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BACKGROUND Prediction models for atrial fibrillation (AF) may
enable earlier detection and guideline-directed treatment deci-
sions. However, model bias may lead to inaccurate predictions
and unintended consequences.

OBJECTIVE The purpose of this study was to validate, assess bias,
and improve generalizability of “UNAFIED-10,” a 2-year, 10-variable
predictive model of undiagnosed AF in a national data set (origi-
nally developed using the Indiana Network for Patient Care regional
data).

METHODS UNAFIED-10 was validated and optimized using Optum
de-identified electronic health record data set. AF diagnoses were
recorded in the January 2018–December 2019 period (outcome
period), with January 2016–December 2017 as the baseline period.
Validation cohorts (patients with AF and non-AF controls, aged�40
years) comprised the full imbalanced and randomly sampled
balanced data sets. Model performance and bias in patient subpop-
ulations based on sex, insurance, race, and region were evaluated.

RESULTS Of the 6,058,657 eligible patients (mean age 60 6 12
years), 4.1% (n 5 246,975) had their first AF diagnosis within
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the outcome period. The validated UNAFIED-10 model achieved a
higher C-statistic (0.85 [95% confidence interval 0.85–0.86] vs
0.81 [0.80–0.81]) and sensitivity (86% vs 74%) but lower speci-
ficity (66% vs 74%) than the original UNAFIED-10 model. During re-
training and optimization, the variables insurance, shock, and
albumin were excluded to address bias and improve generalizability.
This generated an 8-variable model (UNAFIED-8) with consistent
performance.

CONCLUSION UNAFIED-10, developed using regional patient data,
displayed consistent performance in a large national data set.
UNAFIED-8 is more parsimonious and generalizable for using
advanced analytics for AF detection. Future directions include vali-
dation on additional data sets.

KEYWORDS Atrial fibrillation; Screening; Predictive model; Ma-
chine learning; Electronic health record
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Introduction
Atrial fibrillation (AF) is a major public health concern that is
growing in importance because of its association with signifi-
cant morbidity, mortality, and economic burden.1,2 Patients
with AF have an elevated risk of cardiovascular (CV) events,
includingw5 times higher risk of AF-related stroke, systemic
embolism, and ischemic heart disease, than does the general
population.1–3 Although an aging US population partially
explains the continued increasing prevalence of AF, previous
studies have indicated that w11%–23% of the total AF
prevalence in 2009 (3.9 million patients) and 2015 (5.6
million patients) had undiagnosed AF.4–10 Projections
indicate that the prevalence of AF in the United States will
reach w12.1 million patients by 2030 and w17.9 million
patients (aged.55 years) in Europe by 2060.4–7

AF can be asymptomatic and transient, which makes it diffi-
cult to detect.11,12 Many individuals remain undiagnosed
(w16%–22%) until they have a transient ischemic attack or
stroke.12–14 Several predictive models to detect undiagnosed
AF have been developed using artificial intelligence (AI) or
machine learning (ML).15–20 If successful in identifying
patients at higher risk of AF, earlier access to guideline-
recommended oral anticoagulant treatment may minimize the
incidence of AF-related stroke and other related CV events.15–19

However, most models have been developed using local or
region-specific populations and include features that are not
readily accessible in electronic health records (EHRs) and clin-
ical databases, which limits the ability to operationalize them
in the real world. Furthermore, the models have a 5- to 10-
year prediction range and potentially less actionable than a
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KEY FINDINGS

- Atrial fibrillation (AF) is a major public health concern
associated with significant morbidity and mortality.
Prediction models for AF may enable earlier detection
and guideline-directed treatment decisions. However,
model bias may lead to inaccurate predictions and
unintended consequences.

- The 2-year, 10-variable predictive model of undiag-
nosed AF using common electronic health data (UNA-
FIED, referred to as UNAFIED-10 in this study) was
originally developed using regional data from the In-
diana Network for Patient Care. It includes 10 predictor
variables: age, sex, body mass index, combined chronic
obstructive pulmonary disease (COPD) and obstructive
sleep apnea (OSA), heart failure, acute heart disease,
kidney disease, shock, albumin, and insurance. This
study externally validated and assessed bias of
UNAFIED-10 using the nationwide US Optum� elec-
tronic health record (EHR) database.

- Findings from the external validation of UNAFIED-10
demonstrated better predictive performance
compared with the published UNAFIED-10 model
development study (C-statistic 0.850 vs 0.806). These
support the model’s potential applicability beyond the
regional data set used for the original model devel-
opment. We further report model retraining and
optimization undertaken to generate a more general-
izable and parsimonious 8-variable predictive model
called UNAFIED-8.

- UNAFIED-8 includes 8 predictor variables—age, sex,
body mass index, COPD, OSA, kidney disease, heart
disease, and heart failure—that are routinely collected
and easily extractable from EHR data. It showed
consistent good performance in identifying patients at
higher risk of AF in the 2 years before their eventual AF
diagnosis (C-statistic 0.845; specificity 79%; accuracy
78%; sensitivity 76%). Further, performance disparity
analyses showed that UNAFIED-10 and UNAFIED-8
tended to have higher sensitivity in patients with
Medicare insurance than in those with other insurance
categories, higher precision in White patients than in
Asian patients, and higher specificity in patients with
other insurance categories than in Medicare benefi-
ciaries.

- UNAFIED-8 is more parsimonious and generalizable
for using advanced analytics for AF detection. Future
directions include validating the model on data from
other US and non-US clinical databases, integrating
bias mitigation strategies to ascertain optimal per-
formance and fairness in patient subpopulations, and
studying the implementation of the model in clinical
settings.
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model predicting more imminent risk (eg, in 1–2 years). These
predictive models also commonly lack external validation in
alternative patient populations or health care systems (limiting
transferability) and were not evaluated with bias assessment
tools.21–24

The clinical applications of AI/MLmodelsmay improve CV
health outcomes, but several studies have raised concerns about
possible model biases leading to inaccurate decisions and harm-
ful results.14,25–27 The accuracy and fairness of AI/ML
predictive models are highly dependent on the data and
algorithm used to develop, train, and test them.28Model bias in-
cludes the likelihood of amodel to favor one demographic group
over another, which might contribute to unfairness.29 Algo-
rithmic and population-specific biases may perpetuate sex,
racial, or socioeconomic disparities and restrictmodel generaliz-
ability.30

The recently published 2-year predictive model of undiag-
nosed AF using common electronic health data (UNAFIED),
referred to as UNAFIED-10 here, was developed using local
data from the Indiana Network for Patient Care (INPC), a large
health information exchange in Indiana.20 UNAFIED-10 in-
cludes 10 predictor variables commonly available in EHRs:
age, sex, body mass index, combined chronic obstructive pul-
monary disease (COPD) and obstructive sleep apnea (OSA),
heart failure, acute heart disease, kidneydisease, shock, albumin,
and insurance. It achieved a C-statistic of 0.81 (95% confidence
interval [CI] 0.80–0.81) during validation using INPC data.20 A
successful noninterventional proof-of-concept pilot deployment
of UNAFIED-10 was launched in the Epic EHR system across
all settingsofEskenaziHealth.20During theproof-of-concept pi-
lot, UNAFIED-10 identified 35.5% (n57916) of 22,272 pa-
tients (aged �40 years) at higher risk of AF.

TheCHA2DS2-VASc score is used to calculate stroke risk for
patients with AF. Of the 7916 patients with higher AF risk iden-
tifiedduring the proof-of-concept deployment ofUNAFIED-10,
70% (n55582) had aCHA2DS2-VASc score of�2.20 This sug-
gests that theymaybenefit fromguideline-recommendedantico-
agulant therapy to reduce their risk of stroke if diagnosed with
AF.20,31,32 A 9-month clinical pilot was then conducted using
UNAFIED-10 to automatically identify patients with an
elevated 2-year risk of AF in a cardiology clinic.33

UNAFIED-10 was developed using data mostly from a sin-
gle US state. The predictors included variables (eg, insurance)
that may limit the model’s generalizability beyond the regional
setting inwhich itwas developed. This study reports the external
validation and AI bias assessment of UNAFIED-10 using the
nationwide Optum� de-identified electronic health record (Op-
tum EHR) data set. We further report model retraining and opti-
mization undertaken to generate a more generalizable and
parsimonious 8-variable predictive model called UNAFIED-8.
Methods
Study design, patients, and compliance
This retrospective nested case-control study used de-identified
clinical data from the US Optum EHR repository to validate
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● Patients with AF (n = 246,975) and without AF (non-AF controls,
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Figure 1 Model validation and optimization flowchart from the original UNAFIED-10 model to the newUNAFIED-8model. AF5 atrial fibrillation/atrial flutter;
BMI5 bodymass index;CDS5 clinical decision support; COPD5 chronic obstructivepulmonarydisease; EHR5 electronic health record;HF5heart failure; INPC
HIE5 Indiana Network for Patient Care health information exchange; OSA5 obstructive sleep apnea; POC5 proof-of-concept; UNAFIED5 undiagnosed atrial
fibrillation prediction using electronic health data. *Refer to Grout et al.20 †Patient subpopulations were based on sex, type of health insurance, race, and region.
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and optimize the UNAFIED-10 logistic regression model
(Figure 1).20 Optum’s longitudinal EHR repository is derived
from dozens of ‘health care provider organizations in the United
States’, encompassing all types of health care providers, institu-
tions, or organizations included in theOptumEHRdatabase and
contains data from.100 million patients. The data are certified
as de-identified by an independent statistical expert following
the US Health Insurance Portability and Accountability Act sta-
tistical de-identification rules and managed according to Optum
customer data use agreements. The original UNAFIED-10
model was reproduced using OptumEHR data for external vali-
dation on a national scale followed by bias assessment. The
model was further retrained and modified to address bias and
improve generalizability. This resulted in a more parsimonious
8-variable predictive model called UNAFIED-8.

This study followed the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines (Online Supplemental
Table S1).34
Validation of UNAFIED-10 using Optum EHR data
Patients 40 years and older during the outcome period (January
1, 2018–December 31, 2019) were eligible for inclusion if they
were active within the Optum EHR database, had �2 baseline
in-person clinic visits, and no AF diagnoses before January 1,
2018 (start of the outcome period) (Online Supplemental
Figure S1). AFwas determinedwhether the patient had an Inter-
national Classification of Diseases, Tenth Revision code of
I48.0, I48.1, I48.2, I48.3, I48.4, I48.91, I48.92, I48.11, I48.19,
I48.20, or I48.21, an International Classification of Diseases,
Ninth Revision code of 427.31 or 427.32, or a report of AF or
atrial flutter in their medical record (Online Supplemental
Table S2). In both UNAFIED-10 and UNAFIED-8 models,
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Figure 2 Process for training, testing, and validation of the UNAFIED-8 model. AF 5 atrial fibrillation/atrial flutter; UNAFIED 5 undiagnosed atrial fibril-
lation prediction using electronic health data.
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the baseline period (January 1, 2016–December 31, 2017) for
patients with AF was defined as 2 years before the date of first
AF diagnosis (index date). Patients without AF (non-AF con-
trols) had a fixed index date of January 1, 2018.

Parameter estimates for the externally validated UNAFIED-
10model are the same as the original UNAFIEDmodel (Online
Supplemental Table S3). Features of UNAFIED-10 were recre-
ated for external validation using Optum EHR data (Online
SupplementalTableS4).Twosources—discrete andnatural lan-
guage processing (NLP)–enriched data—were created and
randomly sampled to form thefinal validation cohort, consisting
of the full imbalanced data set and a balanced data set from each
data source (OnlineSupplemental FigureS2).Discretedatawere
derived from structured Optum EHR data (eg, International
Classification of Diseases, Ninth Revision and International
Classification of Diseases, Tenth Revision diagnosis codes, de-
mographics, and laboratory values). NLP-enriched data con-
sisted of features from discrete data and NLP records. NLP
variables were obtained from Optum proprietary preconfigured
NLP concepts, created on broad topics (eg, medications, signs,
disease and symptoms, measurements, and observations). Data
were harvested from the note fields within the EHR provided
to Optum from .50 large health care systems throughout the
United States. Variable definitions for the discrete and NLP-
enriched data sets are provided in Online Supplemental Table
S4. All eligible patients were included in the full imbalanced
data set. Random sampling of the full imbalanced data set was
done to generate the balanced data sample including w50%
of patients with AF andw50% of patients without AF.
Statistical analysis
Selection, coding, transformation of variables, and identifica-
tion of patients with AF and without AF were based on (or
modified from) UNAFIED-10 (Online Supplemental Tables
S2 and S4).
Model performance was evaluated using the following
metrics: C-statistic (area under the receiver operating char-
acteristic [ROC] curve), accuracy, sensitivity (true positive
rate), specificity (true negative rate), negative predictive
value, and precision (positive predictive value). AF risk
scores were calculated for each patient on the basis of the
parameters of the published UNAFIED-10 model (Online
Supplemental Table S3), and the same classification cutoff
calculated using the Youden’s index (0.591) was used to
classify patients into higher vs standard risk of undiagnosed
AF.20,35 Analyses were done using Dataiku Data Science
Studio Version 11.4.4 (Dataiku, New York, NY) and Py-
thon 3.6 (Python Software Foundation, Fredericksburg,
VA).
Bias assessment of model performance across
patient subpopulations
UNAFIED models were evaluated for performance bias us-
ing the Python library Aequitas audit toolkit version 0.42.0
(University of Chicago, Chicago, IL) and odds ratios.36 Dis-
parities in performance metrics (sensitivity, precision, and
specificity) were analyzed in patient subpopulations based
on sex, insurance, race, and region (male, Medicare, White,
and US Midwest were used as reference categories). Signif-
icant disparity was determined using the 80% rule; it was
considered significant if the selected bias disparity ratio is
,0.8 or �1.2.37
UNAFIED-8 model development and validation
On the basis of external validation and bias assessment find-
ings of UNAFIED-10, the model was retrained, tested, and
validated (Figure 2), which subsequently generated the up-
dated UNAFIED-8 model. To create a balanced data set dur-
ing model development, random samples of patients with AF
(n540,196) and without AF (n539,687) were drawn from
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the full imbalanced data set of patients with AF (n5246,975)
and without AF (n55,811,682). Among the balanced cohorts
of patients with AF and without AF, 80% were used for
model training whereas the remaining 20% represented a
holdout sample for testing. Additional validation was per-
formed on the imbalanced data set after excluding individuals
in the balanced data set used for training and testing the
model. A total of 24 models, consisting of 8 different ver-
sions of UNAFIED-10, with or without 4 features (insurance,
shock, albumin, or laboratory values), were tested with 3
different strategies for coding the age variable (Online
Supplemental Table S5). Variance inflation factor (VIF)
was executed to alleviate multicollinearity among variables
(VIF 5 5, moderate threshold). Variables with VIF . 5
were dropped. Statistically insignificant variables were also
excluded one at a time. The Youden’s index for determining
the optimal cutoff threshold was calculated for UNAFIED-8.
Subsequently, bias assessment of model performance across
patient subpopulations was conducted as described earlier.
Analyses were performed using Dataiku Data Science Studio
Version 11.4.4 and Python 3.6.
Results
UNAFIED-10 model validation using Optum EHR
data
Among all eligible patients (n56,058,657; 61% were fe-
male), 4.1% had their first AF diagnosis recorded within
the outcome period (patients with AF, n5246,975; mean
age 72 6 11 years) whereas 95.9% (patients without AF,
n55,811,682; mean age 60 6 12 years) did not. The
balanced validation cohort included a random sample of
9983 patients: 50.2% in the AF group (mean age 72 6
11 years; 48.6% were female) and 49.8% in the non-AF
control group (mean age 60 6 12 years; 61.2% were fe-
male). Patient characteristics for the validation cohorts us-
ing either discrete or NLP-enriched Optum� EHR data are
summarized in Table 1 and Online Supplemental Table S6,
respectively.

The C-statistic (95%CI) was similar (0.850 [0.845–0.857]
vs 0.851 [0.849– 0.851]) (Table 2) between the complete and
balanced validation cohorts from Optum EHR discrete data,
which was not improved with NLP data enrichment (0.847 vs
0.842) (Online Supplemental Table S7). The ROC curve of
the validation cohorts is shown in Figure 3 and Online
Supplemental Figure S3. Using the same AF risk threshold
score (0.591) as in the original UNAFIED model, validation
using Optum EHR data achieved comparable sensitivity
(87% vs 86%) and specificity (66% vs 65%) but differences
were observed in the accuracy (67% vs 76%) and negative
predictive value (99% vs 83%) between the complete and
balanced validation data sets (Table 2). Since the positive
predictive value is dependent on prevalence, the imbalanced
complete validation cohort had a lower positive predictive
value than the balanced data set (10% vs 72%). In compari-
son to the original UNAFIED-10 model validated using
INPC data, the externally validated UNAFIED-10 model
showed a higher C-statistic (0.850 [95% CI 0.845–0.857]
vs 0.806 [95% CI 0.802–0.810]) (Table 2) at the same clas-
sification threshold of 0.591.
Bias assessment of UNAFIED-10 across patient
subpopulations
Disparity analysis for UNAFIED-10 showed some differ-
ences in performance, depending on the selected perfor-
mance metric and patient sex, insurance type, race, or
region (Figure 4). Sensitivity (true positive rate) was lowest
in patients with unknown insurance compared with Medicare
beneficiaries (76% vs 99%). Similarly, disparity in model
precision was seen in patients with unknown insurance
compared with Medicare beneficiaries (55% vs 74%). Preci-
sion was observed to be lowest in patients of Asian vs White
(42% vs 66%) race, with an overall lower representation of
Asian patients. Specificity was higher in patients of Asian
vs White (61% vs 51%) race and lower in those with Medi-
care (12%) vs all other insurance categories (Medicaid
[62%], commercial [56%], or unknown [63%] insurance).
Overall, higher positive predictive values were observed in
Medicare beneficiaries than in those with all other insurance
types and in White patients than in those of all other races.
UNAFIED-8 development and validation
After the external validation and bias assessment of
UNAFIED-10, 8 different versions across 3 different coding
strategies for the age variable were tested to reduce the num-
ber of features for greater generalizability and to address bias
(Online Supplemental Table S5). Of all the 24 models, a final
model with 5-year age buckets and comprising 8 variables,
called UNAFIED-8, was selected. The insurance variable
demonstrated unwanted bias and restricted model use to re-
gions inside the United States; the shock variable had a low
prevalence in patients with AF (7%) and without AF (2%);
and the albumin variable was not measured for most patients.
Furthermore, 5-year age buckets were selected to provide
greater granularity. Other modifications in UNAFIED-8 con-
sisted of excluding tachycardia-induced cardiomyopathy In-
ternational Classification of Diseases codes from the
definition of the heart failure feature and separating COPD
and OSA into 2 features. The new, more generalized, and
parsimonious UNAFIED-8 model has 8 predictor variables:
age, sex, body mass index, COPD, OSA, kidney disease,
heart disease, and heart failure. The variables and their corre-
sponding parameter estimates are provided in Table 3.

The performance of UNAFIED-8 was assessed using 2
different data sets consisting of a test set and a validation
cohort (Figure 2). The balanced test data set included
15,977 patients (mean age 666 13 years; 55% were female)
with 8016 (50%) and 7961 (50%) patients in the AF and non-
AF cohorts, respectively. The imbalanced validation cohort
consisted of 5,978,774 patients (61%were female), including
206,779 (3.5%; mean age 726 11 years) who developed AF
during the outcome period and 5,771,995 (96.5%; mean age
60 6 12 years) who did not. The balanced validation cohort



Table 1 Patient characteristics in UNAFIED-10 and UNAFIED-8 validation cohorts using discrete data from the Optum� EHR

Characteristic

UNAFIED-10 validation UNAFIED-8

All eligible patients Balanced data set Balanced data set* Validation cohort†

(N 5 6,058,657) (n 5 9983) (n579,883) (n 5 5,978,774)

Patients with AF Patients without AF Patients with AF Patients without AF Patients with AF Patients without AF Patients with AF Patients without AF

Number 246,975 (4.1) 5,811,682 (95.9) 5010 (50.2) 4973 (49.8) 40,196 (50.3) 39,687 (49.7) 206,779 (3.5) 5,771,995 (96.5)
Age (y) 72.4 6 11.4 59.91 6 11.8 72.3 6 11.3 60.1 6 11.8 72.4 6 11.4 60.0 6 11.8 72.4 6 11.4 59.9 6 11.8
Sex
Female 117,885 (47.7) 3,549,049 (61.1) 2433 (48.6) 3042 (61.2) 19,215 (47.8) 24,277 (61.2) 98,670 (47.7) 3,524,772 (61.1)
Male 129,090 (52.3) 2,262,633 (38.9) 2577 (51.4) 1931 (38.8) 20,981 (52.2) 15,410 (38.8) 108,109 (52.3) 2,247,223 (38.9)

Body mass index
Underweight 5,059 (2.0) 49,818 (0.9) 92 (1.8) 42 (0.8) 848 (2.1) 327 (0.8) 4,211 (2.0) 49,491 (0.9)
Normal 50,520 (20.5) 1,070,627 (18.4) 1043 (20.8) 928 (18.7) 8,138 (20.2) 7,281 (18.3) 42,382 (20.5) 1,063,346 (18.4)
Overweight 71,059 (28.8) 1,636,455 (28.2) 1432 (28.6) 1402 (28.2) 11,642 (29.0) 11,129 (28.0) 59,417 (28.7) 1,625,326 (28.2)
Obese 104,565 (42.3) 2,255,535 (38.8) 2148 (42.9) 1931 (38.8) 17,005 (42.3) 15,501 (39.1) 87,560 (42.3) 2,240,034 (38.8)
Missing 15,772 (6.4) 799,247 (13.8) 295 (5.9) 670 (13.5) 2,563 (6.4) 5,449 13.7) 13,209 (6.4) 793,798 (13.8)

Heart failure 73,468 (29.7) 168,554 (2.9) 1515 (30.2) 161 (3.2) 8,632 (21.5) 685 (1.7) 27,961 (13.5) 103,138 (1.8)
Heart disease 135,967 (55.1) 713,082 (12.3) 2769 (55.3) 619 (12.4) 22,009 (54.8) 4,887 (12.3) 113,958 (55.1) 708,195 (12.3)
Kidney disease 111,386 (45.1) 860,065 (14.8) 2257 (45.1) 755 (15.2) 17,985 (44.7) 5,794 (14.6) 93,401 (45.2) 854,271 (14.8)
COPD‡

OSA‡
80,227 (32.5) 809,875 (13.9)* 1603 (32.0) 700 (14.1) 7,176 (17.9)

5,444 (13.5)
2,595 (6.5)
2,595 (6.5)

30,259 (14.6)
21,533 (10.4)

370,849 (6.4)
373,096 (6.5)

Shockx 17,859 (7.2) 121,795 (2.1) 332 (6.6) 96 (1.9) Excluded Excluded Excluded Excluded
Albumin: lowxk 47,909 (19.4) 250,174 (4.3) 971 (19.4) 224 (4.5) Excluded Excluded Excluded Excluded
Insurance typex

Commercial 149,652 (60.6) 4,263,104 (73.4) 3065 (61.2) 3727 (74.9)
Medicaid 12,110 (4.9) 281,145 (4.8) 253 (5.0) 267 (5.4)
Medicare 71,661 (29.0) 649,935 (11.2) 1444 (28.8) 566 (11.4)
Unknown 13,552 (5.5) 617,498 (10.6) 248 (5.0) 413 (8.3)

Values are presented as mean 6 SD or n (%).
AF 5 atrial fibrillation/atrial flutter; COPD 5 chronic obstructive pulmonary disease; EHR 5 electronic health record; OSA 5 obstructive sleep apnea; UNAFIED 5 undiagnosed atrial fibrillation prediction using

electronic health data.
*The balanced data set is the data set from which we extracted the training and test subsets.
†Additional UNAFIED-8 validation was done on the imbalanced data set excluding the balanced case and control cohorts used in model training and testing.
‡COPD and OSA were combined and considered as 1 variable in the UNAFIED-10 model but were separated into 2 variables in the UNAFIED-8 model.
xIn the UNAFIED-8 model, the variables shock, albumin, and insurance were excluded.
kIn this study, low albumin is ,3.5 g/dL.
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Table 2 Performance of the different UNAFIED models

Metric

UNAFIED: INPC HIE UNAFIED-10: Optum EHR validation UNAFIED-8: Optum EHR

Balanced data set All eligible patients Test set Validation cohort

(n 5 44,772)* (n 5 9983) (N 5 605,8657) (n 5 15,977) (n 5 5,978,774)

C-statistic (95% CI)* 0.806 (0.802–0.810) 0.851 (0.845–0.857) 0.850 (0.849–0.851) 0.853 (0.845–0.857) 0.845 (0.844–0.846)
Sensitivity (%)‡ 74.0 86.6 86.3 79.8 75.5
Specificity (%)‡ 74.0 65.0 65.7 75.3 78.6
PPV (%) Not reported 71.6 9.7 77.0 11.2
NPV (%) Not reported 82.7 99.1 78.3 98.9
Accuracy (%) Not reported 75.9 66.5 77.6 78.4
Cutoff for AF diagnosis‡ 0.591 0.591 0.591 0.445 0.476

AF5 atrial fibrillation; CI5 confidence interval; EHR5 electronic health record; HIE5 health information exchange; INPC5 Indiana Network for Patient
Care; NPV 5 negative predictive value; PPV 5 positive predictive value; UNAFIED 5 undiagnosed atrial fibrillation prediction using electronic health data.
*Values are from the original UNAFIED model validation phase.20
†The C-statistic (95% CI) in the development phase of the original UNAFIED model was 0.796 (0.792–0.799; n5 53,552), which achieved 74% sensitivy and 74%
specificity.20
‡The optimal cutoff value was determined using the Youden’s index (sensitivity 1 specificity – 1).
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included 79,883 patients (54% were female; 50% of patients
with AF and 50% of patients without AF). Patient character-
istics are summarized in Table 1.

Using the test set, the optimal cutoff score was 0.445, with
a Youden’s index of 0.5508 and a C-statistic of 0.853
(Figure 3 and Online Supplemental Figure S4), which re-
sulted in 80% sensitivity, 75% specificity, 77% positive pre-
dictive value, 78% negative predictive value, and 78%
accuracy (Table 2). Another version of the model was created
by excluding laboratory values from the definitions of
UNAFIED-8 features to assess the usability of the model
A  UNAFIED-10 (all eligible patients)
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Figure 3 ROC curves for the UNAFIED-10model validation cohort: (A) complet
(C) development and (D) validation cohorts. AUC ROC 5 area under the receive
prediction using electronic health data.
by organizations with no access to laboratory values. The
parameter estimates and ROC curve for UNAFIED-8 without
laboratory values are presented in Online Supplemental
Table S8 and Online Supplemental Figure S5.

For the UNAFIED-8 imbalanced complete validation
cohort, the optimal cutoff score was 0.476, with a You-
den’s index of 0.5404 (Table 2 and Online
Supplemental Figure S5). The C-statistic was 0.845,
which resulted in 76% sensitivity, 79% specificity, 78%
accuracy, 11% positive predictive value, and 99% nega-
tive predictive value.
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Overall, UNAFIED-8 had a higher C-statistic (95% CI)
compared with the original UNAFIED-10 model (0.845
[0.844–0.846] vs 0.806 [0.802–0.810]) and consistent
with UNAFIED-10 that was validated using Optum
EHR data (0.845 vs 0.850). Moreover, the UNAFIED-8
validation cohort showed higher specificity (79% vs 66%)
and accuracy (78% vs 67%) but lower sensitivity (76% vs
86%) compared with the UNAFIED-10 Optum EHR com-
plete validation cohort (Table 2). Performance of the
Table 3 UNAFIED-8 model variables and parameter estimates

Parameter*†
UNAFIED-8 model developmen

Description

Intercept
Age �40 to ,45 y

�50 to ,55 y
�55 to ,60 y
�60 to ,65 y
�65 to ,70 y
�70 to ,75 y
�75 to ,80 y
�80 to ,85 y
�85 y

Heart disease Present
Body mass index Missing

,18.5 kg/m2

.30 kg/m2

Sex Female
Heart failure* Present
Kidney disease Present
OSA* Present
COPD* Present

CI5 confidence interval; COPD5 chronic obstructive pulmonary disorder; ICD-95
Classification of Diseases, Tenth Revision; OSA 5 obstructive sleep apnea; UNAFIED 5
*The UNAFIED-8 model differed from the original UNAFIED-10 model in defining hea
ICD-10 code I42.X) were removed from heart failure, and OSA (ICD-9 codes 32723, 3
separated from COPD.20
†Reference parameters: age �45 to ,50 y, body mass index 18.5–24.9 kg/m2, ma
UNAFIED-8 models with or without laboratory values
were similar (C-statistic 0.845 vs 0.847) (Table 2 and On-
line Supplemental Table S9).

Bias assessment of UNAFIED-8 across patient
subpopulations
Findings from the UNAFIED-8 model performance disparity
analysis showed differences in sensitivity between patients
with Medicaid (65%), commercial (69%), or an unknown
t

Estimate Odds ratio (95% CI)

21.8785
20.3460 0.65 (0.58–0.72)
0.3375 1.57 (1.44–1.71)
0.6239 2.35 (2.17–2.55)
0.9870 3.64 (3.37–3.94)
1.3666 5.55 (5.13–6.00)
1.7449 8.70 (8.04–9.41)
2.1015 12.85 (11.83–13.95)
2.4137 18.42 (16.82–20.16)
2.9047 30.43 (27.69–33.44)
1.3388 8.62 (8.31–8.93)

20.3607 0.45 (0.43–0.47)
0.4660 2.48 (2.18–2.82)
0.2515 1.05 (1.01–1.09)

20.4060 0.58 (0.57–0.60)
1.5826 15.57 (14.39–16.85)
0.5493 4.74 (4.58–4.90)
0.3954 2.24 (2.13–2.35)
0.4065 3.11 (2.96–3.26)

International Classification of Diseases, Ninth Revision; ICD-105 International
undiagnosed atrial fibrillation prediction using electronic health data.
rt failure and COPD. In UNAFIED-8, the tachycardia codes (ICD-9 code 425.X;
2720, 32729, 78051, 78053, 78057; ICD-10 codes G4733, G4730, G4739) was

le, no diagnosis of heart disease, COPD, heart failure, or kidney disease.
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Figure 5 Bias assessment of UNAFIED-8: (A) sensitivity, (B) precision, and (C) specificity. Ref 5 reference group; UNAFIED 5 undiagnosed atrial fibril-
lation prediction using electronic health data.
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(59%) insurance compared with Medicare beneficiaries
(86%) (Figure 5). Similar to the disparity assessment results
for the externally validated UNAFIED-10 model, precision
was lowest in patients of Asian (60%) compared with White
(81%) race, and there was a lower representation of Asian pa-
tients. Furthermore, specificity was lower in Medicare bene-
ficiaries (54%) than in recipients of all other insurance types
(commercial [85%], Medicaid [88%], and unknown [88%]).
Discussion
This study used a large longitudinal national data set with
.100 million patients to externally validate and assess bias
of the previously published 10-variable clinical prediction
model for undiagnosed AF (UNAFIED-10), which was
developed using a diverse patient population mostly from a
single US state.20 UNAFIED-10 was updated to a more parsi-
monious and generalizable 8-variable model (UNAFIED-8).

External validation is important to assess a model’s repro-
ducibility and transportability in new settings. However,
most models are rarely externally validated or used in clinical
practice.38 The external validation of UNAFIED-10 using a
national data set showed better predictive performance
compared with the published UNAFIED-10 model develop-
ment study (C-statistic 0.850 vs 0.806). Findings from
external validation suggest that UNAFIED-10 has acceptable
predictive performance in settings beyond the regional INPC
data set used in its original model development.

Bias in medical AI may affect patient care and could arise
from several factors (eg, disparities in institutional or health
care practices, sampling, demographic representation in data
sets, and algorithm bias).21,22,39 However, bias assessment is
not necessarily a standard part of model development. Find-
ings from performance disparity analyses showed that both
UNAFIED-10 and UNAFIED-8models tended to have higher
sensitivity in patients with Medicare insurance than in those
with other insurance categories, higher precision in White pa-
tients than in Asian patients, and higher specificity in patients
with other insurance categories than inMedicare beneficiaries.
Disparities in model performance may be attributed to Medi-
care beneficiaries being generally older (aged �65 years),
which is associated with higher AF prevalence, and to under-
representation of Asian patients in the data sets. By assessing
and identifying biases in model performance within patient
subpopulations, mitigation strategies can be implemented to
ascertain optimal performance and fairness. Further postpro-
cessing to recalibrate or tune the model to a specific population
may reduce bias and improve fairness.29

The updated UNAFIED-8 model has 8 predictor variables
(age, sex, body mass index, COPD, OSA, kidney disease,
heart disease, and heart failure) that are routinely collected
and easily extractable from EHR data (Figure 1 and
Table 3). Overall, UNAFIED-8 demonstrated consistent
good performance in identifying patients at higher risk of
AF in the 2 years before their eventual AF diagnosis (C-statis-
tic 0.845; specificity 79%; accuracy 78%; sensitivity 76%).
Variables (insurance, shock, albumin level) that restricted
the generalizability of UNAFIED-10 were eliminated in
UNAFIED-8. We also presented a version of the
UNAFIED-8 model without laboratory values in the feature
definitions and with similar predictive performance to allow
its potential implementation at health care organizations
without full access to laboratory data (eg, payers).
UNAFIED-8 may be used alone or with other modalities in
the future. When the model is implemented, it would be dy-
namic, and the risk scores will be automatically updated as
new relevant diagnoses or laboratory results are documented.
Furthermore, when appropriately integrated into workflows,
UNAFIED-8 may be a useful tool for health care professionals
to better identify patients for AF screening, potentially leading
to earlier clinical interventions and reducing the prevalence of
AF-related stroke.
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Clinical practice guidelines provide varying endorsements
of population-based AF screening. The European Society of
Cardiology recommends opportunistic screening for AF by
pulse taking or electrocardiogram (ECG) rhythm strip in in-
dividuals 65 years and older.40 It also recommends system-
atic ECG screening to detect AF in individuals 75 years
and older or at high risk of stroke.40 However, the US Preven-
tive Services Task Force indicated, in their 2022 publication,
that current evidence is insufficient to assess the balance of
benefits and harms of screening for AF in asymptomatic
adults 50 years and older.41 Multiple randomized and non-
randomized clinical trials on population-based AF screening
showed increased rates for detecting AF in previously undi-
agnosed patients, but most trials did not demonstrate reduc-
tion in stroke, systemic embolism, or death; and a number
of these trials were not powered to detect such differ-
ences.41,42 Moreover, the STROKESTOP trial in patients
aged 75–76 years in Sweden demonstrated a small net benefit
of AF screening compared with standard of care (no
screening) for the combined primary end point of ischemic
or hemorrhagic stroke, systemic embolism, bleeding leading
to hospitalization, and all-cause death after a median
follow-up of 6.9 years (hazard ratio 0.96 [95% CI 0.92–
1.00]; P 5 .045).43 This study indicated that screening is
safe and beneficial in older populations.43 However, the po-
tential benefits and harms of screening and earlier treatment
must be balanced. Screening may contribute to the reduction
in the risk of AF-related stroke or systemic embolism and
reduce AF-related morbidity and mortality through early
identification of patients at high AF risk, thereby prompting
timely treatment decisions. However, false-positive diagno-
ses from screening may lead to unnecessary oral anticoagula-
tion therapy, potentially increasing bleeding risk. Abnormal
screening results also require additional confirmatory testing,
potentially contributing to patient anxiety and higher
costs.24,40

There is growing interest in understanding the impact of us-
ing clinical prediction scores and AI-based models on target-
ing individuals at highest AF risk and facilitating more
efficient AF screening. Different predictive approaches for
evaluating AF risk have been proposed, including clinical
risk scores (eg, Cohorts for Heart and Aging Research in
Genomic Epidemiology-AF, Atherosclerosis Risk in Commu-
nities, EHR-AF, and C2HEST), AI models using clinical vari-
ables to predict AF, and ML models using raw 12-lead ECGs
or a combination of raw 12-lead ECGs and clinical vari-
ables.17,42,44,45 Compared with these existing models, UNA-
FIED may provide a simpler option to estimate AF risk with
acceptable predictive performance.

In the present study, our analyses were limited to patients
with available clinical data in the Optum EHR. One of the ad-
vantages of using EHR data is the ability to include patients
regardless of their insurance coverage status or insurance
type. We used a single instance of documentation for the
outcome and predictor variables as proxy for the presence
of these variables. EHR data are collected for clinical care
and generally may have inherent limitations (eg, the possibil-
ity of entry and coding errors, missing information, and in-
consistencies in data collection and reporting).46 Moreover,
model validation was conducted with a retrospective design
using patient cohorts with known outcomes and the results
may be different when the model is used to prospectively pre-
dict AF risk in patients with unknown status. Also, we are un-
able to recommend specific interventions for patients
identified as having a higher risk of AF, and additional
research is needed to understand the best approach of manag-
ing these patients.
Conclusion
UNAFIED-10, developed using US regional patient data, dis-
played consistent performance in a large national data set (Op-
tumEHR). Themodel’s ability to prospectively predict 2-year
AF occurrence may guide earlier AF detection and guideline-
recommended treatment decisions. UNAFIED-8 is more
parsimonious and generalizable for using advanced analytics
for AF detection. Future directions include UNAFIED-8
model validation on data from other US and non-US clinical
databases and studying the implementation of the model in
clinical settings.
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