1 - -

Barbed wire injury 1 0.2 1 1 - 1 - -

Smoke poisoning 1 0.2 1 - 1 - 1 -

Disease 144 33.3 7 58 86 64 72 8

Unknown etiology 81 18.7 3 35 46 35 38 8

Bacterial infection 54 12.5 2 20 34 27 27 -

Viral infectionb 5 1.2 1 1 4 1 4 -

Parasitic infection 2 0.5 - - 2 - 2 -

Aspiration pneumonia 1 0.2 - 1 - 1 - -

Bone deformation 1 0.2 1 1 - - 1 -

Others 15 3.4 - 6 9 6 9 -

Pulmonary edema 9 2.1 - 3 6 1 8 -

Dehydration 2 0.5 - - 2 1 1 -

Anemiac 1 0.2 - - 1 1 - -

Hyperthermiad 1 0.2 - 1 - 1 - -

Hypothermia 1 0.2 - 1 - 1 - -

Hypoglycemia 1 0.2 - 1 - 1 - -

No significant findings 129 29.8 1 45 84 33 70 26

Total 433 100 62 150 283 158 238 37

n.d., not determined.
aA randomly selected individual of 3 different groups of adult Nyctalus noctula.
bAdenovirus (bat AdV-2) [25] and European bat lyssavirus (EBLV-1) infection.
cDue to severe tick infestation.
dA randomly selected individual of a group of juvenile Pipistrellus pipistrellus.
doi:10.1371/journal.pone.0029773.t002
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Subset 2: Bacteriological results
About 90% (n = 430) of bat samples were examined bacterio-

logically. Among these, 42 different bacterial genera with more

than 53 bacterial species were identified (Table S1). Predominant

bacteria isolated were Enterococcus faecalis (14.7%, n = 63), Hafnia

alvei (11.2%, n = 48), Serratia liquefaciens (10%, n = 43), and

Pasteurella multocida (7.7%, n = 29). In 37% (n = 157) of bats no

bacterial growth was observed at all.

Comparative bacteriologic and histo-pathologic analysis identi-

fied 22 different bacterial species that were clearly associated with

pathological lesions and/or systemic infection, found in 17%

(n = 73) of bats investigated bacteriologically (Table 5). Members

of the families Pasteurellaceae (above all P. multocida) (41.1%, n = 30),

Enterobacteriaceae (various bacterial species) (28.8%, n = 21), and

Streptococcaceae (above all Enterococcus spp.) (21.9%, n = 16) were

predominant bacteria associated with disease. More than half

(54.8%, n = 40) of bacterial infections were observed in bats with

traumatic injuries. The GLMM analysis revealed low sex- and

age-dependent differences in bacterial infection (DAIC = 1.97,

result not shown). Female bats (21.9%) and adults (21.6%) showed

marginally higher prevalence of bacterial disease compared to

males (18.3%) and to other age classes (15.6%), respectively.

However, we found a strong influence of cat predation

(DAIC = 16) associated with bacterial infection in bats (Table 4).

Subset 3: Virological results
Testing for human-pathogenic zoonotic viruses, no examined

bat sample (0/210) was positive for influenza A virus, corona-,

hanta- and flaviviruses, respectively. No inhibition of the PCR

assays was notified. Out of 486 bats tested for rabies virus

infection, 2 serotine bats (E. serotinus) were positive for lyssavirus by

FAT and RTCIT. The viruses were identified as European bat

lyssavirus type 1 (EBLV-1) sublineage a, both using MAbs and

sequencing.

Applying bat herpesvirus-specific PCR assays, 63 out of 210

bats proved to be infected with 7 of the previously described 8 bat

herpesviruses (Table 6). The highest prevalence of 65% (24/37)

was observed for bat gammaherpesvirus 6 (BatGHV6) in common

pipistrelle bats (P. pipistrellus), followed by bat gammaherpesvirus 5

(BatGHV5, 42.1%) in nathusius’ pipistrelle bats (P. nathusii) and

bat gammaherpesvirus 4 (BatGHV4, 33.8%) in noctule bats (N.

noctula). Co-infection with different bat herpesviruses were

recognized in 4 N. noctula (7.4%) infected with BatGHV3 and

BatGHV4, and in one N. noctula (1.5%) infected with BatGHV4

and BatGHV5. BatGHV5 was not only detected in its initially

specific host P. nathusii, but also in 3 other bat species, i.e. N. noctula,

Myotis myotis and M. mystacinus. Although the prevalence of

BatGHV3 (13.0%) and BatGHV4 (33.8%) differed significantly

within its migrating host N. noctula, no difference was observed

between the sexes. Two juvenile N. noctula were found to be

infected with BatGHV4. Interestingly, for the sedentary bat

species P. pipistrellus being infected with BatGHV6, a considerably

higher prevalence was observed in 22 juvenile bats (72.7%)

resulting in an overall prevalence of 65% also without difference

between adult male and female bats.

Subset 4: Parasitological results
Ectoparasites (mites, fleas, and ticks) were noted in 14% (n = 62)

of bats, but a potential bias in ectoparasite numbers collected from

dead animals in comparison to ectoparasite abundance on live

animals has to be taken in account. Female bats (17.1%) were

slightly more infested by ectoparasites than males (14.7%), whereas

in different age classes ectoparasite prevalence was almost

balanced. The GLM analysis revealed significant species-specific

differences in ectoparasite infestation (DAIC = 14.58, Table 4).

Most bat species revealed low ectoparasite prevalence (range 5.3–

11.8%), while almost 43% (n = 20) of N. noctula were infested with

mites and/or fleas (Fig. 3A).

Microscopic examination of organ tissues revealed endoparasitic

infection in 29% (n = 124) of investigated bats, involving different

protozoan (families Eimeriidae and Sarcocystidae) and helminth

parasites (trematodes, cestodes, and nematodes). Helminthes were

predominantly found in the gastro-intestinal tract of the bats, while

in some animals, granulomatous organ lesions were associated

with larval migration of nematode species. Based on the GLM

analysis, clear age- and species-specific differences (DAIC = 24.95)

were observed between infected and non-infected bats (Table 4).

The prevalence of endoparasitic infection in bat samples increased

significantly with increasing age, whereas the increase in

prevalence was more rapid between juveniles and subadults

(8.5%) compared to the older age classes (4.5%). Marginal

differences were also observed between the sexes, with female

bats showing slightly higher (30.4%) endoparasite prevalence than

males (24.4%). Regarding species-specific differences, large bats

like N. noctula, E. serotinus and V. murinus revealed higher

endoparasite prevalence compared to individuals of medium-sized

or small vespertilionid species (Table 4; Fig. 3B).

Discussion

Causes of death and disease dynamics in bats
This study was based on a passive surveillance sampling strategy

that inherently influences the composition of bats sampled for

diagnostic investigations [27] and might also effect the data

presented on causes of death by ecological and anthropogenic

impacts of urban landscapes [41]. Trauma and disease represented

the most important causes of mortality in deceased bats from

Germany, which differ from results of previous studies [13–15]

where disease-related mortality often played a subordinate role.

Young bats and adult females were significantly more affected by

disease, indicating that sex- and age-related disease prevalence in

Table 3. Pathological findings and bacterial, viral and
parasitic infections specified for the general causes of
mortality, trauma and disease.

Trauma Disease

n % n %

Total number of bats 145 33.5 144 33.3

Pathological findingsa

Injuries 136 93.8 37 25.7

Inflammatory lesions 74 51.0 124 86.1

Non-inflammatory lesions 1 0.7 20 13.9

Spleen activation 81 55.9 82 56.9

Circulatory changes 53 36.3 41 28.5

Metabolic disorders 10 6.8 12 8.3

Bacterial infection 19 13.0 54 37.5

Viral infectionb - - 5 3.5

Parasitic infectionc 15 10.3 14 9.7

aDetails on pathological findings described elsewhere [26].
bAdenovirus (bat AdV-2) [25] and European bat lyssavirus (EBLV-1) infection.
cSevere intestinal trematode infection, disseminated nematode infection, renal
or intestinal coccidiosis [26].

doi:10.1371/journal.pone.0029773.t003
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bats are strongly correlated with the maternal season. This

assumption is further supported by the distinct increase of disease-

related mortality from June to August, which corresponds to the

maternity period of Central European bat species. Similar seasonal

prevalence patterns in bats have also been described for parasitic

(e.g. [42–45]) and viral infections (e.g. [19,46,47]). In contrast, the

increase of trauma-associated mortality cases from July to October

resembles 4 major behavioral activity patterns of European bat

species (i.e. weaning, mating, pre-hibernal fat storage, and

migration) [48] and could therefore predispose bats to trauma.

However, both seasonal peaks also coincide with time and

locations where sick, injured or dead bats are more likely to be

discovered as well as with the seasonal roosting behavior of bats

adapted on urban habitats [27]. The additional seasonal peaks of

disease-associated mortality corresponded to the post-hibernal

and the early hibernal period of temperate zone bats. Currently,

there is a lack of knowledge of bat immunology. It is known for

other mammalian species that hibernation reduces the innate

and adaptive immune response; likewise an increasing risk of

infection could be assumed for hibernating bats [49]. With the

start of the hibernation season, large aggregations of bats

originating from various colonies might enhance the risk of

spreading infectious agents similar to maternity colonies. Equally,

the post-hibernal increase of disease-related mortality is sugges-

tive for reduced immunity in association with prolonged fasting

during hibernation.

Bacterial diseases and cat predation
Bacterial diseases have rarely been documented in bats.

Pasteurella spp., here identified in 7% of bats, were the predominant

bacterial pathogens reported in European bats and infection

appears to be strongly correlated with cat predation [13,14,23,26].

In our study, bacterial infections were confirmed in 17% of bats

investigated bacteriologically. Most of these bacterial isolates

represented opportunistic pathogens that usually do not harm the

host unless the immune system is weakened [50] or preceding

injury to natural host barriers (e.g. skin abrasion). Primary

bacterial pathogens like Samonella enterica serovar Typhimurium,

S. Enteritidis and Yersinia pseudotuberculosis [22] were identified in

almost 12% of affected bats. Some of the bacterial species (e.g.

Burkholderia sp., Cedecea davisae and Clostridium sordellii) are newly

described in bats. Nevertheless, bacteriologic analyses can

markedly be influenced by post-mortem bacterial invaders,

freezing and storage of bat carcasses and the inability to detect

certain bacteria by routine culture methods, resulting in some

bacterial species that might have escaped detection.

We found a strong association between cat predation and

bacterial infection in bats as almost one half of bats (44%) caught

by cats were affected by bacterial disease. Various bacteria can be

transmitted via cat bites [51]; hence bats attacked by cats are likely

to succumb to bacterial infection even if non-fatal injuries were

present. This relation has been proven for P. multocida infections in

European bat species [13,14,23,26]. On the other hand, bats

already debilitated by disease might easier fall prey to predators

like cats. Consequently, bats may also act as vectors for zoonotic

pathogens, as domestic cats could pass these infectious agents on to

humans. Such cross-species transmission events from bats to

domestic animals are well documented [9,52].

Virological investigations
For all tested human-pathogenic zoonotic viruses no infected

bat could be detected in this study except lyssaviruses. Bat rabies

is the only bat transmitted zoonosis in Europe that is known to

have resulted in human cases [53]. Unlike in other mammals

Table 4. Result of the final model variables corresponding to 4 different analyses: (A) disease- vs. trauma-related mortality, and
presence-absence of (B) bacterial, (C) ecto- and (D) endoparasitic infection.

Analysis DAIC* Variable Factor level Estimate SE z-value p-value

(A) GLMM 23.13 Age class 20.56 0.18 23.09 0.002

Sex (male) 20.62 0.28 22.19 0.03

(B) GLMM 16.00 Cat predation 1.20 0.28 4.32 ,0.0001

(C) GLM 14.58 Bat species Nyctalus noctula 20.30 0.30 21.02 0.3

Myotis daubentonii 21.10 0.52 22.13 0.03

Vespertilio murinus 21.56 0.55 22.83 0.005

Eptesicus nilssonii 22.01 0.75 22.68 0.007

Pipistrellus pipistrellus 22.04 0.27 27.42 ,0.0001

Eptesicus serotinus 22.06 0.43 24.75 ,0.0001

Plecotus auritus 22.40 0.74 23.25 0.001

Pipistrellus nathusii 22.74 0.73 23.76 0.0002

Myotis nattereri 22.77 1.03 22.69 0.007

Myotis mystacinus 22.90 0.73 23.98 ,0.0001

(D) GLM 24.95 Age class 0.43 0.15 2.88 0.004

Bat size Large species 20.18 0.18 20.99 0.3

Medium-sized species 21.30 0.23 25.64 ,0.0001

Small species 21.29 0.19 26.86 ,0.0001

GLMM, generalized linear mixed models with bat species included as random effect.
GLM, generalized linear models for datasets with bat species .10 individuals.
AIC, Akaike’s information criterion.
*DAIC of the final model relative to a random intercept model.
doi:10.1371/journal.pone.0029773.t004
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where lyssaviruses ultimately cause lethal rabies, in bats nonlethal

lyssavirus infections may also lead to the development of

immunity [47]. With the detection of EBLV-1 we confirm that

this lyssavirus circulates among E. serotinus as previous studies

showed [18]. In Germany, bat rabies is also caused by EBLV-2

and Bokeloh bat lyssavirus (BBLV) [54,55], but while the latter

was recently isolated from M. nattereri, EBLV-2 is associated with

M. daubentonii and M. dasycneme [56]. The apparent absence of

EBLV-2 and BBLV in the sampled bats is likely due to the fact

that lyssavirus infections have a very low incidence in bat

populations [18] and that the sample size was too limited,

especially concerning the relevant species.

There is a high prevalence for herpesviruses in different

insectivorous bat species in Germany (this study, [24]). Most of

the previously described bat herpesviruses have been detected in

low numbers in more than one bat species [24]. Here, we

observed a high species-specific prevalence among herpesvirus-

infected bats, indicating that a certain type of European bat

herpesvirus is primarily associated with a single bat species. This

is supported by BatGHV6 and BatGHV7 that were again only

identified in their initial hosts P. pipistrellus and P. auritus (both

sedentary), respectively, underlining the typical strong species-

specificity of mammalian herpesviruses. However, species’ range

overlap and close inter-species contacts in bat roosts may result in

cross-species transmission and could explain the observed

overcoming of the species barrier (this study BatGHV5, [24]).

Interspecies transmission have also been discussed for other

mammalian herpesviruses, i.e. bovine and equine herpesviruses

(e.g. [57,58]). Furthermore, for RNA viruses (i.e. rabies virus)

phylogenetic distance between different host species and overlap

in geographic range have recently been demonstrated as strong

predictors of host shifts and cross-species transmission in bats

[59]. Some of the bat species (i.e. N. noctula, P. pipistrellus, and P.

nathusii) in this study appear to be more susceptible to herpesvirus

infection. In N. noctula, 3 different gammaherpesviruses

(BatGHV3, 4, 5) with significant prevalence differences were

recognized. Such type-specific differences in prevalence between

the phylogenetically distant viruses BatGHV3 (13.0%) and

BatGHV4 (33.8%) within one bat species indicates co-evolution-

ary virus-regulated mechanisms.

Figure 2. Age-dependent differences and seasonal variations among the general causes of mortality, disease and trauma. (A) Age-
specific prevalence. (B) Seasonal distribution of trauma- and disease-related mortality cases.
doi:10.1371/journal.pone.0029773.g002
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Differences in parasite prevalence
Parasite infestation in wildlife often occurs without clinical

effects, but severe infection can reduce host fitness either in terms

of survival or reproductive success [60]. Most data on infection

dynamics in bats came from parasite studies focusing on individual

and seasonal variations in ectoparasite prevalence (e.g. [43–

45,61]). Host density, roost preference and movement pattern

seem to be important factors explaining individual and species-

specific parasite infestation rates in bats [43–45]. In European

vespertilionid species, female-biased parasite loads are most likely

associated with host physiology and differences in roosting

behavior [42,44]. We also found species-specific seasonal varia-

tions in ectoparasitic infestation, with N. noctula and M. daubentonii

showing higher ectoparasite prevalence in spring and autumn

compared to the breeding season (data not shown), which is in

accordance with Zahn and Rupp [43].

Additional findings of our parasite analyses are distinct

variations in ecto- and endoparasite prevalence in relation to bat

species. Bats primarily roosting in trees or nest boxes were more

frequently infested with ectoparasites like N. noctula (43%) and M.

daubentonii (25%) compared to other species (range 5–12%)

investigated in this study. High ectoparasite loads have generally

been described in bats preferring enclosed roosts like burrows and

cavities [61,62], suggesting that structural characteristics and the

microclimate of roosting habitats influence ectoparasite survival

and re-infection of bat hosts. This assumption is in accordance

Table 5. Bacteria associated with disease in bats from Germany.

Bacteria Bats Clinical status*

Pasteurella multocida 28 Septicemia; pneumonia; pleuritis; peri-/epicarditis; myocarditis; nephritis; liver/spleen necroses;
wound infection; abscess

Pasteurella multocida, Pasteurella species B 1 Septicemia; glossitis (bite wound infection); liver necrosis

Pasteurella pneumotropica, Vibrio spp. 1 Septicemia

Serratia liquefaciens 5 Systemic infection; pneumonia; wound infection

Serratia marcescens 1 Systemic infection; pneumonia

Enterobacter cancerogenus 2 Systemic infection; pneumonia

Enterobacter cancerogenus, Hafnia alvei 1 Peritonitis; pneumonia

Hafnia alvei 1 Systemic infection

Klebsiella oxytoca 3 Systemic infection; pneumonia

Klebsiella mobilis 1 Systemic infection; pneumonia

Escherichia coli 2 Systemic infection; pneumonia; nephritis; cystitis

Salmonella enterica serotype Typhimurium 2 Systemic infection; pneumonia; meningitis

Salmonella enterica serotype Enteritidis 1 Systemic infection; pneumonia, wound infection

Yersinia pseudotuberculosis 1 Systemic infection; pneumonia; liver/spleen necroses

Cedecea davisae 1 Pneumonia

Burkholderia sp. 1 Systemic infection

Enterococcus faecalis 9 Septicemia; pneumonia; endocarditis; abscess

Enterococcus faecium 3 Septicemia; pneumonia

Enterococcus faecalis, Enterococcus faecium 2 Septicemia; pneumonia; myocarditis; wound infection

Staphylococcus aureus 3 Septicemia

Staphylococcus aureus, Enterococcus faecalis 1 Septicemia; dermatitis

Aerococcus viridans 1 Systemic infection; pneumonia

Bacillus sp. 1 Pneumonia

Clostridium sordellii 1 Hemorrhagic enteritis

*Histo-pathological findings described in more details elsewhere [26].
doi:10.1371/journal.pone.0029773.t005

Table 6. Bat herpesvirus infection in bats from Germany.

Virus Bat species Total Positive (%)

Bat herpesviruses 16 species 210 63 (30.0)

BatGHV1a Eptesicus serotinus 9 1 (11.1)

BatGHV3a Nyctalus noctulac 54 7 (13.0)

BatGHV4b Nyctalus noctulac 65 22 (33.8)

BatGHV5b Pipistrellus nathusii 19 8 (42.1)

Nyctalus noctulac 65 1 (1.5)

Myotis myotis 2 1 n.d.

Myotis mystacinus 21 1 (4.8)

BatGHV6a Pipistrellus pipistrellus 37 24 (64.9)

BatGHV7b Plecotus auritus 12 2 (16.7)

BatBHV1b Myotis nattereri 2 1 n.d.

BatGHV, Bat gammaherpesvirus.
BatBHV, Bat betaherpesvirus.
aTested bats from a sample set containing 180 animals.
bTested bats from a sample set containing 210 animals.
cCo-infection of different herpesviruses recognized.
n.d., not determined due to insufficient sample numbers.
doi:10.1371/journal.pone.0029773.t006
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with results of Pearce and O’Shea [63] who found differences in

ectoparasite prevalence and intensity in Eptesicus fuscus in relation

to environmental factors (i.e. temperature and humidity) of

different roost sites. In contrast to these results, the endoparasite

prevalence in European vespertilionid bats seems to be correlated

with the body size of the bat species [26]. Species-specific

variations in diet and prey selection could possibly effect

endoparasite prevalence in insectivorous bats [64], as larger bats

feed on insects of a wider size range including hard-bodied prey

[65,66]. This assumption is supported by the clear prevalence

increase in subadult and adult bats compared to low endoparasite

infection rates in juveniles primarily feeding on milk.

Conclusion
A multitude of publications is restricted to pathogen presence or

absence in different chiropteran species; here we demonstrate the

impact of diseases and infectious agents on bats themselves.

Alongside to trauma-associated mortality and undefined mortality

cases, disease aspects represented one third of mortality causes in

486 investigated bats of 19 European vespertilionid species. By

comparing pathology and bacteriology results, we were able to

detect 22 different bacterial species that were clearly associated

with disease in bats. At least 12% of all bats had died due to

bacterial, viral and parasitic infections. Finally, we found clear

seasonal and individual variations in disease prevalence and

infection rates, indicating an increased susceptibility to infectious

agents in female bats and juveniles during the maternity season.

Our data emphasize and provide the basis for disease related

studies in bat species on population level to elucidate the

complexity of the ecology of infectious agents and host species

likewise.

Supporting Information

Table S1 Bacteria isolated from bats found in Ger-
many.
(DOC)

Figure 3. Species-specific parasite infection rates. (A) Ecto- and (B) endoparasite prevalence in different European vespertilionid bat species.
Error bars represent 95% binomial confidence intervals. Abbreviations: Nnoc, Nyctalus noctula; Mdaub, Myotis daubentonii; Vmur, Vespertilio murinus;
Enils, Eptesicus nilssonii; Ppip, Pipistrellus pipistrellus; Eser, Eptesicus serotinus; Paur, Plecotus auritus; Pnath, Pipistrellus nathusii; Mnatt, Myotis nattereri;
Mmyst, Myotis mystacinus.
doi:10.1371/journal.pone.0029773.g003
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