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Abstract

Motivation: Over the past years, many computational methods have been developed to incorporate information
about phenotypes for disease–gene prioritization task. These methods generally compute the similarity between a
patient’s phenotypes and a database of gene-phenotype to find the most phenotypically similar match. The main
limitation in these methods is their reliance on knowledge about phenotypes associated with particular genes, which
is not complete in humans as well as in many model organisms, such as the mouse and fish. Information about
functions of gene products and anatomical site of gene expression is available for more genes and can also be
related to phenotypes through ontologies and machine-learning models.

Results: We developed a novel graph-based machine-learning method for biomedical ontologies, which is able to
exploit axioms in ontologies and other graph-structured data. Using our machine-learning method, we embed genes
based on their associated phenotypes, functions of the gene products and anatomical location of gene expression.
We then develop a machine-learning model to predict gene–disease associations based on the associations between
genes and multiple biomedical ontologies, and this model significantly improves over state-of-the-art methods.
Furthermore, we extend phenotype-based gene prioritization methods significantly to all genes, which are associ-
ated with phenotypes, functions or site of expression.

Availability and implementation: Software and data are available at https://github.com/bio-ontology-research-
group/DL2Vec.

Contact: robert.hoehndorf@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the molecular mechanisms underlying a set of abnor-
mal phenotypes is important for diagnosis, prevention and develop-
ment of therapies. Methods to identify and study these mechanisms
include observational, experimental and computational approaches.
In particular, in rare diseases, deciphering the mechanisms underly-
ing a set of phenotypes is often limited due to small sample sizes.
Computational methods that can reveal or model mechanisms in
these diseases often rely on biological background knowledge.

Several computational methods have been developed to priori-
tize candidate genes for a particular disease or set of abnormal phe-
notypes (Feng, 2017; Guala and Sonnhammer, 2017; Tomar et al.,
2019; Tranchevent et al., 2016; Zhang et al., 2018). Many such
methods rely on identifying similarities between genes and suggest
new candidates based on such a similarity (Gillis and Pavlidis,

2012). This similarity can be computed on several known features
about a gene, including phenotype associations (Greene et al.,
2016), distance within an interaction network (Peng et al., 2018) or
functional similarity (Liu et al., 2018; Schlicker and Albrecht,
2010).

Phenotype-based methods have been particularly successful in
finding candidate genes causing Mendelian diseases (Hoehndorf
et al., 2011; Shefchek et al., 2020; Washington et al., 2009).
Phenotype-based methods compare disease phenotypes to known
genotype–phenotype associations and suggest candidate genes based
on phenotype similarity measures (Köhler et al., 2009). While these
methods are successful, their main limitation is the incomplete
knowledge of phenotypes that are associated with particular
genotypes. One approach to overcome this limitation is the use of
phenotype associations from model organism experiments together
with ontologies that integrate phenotypes across different species
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(Bone et al., 2016; Hoehndorf et al., 2011; Smedley et al., 2013;
Wang et al., 2017a; Washington et al., 2009). Although the use of
model organisms expanded the scope of prioritizing candidate
genes, there is only a limited amount of information about pheno-
type associations available for genotypes in model organism;
furthermore, genes for which there are no orthologs in model organ-
isms cannot benefit from cross-species phenotype-based gene priori-
tization approaches.

One possibility to overcome the limited information on geno-
type–phenotype associations is the use of prediction models that pre-
dict phenotypes, and efforts, such as the Computational Assessment
of Function Annotation (Zhou et al., 2019) challenge regularly
evaluate function and phenotype prediction models; while function
prediction methods have increased significantly in performance and
provide accurate predictions at least for some types of functions
(Zhou et al., 2019), phenotype predictions still perform worse than
function prediction methods (Jiang et al., 2016). Phenotypes arise
from a genotype and interactions with the environment (Johannsen,
1911), and predicting the endophenotypes resulting from molecular
aberrations requires the use of knowledge about molecular interac-
tions as well as physiological interactions within and between cells,
tissues and organs.

Logical axioms, as used in many phenotype ontologies to formal-
ly characterize and standardize phenotype descriptions (Gkoutos
et al., 2018; Köhler et al., 2019; Mungall et al., 2010), relate pheno-
types systematically to biological functions and anatomical
locations, and thereby integrate physiology, anatomy and abnormal
phenotypes within a unifying formal framework (Gkoutos et al.,
2018; Mungall et al., 2010; Shefchek et al., 2020). The axioms in
phenotype ontologies rely on ontologies that can be applied across
different species. In particular, biological processes, functions and
cellular anatomy are described using the Gene Ontology (GO)
(Ashburner et al., 2000), and anatomical sites are described using
the UBERON anatomy ontology (Mungall et al., 2012); both ontol-
ogies are designed to integrate information across different species,
and multiple large databases contain information that relate bio-
logical entities with classes in these ontologies. Phenotype ontologies
therefore not only integrate background knowledge but can also be
used to integrate data associated with different ontologies; in par-
ticular, they can be used to integrate functions of gene products,
anatomical site or tissue of gene expression, and phenotypes
resulting from a gene’s loss of function.

Using ontologies and the background knowledge they contain in
machine-learning models can significantly improve their perform-
ance (Smaili et al., 2020). Here, we developed an ontology-based
machine-learning method to prioritize candidate genes based on ab-
normal phenotypes observed in mouse models, the normal functions
of gene products and anatomical location of gene expression. Our
method combines axioms in ontologies and annotations to ontology
classes. We evaluate several machine-learning methods that utilize
ontology axioms, and develop a novel graph-based method that
overcomes several limitations of existing methods, in particular,
when applying machine learning to different ontologies in which
classes are not related mainly through subclass axioms but rather
through other types of axioms. We demonstrate that our approach
improves significantly compared to established phenotype-based
gene prioritization methods, and further extends the application of
these methods to all genes for which either their functions or their
anatomical location of expression is known.

2 Materials and methods

2.1 Ontology and annotation resources
We downloaded GO (Ashburner et al., 2000) annotations of 18 495
human gene products (495 719 annotations in total) from the GO
website on March 20, 2020. We excluded the GO annotations
where the evidence code indicated that the annotation was inferred
from electronic annotation or for which no biological data are avail-
able (ND).

We obtained phenotype annotations for 13 529 mouse genes,
including 228 214 associations between genes and MP (Smith and
Eppig, 2009) classes, from the file MGI_GenePheno.rpt available at
the MGI database (Smith et al., 2018). Phenotype associations were
downloaded on March 20, 2020. We map each mouse gene to their
human ortholog using the file HMD_HumanPhenotype.rpt avail-
able at the MGI database, resulting in 10,951 human genes where
the mouse ortholog has phenotype associations.

We further downloaded the Tissue Expression Profiles (GTEx)
dataset (Ardlie et al., 2015) from the Gene Expression Atlas
(Papatheodorou et al., 2020) on March 20, 2020. GTEx character-
izes gene expression across 53 tissues. We map the Ensembl protein
identifiers to Entrez gene identifiers using the mapping provided by
the Entrez database (Maglott et al., 2011). We set a threshold for
whether a gene is expressed or not in a tissue by setting a cutoff of
4.0 transcripts per million; this threshold is determined experimen-
tally (see Supplementary Fig. S4). Finally, we obtained 20 538
Entrez genes which have expression above this threshold in one or
more tissue. We map each tissue to the Uberon Anatomy Ontology
(Mungall et al., 2012), downloaded from the AberOWL ontology
repository on March 20, 2020. We exclude the expression in EBV-
transformed lymphocyte and transformed skin fibroblast, since these
two tissues are not available in the UBERON ontology.

The PhenomeNET Ontology (Rodrı́guez-Garcı́a et al., 2017) is a
cross-species ontology, which integrates multiple species-specific
phenotype ontologies as well as related ontologies, such as the GO
and the Uberon Anatomy Ontology. We downloaded the
PhenomeNET ontology from the AberOWL ontology repository on
March 20, 2020.

2.2 Evaluation datasets
We obtain associations between 2542 human diseases and 2885
genes from the file MGI_DO.rpt available at the MGI database,
downloaded on March 20, 2020; the dataset contains 4051 gene–
disease associations in total, where diseases are represented using
their OMIM identifier (Amberger et al., 2011).

As our gene–phenotype associations are to mouse genes (result-
ing from a loss of function of that gene) while our evaluation set
uses human gene identifiers, we need to identify human orthologs of
the mouse genes. We identify the mouse orthologs of human genes,
and human orthologs of mouse genes, using the file
HMD_HumanPhenotype.rpt at the MGI database, downloaded on
March 20, 2020. Supplementary Table S1 summarizes our training
and evaluation data. For each type of feature, there is a different
number of associated genes, and consequently a different number of
gene–disease associations we can identify; most disease-associated
genes have features in all three datasets.

We use functional interactions between proteins obtained from
the STRING database (Szklarczyk et al., 2019) on March 1, 2020.
The interaction dataset contains 19 355 proteins and 11 759 455
edges between them. We mapped the proteins to the UniProt data-
base and filter out those entries that did not map to the UniProt
database. Further, STRING provides a confidence score for an inter-
action and we only keep interactions with a confidence of at least
700. The remaining interaction network consists of 17 178 proteins
with 840 672 interactions.

2.3 Embedding methods
Onto2Vec (Smaili et al., 2018) is a method to learn the semantic
embedding representations of biological entities and by extracting
features from ontology-based annotations, axioms and ontology
structures. It directly utilizes the axiom features and also indirectly
infers new logical axiom features by applying the HermiT OWL rea-
soner (Motik et al., 2009). Onto2Vec collects data and axioms as
‘sentences’ and uses a skip-gram model to learn the vector represen-
tation for each word. OPA2Vec (Smaili et al., 2019) is an extension
of Onto2Vec, which includes the annotation axioms in ontologies
and uses transfer learning to assign them a semantics.

A random walk of length k on a graph G ¼ ðV;EÞ is a sequence
of nodes and edges n1; e1; . . . ; ek�1; nk such that for all i, 1 � i <
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k; ei � ðni; niþ1Þ 2 E and niþ1 was chosen randomly from all neigh-
bors of ni. Here, we also include edge labels in the walk. For the
purpose of selecting neighboring nodes, we treat the graph as undir-
ected. We generate 80 walks from each node, and stop the walks
after 20 steps. When including functional interactions between
proteins in our knowledge base, we increased the number of walks
to 200 and stop the walks after 30 steps to account for the higher
node degree.

We implement our embedding algorithm in a software called
DL2Vec and make the source code, together with our experiments,
freely available under the GNU General Public License version 3.

2.4 Word2Vec model
Word2Vec (Mikolov et al., 2013) is a language model for learning
vector representations of words based on co-occurrence within a
context window. We use the skip-gram model of Word2Vec
(Mikolov et al., 2013). Given a sentence with N words, the skip-
gram model reads the sentence with a window kernel size c and
maximizes the co-occurrence probability of words that appear in the
same window.

We apply the SkipGram algorithm on our node and edge se-
quence corpus, which is generated by a random walk on the hetero-
geneous graph. We set the skip-gram parameters to a window size of
10, and min_count value to 1. The training process iterates 20 times,
and it outputs a 200 dimensional embedding for each entity.

2.5 Pointwise learning-to-rank prediction model (,)
We use a pointwise learning-to-rank model to predict associations
between genes and diseases. The model takes two vectors V1 and V2

as input for two independent neural networks �1 and �2. We then
calculate the inner product of �1ðV1Þ and �2ðV2Þ and use a sigmoid
function to obtain a similarity score between V1 and V2. We train
this model using binary cross-entropy as loss function. Each neural
network �1 and �2 consists of two hidden layers, the first with 256
neurons and the second with 50. We use 20% dropout (Srivastava
et al., 2014) after each layer, followed by a LeakyReLU (Maas et al.,
2013) as the activation function. The model parameters are opti-
mized using the Adam (Kingma and Ba, 2014) optimizer.

2.6 Evaluation
We use the ROC curve (Fawcett, 2006) to assess the performance of
our classification model. The ROC curve is a plot of the true positive
rate as a function of the false positive rate. To compute true positive
and false positive rate, we rank all genes for each disease, and com-
pute the average true and false positive rates at each rank. We then
generate the ROC curve, and compute the ROCAUC, as the aver-
ages across all diseases. We also report the recall at rank n (Hits@n).

We compute differences in the ROCAUC using the non-
parametric Mann–Whitney U test (Nachar, 2008). For the test, we
test the significance of ranking true positive associations differently
between two prediction models. We consider differences as signifi-
cant if P<0.05. In order to compare the performance of the embed-
dings generated from phenotypes (MP), gene expression (UBERON)
and biological functions (GO) directly, we focus on genes which
have annotations to all three ontologies as evaluation set; the num-
ber of genes that have annotations in all three ontologies is 9886.

3 Results

3.1 Phenotype-based prioritization of candidate genes
We developed a method based on deep learning-to-rank candidate
causative genes given a set of abnormal phenotypes that characterize
a genetically based disease. We prioritize, or rank, genes based on
three distinct types of features that can be associated with a gene:
phenotypes associated with the gene’s orthologs in the mouse; the
functions and cellular locations of the gene products for which the
gene encodes; and the anatomical locations at which the gene is
expressed. Each of these features is expressed using biomedical
ontologies and we use the ontology as part of the learning problem.

For this purpose, we first embed the information about genes and
diseases together with the ontologies used to characterize them in a
vector space and then use a supervised machine-learning model to
predict whether a gene is causative of a set of phenotypes or disease.

Specifically, we obtain the annotations of human genes with
functions and cellular locations encoded by the GO (Ashburner
et al., 2000) from the GO Annotation database (Huntley et al.,
2015), their anatomical site of expression in functional genomics
experiments (Ardlie et al., 2015) encoded using the UBERON anat-
omy ontology (Mungall et al., 2012), and the phenotypes of their
mouse orthologs from the Mouse Genome Informatics (MGI) data-
base (Smith et al., 2018) and characterized using the Mammalian
Phenotype Ontology (MP) (Smith and Eppig, 2009). Furthermore,
we obtain phenotype annotations of human diseases with the
Human Phenotype Ontology (HPO) (Robinson et al., 2008) from
the HPO database (Köhler et al., 2019). To combine the annotations
using the different ontologies, we use the integrated PhenomeNET
ontology (Rodrı́guez-Garcı́a et al., 2017).

We ‘embed’ each gene and disease, their ontology-based annota-
tions, and the ontologies used in the annotations, in a vector space.
An embedding is a function from gene or disease identifiers, and
from entities in ontologies, into a real-valued vector <n of size n
(with n being a parameter of the embedding) such that some proper-
ties of the ontologies are preserved in <n. Initially, we use the
Onto2Vec (Smaili et al., 2018), OPA2Vec (Smaili et al., 2019),
methods to generate the embeddings as they have performed well in
similar tasks before. We also use SmuDGE (Alshahrani and
Hoehndorf, 2018), which generates feature vectors for entities rep-
resented in a knowledge graph and encodes for (parts of) the know-
ledge contained in ontologies. We generate embeddings individually
using phenotype, GO and UBERON annotations; because these
annotations are available for different numbers of genes, we also
generate a set of embeddings based on the union of all genes and
their annotations (i.e. for genes that have annotations from one, two
or all three datasets) as well as another set of embeddings only for
genes that have annotations from all three sources.

We use a pointwise learning-to-rank model (see Section 2 and
Supplementary Fig. S1), to prioritize gene–disease pairs based on
gene–disease associations in the Online Mendelian Inheritance in
Men (OMIM) database (Amberger et al., 2011). Our model is based
on neural networks; given a pair of embedding vectors G and D as
input, the model independently transforms the embeddings into a
lower-dimensional representations using two fully-connected hidden
layers, and then computes the inner product followed by a sigmoid
function that outputs a value between 0 and 1, and which we use as
the prediction score for an association between G and D.

We train and test our model based on 10-fold cross-validation;
in each fold we split our data by the disease (and not by the gene–
disease association pair) to ensure that the diseases on which we test
have not been seen during training. Within each split, we use 10%
of the data as the testing data used to report the final results of our
model, and we use the other 90% data to train the model and tune
its parameters; within these 90% of training data in each fold, we
use a randomly chosen set of 90% for training and 10% for valid-
ation. We use sub-sampling of ‘unknown’ associations between
genes and diseases to generate negative associations for each disease;
we sample 20 negatives for each positive association. We then use
binary cross-entropy as the loss function to optimize the ranking
model and use the Adam optimizer (Kingma and Ba, 2014) to train
our model.

For the evaluation of our learning-to-rank model, we rank all
genes for each disease based on their prediction score (within the
testing set). We then use the receiver operating characteristic (ROC)
curve (Fawcett, 2006) and the area under the ROC curve
(ROCAUC) to evaluate how the known positive gene–disease pairs
rank among all the possible pairs. Supplementary Figure S2 shows
the ROC curves for our prediction model when using different
embedding methods, and Table 1 summarizes the results of the
cross-validation. We find that we can identify causative genes best
when using phenotypes, while the predictive performance decreases
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when using features derived from gene functions and anatomical site
of gene expression.

We hypothesize that one of the reasons for the observed differ-
ence in predictive performance between the different data types is
the inability of Onto2Vec and OPA2Vec to capture longer distance
dependencies through which phenotypes, functions and anatomical
locations are connected within the PhenomeNET ontology. In par-
ticular, Word2Vec is equivalent to factorize a matrix, which con-
tains the pointwise mutual information (Church and Hanks, 1990)
of words within a context window (Levy and Goldberg, 2014), and
this measure is only based on directly co-occurring tokens (within
the context window considered by Word2Vec). When using
Onto2Vec or OPA2Vec, genes and diseases will only directly co-
occur with the ontology classes used to characterize them (i.e. phe-
notypes, GO functions and UBERON anatomical classes for genes,
and phenotypes for diseases), as well as all their superclasses (be-
cause Onto2Vec and OPA2Vec compute the transitive closure over
the subclass hierarchy and add them to the set of asserted axioms).
Consequently, even if a phenotype class is defined based on an ana-
tomical location or a function, this anatomical location or function
class will not co-occur with a gene or disease that is associated with
this phenotype. For example, the class Ventricular septal defect (HP:
0001629) is defined as an incomplete closure of the Interventricular
septum (UBERON: 0002094), which in turn is constrained to be a
part of the Heart (UBERON: 0000948) in UBERON. When embed-
ding genes based on their anatomical site of expression (i.e. using
the UBERON ontology) and diseases based on their phenotypes,
Onto2Vec and OPA2Vec will only add subclass relations as directly
co-occurring tokens to use in the embedding but not the classes that
are linked indirectly through axioms.

We hypothesize that incorporating these indirect associations
will allow us to better utilize the background knowledge contained
in the ontologies and further improve predictive performance, and
we develop a novel embedding approach for ontologies that aims to
improve the embedding of ontologies with many complex axioms,
as well as embeddings of entities, which are annotated with classes
that do not stand in a subclass relation but are related through more
complex axioms.

3.2 Embedding graph-based representations of

ontologies
Our novel embedding approach is inspired by the OWL2Vec
(Holter et al., 2019) as well as the Walking RDF & OWL
(Alshahrani et al., 2017) and SmuDGE (Alshahrani and Hoehndorf,
2018) methods, which first convert ontologies into a graph based on
syntactic patterns within the ontology axioms, and then apply a
knowledge graph embedding (Wang et al., 2017b) on the resulting
graph. However, our method extends these approaches to incorpor-
ate more complex forms of axioms into the generated graph so that
the complexity of the axioms in a cross-species phenotype ontology,
such as PhenomeNET (Rodrı́guez-Garcı́a et al., 2017) can be
utilized.

We have defined a transformation function (shown in Table 2)
that is used to convert ontology axioms in the Web Ontology
Language (OWL) (Grau et al., 2008) format into a graph. The trans-
formation function considers logical operators as well as quantifiers,
and converts them into edges (or subject–predicate–object triples) of
a graph. The function is applied to all logical axioms in an ontology,
determines whether the precondition or preconditions of the

Table 1. Evaluation results for predicting gene–disease associations using embeddings generated from the MP, GO and UBERON anatomy

ontology

Gene–disease associations without PPI Gene–disease associations with PPI

Methods Features ROCAUC Hits@1 Hits@10 Hits@100 ROCAUC Hits@1 Hits@10 Hits@100

MP 0.903 (0.835–0.931) 0.012 0.207 0.355 0.929 (0.889–0.956) 0.019 0.274 0.440

GO 0.829 (0.789–0.910) 0.004 0.131 0.315 0.856 (0.832–0.917) 0.008 0.226 0.364

UBERON 0.700 (0.638–0.739) 0.003 0.080 0.145 0.698 (0.654–0.740) 0.006 0.063 0.118

Intersection 0.918 (0.885–0.935) 0.012 0.256 0.442 0.928 (0.800–0.959) 0.016 0.300 0.490

Onto2Vec Union 0.958 (0.903–0.975) 0.009 0.229 0.406 0.957 (0.929–0.968) 0.013 0.258 0.445

MP 0.907 (0.864–0.923) 0.019 0.204 0.372 0.910 (0.814–0.947) 0.015 0.250 0.427

GO 0.826 (0.802–0.862) 0.015 0.194 0.313 0.841 (0.821–0.880) 0.009 0.219 0.354

UBERON 0.717 (0.650–0.784) 0.017 0.127 0.208 0.727 (0.702–0.759) 0.006 0.114 0.191

Intersection 0.920 (0.880–0.936) 0.011 0.256 0.445 0.928 (0.812–0.948) 0.020 0.304 0.468

OPA2Vec Union 0.954 (0.937–0.967) 0.008 0.197 0.378 0.959 (0.943–0.965) 0.013 0.248 0.457

MP 0.955 (0.920–0.968) 0.025 0.282 0.602 0.958 (0.943–0.970) 0.030 0.250 0.627

GO 0.899 (0.805–0.934) 0.021 0.216 0.564 0.903 (0.843–0.937) 0.027 0.258 0.574

UBERON 0.800 (0.703–0.875) 0.025 0.162 0.454 0.843 (0.809–0.928) 0.023 0.215 0.501

Intersection 0.948 (0.898–0.975) 0.031 0.225 0.618 0.953 (0.901–0.986) 0.032 0.275 0.629

OWL2Vec Union 0.968 (0.953–0.978) 0.029 0.248 0.617 0.971 (0.963–0.985) 0.025 0.245 0.628

MP 0.957 (0.941–0.974) 0.042 0.225 0.614 0.956 (0.930–0.969) 0.051 0.246 0.632

GO 0.894 (0.851–0.925) 0.025 0.243 0.551 0.904 (0.835–0.953) 0.029 0.253 0.556

UBERON 0.815 (0.696–0.879) 0.038 0.194 0.460 0.847 (0.804–0.881) 0.032 0.200 0.507

Intersection 0.956 (0.931–0.980) 0.027 0.248 0.641 0.951 (0.935–0.960) 0.024 0.233 0.611

SmuDGE Union 0.977 (0.969–0.985) 0.024 0.244 0.615 0.973 (0.952–0.986) 0.028 0.214 0.582

MP 0.957 (0.931–0.971) 0.026 0.284 0.638 0.959 (0.941–0.994) 0.052 0.258 0.654

GO 0.910 (0.892–0.947) 0.023 0.235 0.579 0.921 (0.896–0.942) 0.044 0.273 0.585

UBERON 0.842 (0.685–0.898) 0.020 0.155 0.470 0.854 (0.821–0.889) 0.019 0.190 0.515

Intersection 0.954 (0.928–0.977) 0.032 0.252 0.642 0.956 (0.931–0.978) 0.036 0.295 0.650

DL2Vec

(our model)

Union 0.978 (0.967–0.998) 0.024 0.244 0.635 0.976 (0.948–0.989) 0.037 0.255 0.637

Note: The intersection represents embeddings generated jointly from all three types of ontologies and associations, limited to genes that have associations to all

three ontologies, while union represents embeddings generated jointly from all three types of ontologies and associations, limited to genes that have associations

in at least one of the three ontologies. For ROCAUC, we report the intervals obtained from cross-validation. The results ‘without PPI’ use a graph based on ontol-

ogy axioms and associations between genes/diseases and ontology classes; the results ‘with PPI’ also include functional interactions between genes/proteins as part

of the graph. Best performing results are highlighted in bold.
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function are satisfied for the axiom, and if they are satisfied it adds
one or more edges to the graph.

Our transformation considers axioms pertaining to classes (the
ontology, or TBox). Associations between a gene G and an associ-
ated ontology class C can be modeled in OWL as an axiom G
SubClassOf: has-function some C (or using some other rela-
tion instead of has-function) and, as a consequence, a direct
edge between G and C will be created through our algorithm. We
convert all axioms from the PhenomeNET ontology, and the anno-
tations of gene and disease entities with their ontology classes, into a
graph representation using the transformation function in Table 2.
After generating the graph, we apply iterated random walks starting
at nodes of the graph to generate a corpus, and use Word2Vec
(Mikolov et al., 2013) to generate embeddings for nodes and edge
labels based on this corpus.

We repeat our supervised training process using our novel
embedding method. The results are summarized in Table 1 (left-
hand side, ‘without PPI’) and ROC curves for this task shown in
Supplementary Figure S2. While the performance in predicting
gene–disease associations using only phenotype annotations is com-
parable to the predictive performance observed when using
Onto2Vec and OPA2Vec, we observe a significant improvement in
ROCAUC when using features encoded using GO
(p ¼ 2:02� 10�125, Mann–Whitney U test) and UBERON
(p ¼ 2:77� 10�152, Mann–Whitney U test), indicating that our ap-
proach can better capture relations between classes that are related
through complex axioms instead of only subclass axioms. The
SmuDGE and OWL2Vec methods are more similar to our approach
and their performances are closer to our method; however, we still
improve over both SmuDGE and OWL2Vec when using only GO
and UBERON as features. We also reports recall (hits) at ranks 1,
10 and 100.

3.3 Adding network information
Since our embedding approach is based on graphs and random
walks, it can naturally accommodate other graph-structured infor-
mation in addition to the graph generated from the ontology axi-
oms. There are many biological networks that also relevant to
understand gene–disease associations (Alanis-Lobato et al., 2016;
Al-Harazi et al., 2016; van Dam et al., 2018), in particular inter-
action networks. To determine whether our method is able to utilize
this information, we conduct another experiment in which we add
functional interactions between proteins obtained from the STRING
database (Szklarczyk et al., 2019) to the knowledge base. We add
the interactions to our graph as direct interacts-with edges be-
tween genes (or, equivalently, for an interaction between proteins P1

and P2, we add the axiom P1v9interacts�with:P2 to the know-
ledge base and convert them according to the conversion rules in
Table 2), and then we repeat our workflow and predict associations
between genes and diseases based on the new embeddings (which
now also contain information about interactions between genes/pro-
teins in addition to the associations with ontology classes as in the
previous experiment). The results of this experiment are shown in
Table 1 (right-hand side, ‘with PPI’) and Supplementary Figure S3,
which shows the overall performance obtained from our method

using network information and its comparison with embeddings
based on other methods.

We find that our workflow results in the best-performing
model with regard to ROCAUC, in particular, when comparing the
embeddings generated using ontologies of different domains, such as
when comparing diseases (characterized with phenotypes) and genes
characterized by their function or anatomical site of expression.

4 Discussion

We designed a novel method to prioritize candidate genes given a set
of abnormal phenotypes associated with a genetically based disease;
our method uses information about genes obtained from animal
model phenotypes, the functions of gene products, the anatomical
location of gene expression and interaction networks, as well as a
large amount of background knowledge contained in biomedical
ontologies. Our method improves over other phenotype-based meth-
ods in several ways.

First, we use a pointwise learning-to-rank machine-learning
model, which improves the predictive performance when evaluated
using gene–disease associations from the OMIM (Amberger et al.,
2011) database; our model is designed to directly learn the similar-
ities between two embeddings and results in improved predictive
performance when compared to other models (Smaili et al., 2018,
2019) used to predict gene–disease associations based on
embeddings.

Second, we developed a novel method to exploit complex axioms
by converting them into a graph and relying on graph embeddings;
we show that this approach improves performance significantly
when embedding multiple ontologies that are only linked through
complex axioms. This advance is particularly important in ontolo-
gies that are heavily formalized using OWL and that are interlinked,
such as the ontologies in the collaborative OBO Foundry effort
(Smith et al., 2007). For example, using DL2Vec, we are able to pri-
oritize the association between a Mendelian form of cataract
(OMIM: 604 307) and the gene CRYGC within the first two ranks
when incorporating the GO, whereas OPA2Vec and Onto2Vec rank
this gene below rank 1000. One of the key phenotypes of cataract is
visual impairment (HP: 0000505), which is defined, in the HPO, as
a decreased visual perception (GO: 0007601); based on this formal
definition, DL2Vec creates an edge between visual impairment and
visual perception. The gene CRYGC is associated with the GO class
visual perception. When performing the iterated random walks from
either the disease node or the gene node, we find that multiple walks
use this edge and therefore lead to a direct co-occurrence of both the
disease and the gene with the nodes representing visual impairment
as well as visual perception; applying Word2Vec on these walks
results in the gene embedding and disease embedding to become
more similar to each other and allows DL2Vec to prioritize the asso-
ciation at one of the top ranks.

Third, our method prioritizes candidate genes for a set of abnor-
mal phenotypes using a combination of gene expression, function,
network, phenotype data and ontologies. In contrast to methods
that rely on knowledge about disease-associated genes in order to
prioritize new candidates, the input to our method are only the

Table 2. The transformation rules to convert axioms in ontology O into a graph using DL2Vec

Condition 1 Condition 2 Triple(s)

AvQR0 . . . QRmD

A � QR0 . . . QRmD

D :¼ B1t . . .tBn j B1u . . .uBn hA; ðR0 . . . RmÞ;Bii for i 2 1 . . . n

AvB hA; SubClassOf ;Bi
A � B hA;EquivalentTo;Bi

Note: Q represents an arbitrary quantifier or cardinality restriction, A and Bi represent arbitrary class names and Ri represents arbitrary relation names. Our al-

gorithm iterates through all axioms in O and determines whether the conditions are satisfied; if the condition or conditions are satisfied, the corresponding triple

or triples are added to the resulting graph. For example, 0feedingbehavior0vbehavior will result in the triple h0feedingbehavior0; SubClassOf; behaviori being

added. The first rule captures more complex axioms where multiple relations could be used as part of the axiom and D is either a class name or a complex class de-

scription (union or intersection); in the latter case, multiple triples are added to the resulting graph.
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phenotypes observed in a patient. In our approach, prioritization of
candidate genes does not rely on knowledge (or existence) of other
genes associated with the same phenotypes. We achieve this by com-
bining the different annotations on two distinct levels: first, the dif-
ferent annotations (phenotype, function, expression) are combined
on the level of a gene or gene product (which we do not distinguish),
so that a single entity (the gene and its products) is associated with
all three types of information; second, we also utilize the links be-
tween ontologies directly. The links between the classes in ontolo-
gies allow us to establish new relations between the different
features associated with genes, and these features are not accessible
without utilizing the ontology axioms. This makes our approach ap-
plicable to Mendelian disease for which no genes may be known to
be associated (or where only a single gene is associated), and where
features of known disease-associated genes could not be used to
identify novel causative genes. While approaches based on the guilt-
by-association principle generally perform well on diseases or phe-
notypes with several known associated genes (Chen et al., 2009;
Gillis and Pavlidis, 2012; Schlicker and Albrecht, 2010; Singleton
et al., 2014; Tranchevent et al., 2016), our method has a broader
range of application.

Fourth, while there are several phenotype-based methods that
are applied widely for prioritizing candidate genes (Cornish et al.,
2018; Köhler et al., 2009; Smedley et al., 2013), they are limited to
genes with associated phenotypes. As there are only a limited num-
ber of human genes with associated phenotypes, this set of genes can
be expanded significantly by incorporating phenotypes of human
orthologs in animal models (Smedley et al., 2013); however, even
using animal model phenotypes will leave about half of human genes
without any phenotype associations, either due to lack of phenotype
associations in animal models or due to the absence of orthologs for
a human gene (Shefchek et al., 2020). We significantly expand
phenotype-based gene prioritization methods to genes that have ei-
ther phenotype associations, are associated with GO functions, or
have known sites of expression. While the predictive performance of
our method is lower for genes that do not have phenotype associa-
tions than for genes with associated phenotypes, we show that we
can nevertheless identify disease-associated genes by comparing phe-
notypes to gene functions or to anatomical locations.

Additionally, our model is extensible and can include additional
features if they can be encoded using ontologies. For example, we
can expand our model using gene expression in individual celltypes,
using the Celltype Ontology (CL) (Bakken et al., 2017). We experi-
mented using single-cell RNAseq data from the Tabula Muris pro-
ject (The Tabula Muris Consortium et al., 2018) in which genes are
annotated with the CL. From this dataset, we obtain 17 149 associa-
tions between genes and one or more classes from CL. We added the
CL annotation of genes as well as the disease phenotype annotations
and performed the same experiments as for the other three ontolo-
gies. Without including the functional interactions between genes,
we obtain a ROCAUC of 0.906 (0:883� 0:949) for predicting
gene–disease associations (Hits@1, Hits@10 and Hits@100 are
0.037, 0.299 and 0.634, respectively). These results show that
single-cell gene expression can provide more information for pre-
dicting gene–disease associations than tissue-level gene expression
encoded using Uberon. One key limitation in using celltype-specific
gene expression is that CL is used in fewer axioms within phenotype
ontologies (compared to UBERON or GO), and therefore our
method will not exploit relations between phenotypes and celltypes
as well as relations between the other ontologies.

Our method still has several limitations. Our conversion from
OWL into a graph does not consider all OWL axioms, and the con-
version also treats different types of restrictions and axiom types
identically although their semantics is different. In the future, we
plan to extend the method to convert any OWL axioms into a graph
representation, relying, e.g. on relational patterns defined in the
OBO Relation Ontology (Smith et al., 2007), and also rely on
inferred axioms for generating the graph, such as implemented in
the Onto2Graph method (Rodrı́guez-Garcı́a and Hoehndorf, 2018).

Another major limitation of our approach is that it is inherently
transductive and not inductive. In particular, the diseases with their

phenotype associations must be known in our workflow before gen-
erating embeddings and training our prediction model, and it is not
straightforward to apply the approach to a new set of phenotypes
(such as the phenotypes observed in an individual). This limitation is
shared by many graph embedding and knowledge graph embedding
approaches (Wang et al., 2017b). However, this limitation can be
overcome either through the use of inductive methods for learning
on knowledge graphs, such as graph neural networks (Kipf and
Welling, 2016; Scarselli et al., 2008), or by including patients with
their phenotypes as part of the original data (or graph), training the
model on gene–disease associations and applying it to predict candi-
date genes for the patient nodes. However, extending our approach
to an inductive setting will allow for an easier combination of our
approach with methods to find pathogenic causative variants based
on observed phenotypes and next-generation sequencing data
(Boudellioua et al., 2017; Robinson et al., 2014).

Finally, we treat all genes that are not known to be associated
with the disease as negatives and consequently have many more
negative than positive associations. This has two consequences; first,
we may incorrectly classify an association as negative when a gene is
associated with the disease but this association is not yet known.
Second, while the overall predictive performance of our method
improves over the state-of-the-art and ROCAUC is usually above
0.9 in our evaluation, the recall at the first ranks is still low and rare-
ly exceeds 5% at the first rank. The reason for this difference be-
tween the evaluation measures is the imbalanced dataset we use for
evaluation, where all genes not known to be associated with a dis-
ease are considered negative for that disease. Our evaluation there-
fore does not consider any additional knowledge about potential
associations between a gene and disease. However, in a realistic
scenario in which new genes are evaluated for their association with
a Mendelian disease, more information is usually available, either
from evaluating the pathogenicity of variants found in affected indi-
viduals, filtering by pedigree and mode of inheritance, or filtering by
variants found in unrelated individuals with the same phenotypes;
after such a workflow, usually <100 genes remain as potential can-
didates (Alfares et al., 2020) (in contrast to 9886 in our evaluation),
and recall at top ranks will improve.

5 Conclusions

We developed a method for prioritizing candidate genes given a set
of phenotypes associated with a disease. Our method can utilize dif-
ferent types of features characterized through ontologies, and sig-
nificantly improves the phenotype-based prediction of disease genes.
While previous phenotype-based gene prioritization methods are
only applicable when phenotype associations are known for genes,
our method can be applied to a much larger number of genes for
which either functions, sites of expression, phenotypes or interac-
tions with other genes are known.
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