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Abstract

The following protocol describes our workflow for processing wastewater with the goal of

detecting the genetic signal of SARS-CoV-2. The steps include pasteurization, virus con-

centration, RNA extraction, and quantification by RT-qPCR. We include auxiliary steps that

provide new users with tools and strategies that will help troubleshoot key steps in the pro-

cess. This protocol is one of the safest, cheapest, and most reproducible approaches for the

detection of SARS-CoV-2 RNA in wastewater. Owing to a pasteurization step, it is safe for

use in a BSL2 facility. In addition to making the protocol safe for the personnel involved, pas-

teurization had the added benefit of increasing the SARS-CoV-2 genetic signal. Further-

more, the RNA obtained using this protocol can be sequenced using both Sanger and

Illumina sequencing technologies. The protocol was adopted by the New York City Depart-

ment of Environmental Protection in August 2020 to monitor SARS-CoV-2 prevalence in

wastewater in all five boroughs of the city. In the future, this protocol could be used to detect

a variety of other clinically relevant viruses in wastewater and serve as a foundation of a

wastewater surveillance strategy for monitoring community spread of known and emerging

viral pathogens.

Introduction

Tracking SARS-CoV-2 infections often involves detecting SARS-CoV-2 RNA via RT-qPCR in

biological samples obtained from patients that develop symptoms associated with COVID-19

[1]. However, if only patients who seek medical care are sampled, community transmission

may be underestimated due to asymptomatic patients or those with mild symptoms who
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follow the CDC’s advice and convalesce at home [2, 3]. Additionally, SARS-CoV-2 sequencing

efforts, while occurring at a much faster rate and larger, more global scale than in previous

pandemics, suffer biases because genomic information is often obtained from seriously ill

patients, but not from patients who do not seek medical attention. If a significant proportion

of cases are asymptomatic or unsampled, SARS-CoV-2 population genetic diversity within

communities may be underestimated. Moreover, the surge of novel variants of concern in dif-

ferent regions of the world has added another challenge [4, 5], which is to monitor the propor-

tion of individuals that carry a particular variant in a geographical area. Given that

SARS-CoV-2 has been detected in fecal samples [6, 7], and subsequently in wastewater [3, 8,

9], wastewater is being tested in cities around the world to determine SARS-CoV-2 prevalence

in communities [10–12]. Furthermore, isolation of SARS-CoV-2 RNA from wastewater cou-

pled with high-throughput deep sequencing provides an almost unlimited source of unbiased

viral sequences, which can be used to monitor frequencies of variants of concern in

populations.

With the goal of sequencing SARS-CoV-2 RNA from wastewater, we developed a protocol

to extract and quantify viral RNA. The initial step in the development of this protocol was the

decision to pasteurize our samples at 60˚C for an hour on arrival at the laboratory. Given that

SARS-CoV-2 is a risk group 3 (RG3) agent, inactivation of the virus before processing is often

required before samples can be processed in a BSL2 laboratory. Happily, as we report here,

pasteurization did not impair our ability to detect SARS-CoV-2, but instead, improved it. Our

protocol includes the spiking-in with a control virus to determine the efficiency of recovery.

Interestingly, while SARS-CoV-2 recovery was not impaired by pasteurization, the two control

spike-in viruses tested bovine coronavirus (BCoV) [13] and bacteriophage Phi6 [14] were ren-

dered barely detectable using RT-qPCR and PCR respectively by the pasteurization step. Sub-

sequently, control viruses were spiked-in after pasteurization. Furthermore, we noticed no

appreciable difference in sequencing quality between pasteurized and unpasteurized samples.

A second major decision was to employ centrifugation and filtering (0.2 μM) to remove

wastewater solids which we made at the beginning of our study. While SARS-CoV-2 may asso-

ciate with solids, removing solids facilitates the downstream processing steps and may remove

genomic contamination that would impair our ability to deep sequence SARS-CoV-2 so we

adopted filtering early on the development of our protocol. As a counterpoint, filtration is one

of the more expensive steps of the protocol so those desiring to reduce costs may consider

eliminating filtration. We were not able to acquire consistent results without filtration so we

opted to filter all samples following pasteurization.

Since viruses are greatly diluted in wastewater, virion concentration is a significant chal-

lenge. We considered three common protocols to concentrate SARS-CoV-2 virus present in

the water: ultracentrifugation [15], skimmed milk flocculation [16], and polyethylene glycol

(PEG)/sodium chloride (NaCl) precipitation. High speed centrifugation was ruled out as

impractical for the volumes needing to be processed. Precipitation/flocculation using PEG/

NaCl or skimmed milk eliminates the need for high-speed ultracentrifugation and generates

sufficient RNA for viral quantification with RT-qPCR (i.e., resulting in Cts< 40). However, in

our experiments, PEG/NaCl precipitation performed marginally better than skim milk floccu-

lation and did not introduce additional genetic material to our samples so this was chosen as

our concentration method. Additionally, we explored the effect of longer incubation times on

viral RNA recovery. Longer storage in PEG/NaCl of the pasteurized samples led to slightly bet-

ter virus recovery, but the difference was not significant.

As we were mindful of the need to find cost effective solutions, we investigated alternative,

kit-free approaches to RNA isolation. In our hands, TRIzol (ThermoFisher Inc.) performed

better than the QIAamp Viral RNA Mini kit (Qiagen Inc.). As TRIzol is cheaper per sample
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than column-based kits, we adopted it for the final protocol. An added benefit of TRIzol rele-

vant to downstream sequencing applications is that TRIzol segregates RNA in a separate layer

from DNA, unlike column-based isolation kits, which isolate both RNA and DNA.

In addition to the RNA isolation method, we compared the performance of different RT-

qPCR enzymes, TaqPath 1-Step RT-qPCR enzyme (Thermofisher Inc.) and One Step Prime-

Script III enzyme (Takara Bio USA Inc. The RT enzyme from Takara had a similar perfor-

mance to Taq-Path so we chose it for the final protocol. A broader investigation of different

enzymes may identify other satisfactory, cost-effective solutions.

Our protocol provides a reproducible and low-tech approach that allows the detection and

quantification of SARS-CoV-2. Pasteurization of the sample at the very beginning of the proto-

col ensures the safety of the user. Preliminary results suggest that pasteurization may also

release the virus bound to the wastewater solids, enhancing recovery. Filtering and PEG/NaCl

concentration simplifies downstream processing. We were able to perform both targeted and

whole genome sequencing of the SARS-CoV-2 genome using this protocol.

Our protocol performed strongly in a large-scale, nationwide comparative study of the

reproducibility and sensitivity of 36 methods of quantifying SARS-CoV-2 in wastewater [17].

Our protocol is identified as 4S.1(H) in the Pecson et al. study [17]. In addition, the Pecson

et al. study offers strong support for several of the primary claims of the present paper. First,

the removal or non-removal of the wastewater solids did not show a clear systematic impact

on outcomes. Second, pasteurization resulted in a small, but significant, increase in recovery.

Third, methodological differences between teams had minimal impact on reproducibility and

sensitivity, thus indicating that our modifications to implement cheaper, simpler methods will

not impair SARS-2-CoV-2 detection and quantification relative to other strategies.

We recognize that our protocol has some limitations. Our current protocol isolates the

RNA from 40 ml of wastewater and requires access to a centrifuge capable of reaching 12,000 x

g. Thus, scaling up the volume of samples from 40 ml or increasing the number of individual

samples, represents a challenge. Our protocol requires filtration units which are dependent on

the supply chain. Additionally, extracting RNA with TRIzol requires the user to take care not

to contaminate the aqueous phase with organic material after centrifugation, which can be dif-

ficult for inexperienced users. Nevertheless, the basic protocol and techniques involved are

economical, simple, and reproducible when compared to alternative strategies.

Materials and methods

The protocol described in this article is published on protocols.io, https://www.protocols.io/view/
protocol-for-safe-affordable-and-reproducible-isol-bwvmpe46 and is included for printing as
S1 File.

Expected results

Our protocol results in the reproducible isolation and quantification of SARS-CoV-2 RNA

from wastewater samples (Fig 1; Pearson correlation: r2 = 0.9860, p< 0.0001). Enough RNA

can be acquired for RT-qPCR and isolated RNA is suitable for whole genome amplification

and sequencing. As a general note, wastewater treatment plants indicated in our figures have

been deidentified. There is no correspondence between the numerical wastewater treatment

plant (WWTP) IDs in different figures. Moreover, experiments described in different figures

were performed at different times using different wastewater samples. Our purpose here is not

to report regional prevalence, but rather to demonstrate the reliability and consistency of our

protocol.
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Key steps were optimized during the development phase of our protocol. Reports from the

scientific community suggested that BCoV would serve as a good control, and because of degra-

dation by pasteurization, we switched to spiking samples with BCoV after pasteurization and

before the first centrifugation to remove solids. It would be interesting to determine why BCoV

was rapidly degraded by pasteurization, but an ostensibly similar virus, SARS-CoV-2, was not.

To ascertain the impact of pasteurization on SARS-CoV-2 quantitation, wastewater samples

from three separate WWTPs were divided in half and processed either with pasteurization or

without. More SARS-CoV-2 N1 copies/L were detected in the pasteurized samples than in the

unpasteurized samples demonstrating the positive impact of pasteurization on SARS-CoV-2

quantification (Fig 2; 2-way ANOVA with Bonferroni correction: F = 67.86, df = 1,

p< 0.0001). We speculate that incubation of samples at 60˚C contributes to release of virus

Fig 1. Repeatability of protocol: Pearson correlation of replicate measurements (n = 2) of copy number yield for

the N1 target from fourteen 24-hr composite wastewater samples and a negative control, demonstrating the

reproducibility of our protocol. Sample collection and initial processing was performed on the same day.

https://doi.org/10.1371/journal.pone.0257454.g001

Fig 2. Effect of pasteurization: Copy number yield for the N1 target obtained from three 24-hr composite

wastewater samples processed either with or without pasteurization (n = 5 for WWTP1 and 2 for WWTP 2 & 3).

Each point is the mean of three technical replicate measurements. Horizontal black lines show means and asterisks

show significance level in pairwise comparisons where ns = P> 0.05; � = P� 0.05; �� = P� 0.01; ��� = P� 0.001; ����

= P� 0.0001.

https://doi.org/10.1371/journal.pone.0257454.g002
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from wastewater solids. As an additional advantage, pasteurization appears to increase repeat-

ability of sample quantification. The standard deviations for pasteurized and unpasteurized

samples were 0.07 and 0.09 respectively. Samples 2 and 11, the most variable sites, are from

plants with a significant influx of ocean water, but it is not clear if this is driving variation in

these sites. We conclude that pasteurization results in greater sensitivity and more precise esti-

mates of SARS-CoV-2 prevalence. We did similar pasteurization experiments with wastewater

samples from additional NY plants and observed the same trend. Similar results have been

reported in other studies [17].

In previous work on bacteriophages, longer PEG/NaCl incubation increased phage recov-

ery (JJD, personal observation). To determine if longer incubation similarly impacts SARS--

CoV-2 recovery, we compared SARS-CoV-2 quantitation for samples incubated in PEG/NaCl

for 24 hrs versus 48 hrs. While longer storage resulted in slightly improved virus recovery, the

difference was not significant (Fig 3; paired t-test: t = 1.745, df = 2, p = ns), an outcome also

observed in other studies [18, 19]. In addition, we tested the effect of storage of unpasteurized

samples at 4˚C without added PEG/NaCl on virus recovery. Storage of pasteurized samples

without PEG/NaCl for 72 hrs had no effect on virus recovery (Fig 4; mixed-effect analysis with

Bonferroni correction: F = 0.05, p = ns). These results should ameliorate concerns about longer

term storage of wastewater samples if they cannot be processed immediately.

Fig 3. Effect of storage at 4˚C in PEG/NaCl: Following initial processing (pasteurization, preliminary

centrifugation, and filtering), 24-hr composite samples from 3 different wastewater treatment plants were stored

at 4˚C in a PEG/NaCl solution for precipitation and concentration of virions. Each point is the mean of two

technical replicate measurements from a 24-hour composite sample. Horizontal black lines show means. See Fig 2

legend for explanation of pairwise comparison.

https://doi.org/10.1371/journal.pone.0257454.g003
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After PEG precipitation and centrifugation of the wastewater sample, the pellet is distrib-

uted along the side of the centrifuge tube facing the direction of the centrifugal force, but typi-

cally is not visible to the naked eye. Additionally, it takes time to dissolve the pellet in TRIzol,

and premature decanting may leave residual RNA unrecovered. Therefore, untrained users

often resuspend the pellet incompletely, resulting in the loss of valuable RNA. To aid in visual-

izing the pellet, we added safranin at 0.2% final concentration immediately before centrifuga-

tion. When safranin is added, a pale pink pellet is easily visible. Safranin staining increased

yield and did not interfere with downstream processing (Fig 5; two-way ANOVA with

Fig 4. Effect of storage at 4˚C on unpasteurized samples: Following initial processing (pasteurization, preliminary

centrifugation, and filtering), 24-hr composite samples (n = 8) were stored at 4˚C for 72 hrs. Each point is the

mean of two technical replicate measurements from a 24-hour composite sample. Horizontal black lines show means.

See Fig 2 legend for explanation of pairwise comparisons.

https://doi.org/10.1371/journal.pone.0257454.g004
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Fig 5. Effect of safranin staining: Copy number yield for the N1 target for 24-hr composite wastewater samples

obtained from 3 wastewater treatment plants. Samples processed with safranin are labeled by dark blue circles;

controls are labeled with light blue circles. Points are technical replicate measurements from a 24-hour composite

sample. Horizontal black lines show means. See Fig 2 legend for explanation of pairwise comparisons.

https://doi.org/10.1371/journal.pone.0257454.g005

Fig 6. Effect of TRIzol extraction: Copy number yield for the N1 target for 24-hr composite wastewater samples

obtained from 5 wastewater treatment plants. Each point in the mean of 2 technical replicate measurements from a

24-hour composite sample. Horizontal black lines show means. See Fig 2 legend for explanation of pairwise

comparisons.

https://doi.org/10.1371/journal.pone.0257454.g006
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Bonferroni correction: F = 18.87, df = 1, p = 0.0007). The video uploaded as (S1 Video) shows

how long it takes to dissolve the pellet in TRIzol. This strategy of adding safranin is particularly

useful for training purposes.

To explore the cheapest alternatives of extracting RNA from wastewater samples we compared

a widely used column based QIAamp Viral RNA Mini kit (Qiagen Inc.) with TRIzol reagent

(ThermoFisher Inc.). Our results showed that TRIzol facilitates significantly better RNA recovery

than the kit at a fraction of the cost (Fig 6; paired t-test: F = 5.495, df = 4, P = 0.005). We note that

we also found phenol-chloroform extraction to be less consistent than TRIzol on saliva samples so

while phenol-chloroform is even cheaper, we advise against its use in this protocol. TRIzol was

therefore chosen as the organic extraction method to compare with column approaches. If the

intention is to sequence RNA obtained from wastewater samples, TRIzol extraction produces a

cleaner RNA sample with less contaminating DNA from non-SARS-CoV-2 genomes. As a caveat,

because TRIzol requires the careful extraction of an aqueous layer from a multilayered solution,

TRIzol extraction requires training and is best performed by experienced users.

In addition to comparing RNA isolation methods, we evaluated the performance of differ-

ent enzymes, including the TaqPath 1-Step RT-qPCR enzyme (ThermoFisher Inc.) and the

One Step PrimeScript III enzyme (Takara Bio USA Inc.) Our results indicated that the two

enzymes performed equally well (Fig 7; paired t-test: t = 1.741, df = 5, p = ns). As the One Step

Fig 7. Effect of different RT-qPCR enzymes: Copy number yield for the N1 target for 24-hr composite wastewater

samples obtained from 6 wastewater treatment plants (WWTP). RT-qPCR assays performed with the TaqPath

1-Step RT-qPCR enzyme recommended by the CDC [20] are compared to RT-qPCR assays performed with One Step

PrimeScript III enzyme. Each point in the mean of 2 technical replicate measurements from a 24-hour composite

sample. Horizontal black lines show means. See Fig 2 legend for explanation of pairwise comparisons.

https://doi.org/10.1371/journal.pone.0257454.g007
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PrimeScript III enzyme was significantly cheaper than the TaqPath enzyme, we chose the Pri-

meScript III enzyme for the final protocol.

The need to adapt wastewater surveillance detection programs to include variant detection

requires deep sequencing of cDNA generated from the wastewater RNA. Our preliminary

results have shown that RNA extracted with our PEG/TRIzol protocol can be sequenced using

both traditional Sanger sequencing and NGS technology with no reduction in sequence

quality.

We used both the Swift Normalase1 Amplicon Panel (SNAP) SARS-CoV-2 Panel kit as

well as the Qiagen QIAseq1 SARS-CoV-2 Primer Panel and QIAseq FX DNA Library kit and

have obtained SARS-CoV-2 sequences from several of our wastewater treatment plants.

Known and novel variants were identified. We continue to optimize and improve our library

preparation methods to increase both length of coverage and depth of coverage for our NYC

samples. In addition, we are developing real-time assays for the identification and quantifica-

tion of additional viruses that circulate among our New York communities including

Influenza.

Supporting information

S1 File. Step-by-step protocol, also available on protocols.io.

(PDF)

S1 Video. Showing the resuspension of the pellet with safranin.

(M4V)
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