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Abstract: Nanoarchitectonics is a universal concept to fabricate functional materials from nanoscale
building units. Based on this concept, fabrications of functional materials with hierarchical structural
motifs from simple nano units of fullerenes (C60 and C70 molecules) are described in this review
article. Because fullerenes can be regarded as simple and fundamental building blocks with mono-
elemental and zero-dimensional natures, these demonstrations for hierarchical functional structures
impress the high capability of the nanoarchitectonics approaches. In fact, various hierarchical
structures such as cubes with nanorods, hole-in-cube assemblies, face-selectively etched assemblies,
and microstructures with mesoporous frameworks are fabricated by easy fabrication protocols. The
fabricated fullerene assemblies have been used for various applications including volatile organic
compound sensing, microparticle catching, supercapacitors, and photoluminescence systems.

Keywords: assembly; fullerene; hierarchical structure; interface; nanoarchitectonics; nanomaterial

1. Introduction

Materials sciences have been supported by various synthetic approaches including
organic chemistry [1–3], inorganic chemistry [4–6], coordination chemistry [7–9], polymer
chemistry [10–12], and others [13–15]. The prepared materials are utilized in many appli-
cations for the purpose of solving energy [16–18], environmental [19–21], and biomedical
problems [22–24] upon social demands. Undoubtedly, the preparation and fabrication of
high-performance materials are crucial issues. Based on analyses and characterizations
with high-resolution techniques upon advanced nanotechnology [25–27], the importance
of the regulation of nanoscale structures for better functions has been revealed [28–30].
Accordingly, nanoscale materials sciences have been paid much attention. Nanoscale
materials in various dimensions such as quantum dots [31–33], nanoparticles [34–36],
nanocrystals [37–39], nanotubes [40–42], nanorods/nanowires [42–45], nanosheets [46–48],
graphene [49–51], and other two-dimensional materials [52–54] have been extensively
investigated. Similarly, materials with internal nanostructures including mesoporous ma-
terials [55–57], zeolites [58–60], metal–organic frameworks [61–63], other coordination
polymers [64–66], and covalent organic frameworks [67–69] have been actively explored.

In addition to these nanomaterials and materials with internal nanostructures, materi-
als prepared through assembly and aggregation of small units have also become important
in the exploration of functional materials. Such materials have been prepared through
self-assembly processes in supramolecular chemistry [70–73] as well as artificial fabrication
processes such as the self-assembled monolayer (SAM) method [74–76], Langmuir–Blodgett
(LB) technique [77–80], and layer-by-layer (LbL) assembly [81–83]. These approaches
have been thus far examined as separated and independent methodologies. In order to
achieve more effective and versatile developments of materials exploration with nanoscale
structural features, a unified methodology must be established as a post-nanotechnology
concept. This task can be assigned as an emerging concept, nanoarchitectonics [84,85],
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which is an universal concept to fabricate functional materials from nanoscale building
units (Figure 1) [86]. Like the historical proposal of nanotechnology by Richard Feyn-
man [87,88], nanoarchitectonics was initially proposed by Masakazu Aono [89,90] in 2000
at the first International Symposium on Nanoarchitectonics Using Suprainteractions in
Tsukuba, Japan.
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research fields, in which functional material systems are prepared from nanoscale units.

Nanoarchitectonics is a conceptual methodology to combine nanotechnology with
other research fields such as organic chemistry, supramolecular chemistry, materials chem-
istry, microfabrication technology, and bio-related science [91,92]. Functional material
systems are prepared from nanoscale units such as atoms, molecules, and nanomate-
rials through combinations and selections of building units and processes including
atom/molecular manipulation, chemical transformation, self-assembly/self-organization,
field-controlled organization, material processing, and bio-related treatments [93]. Because
this concept is general and applicable for a wide range of materials, the nanoarchitecton-
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ics concept has been used in various research fields such as material production [94–96],
structural fabrication [97–99], catalysts [100–102], sensing [103–105], devices [106–108],
environmental usage [109–111], energy-related applications [112–114], biochemical sci-
ence [115–117], and biomedical applications [118–120]. Nanoarchitectonics strategies for
materials creation from fundamental units of atoms and molecules could apply to any kind
of material with any desirable function [121].

Nanoarchitectonics approaches have two distinct features. One of them is harmo-
nized nature between contributing processes [122,123]. Unlike actions between objects at
microscopic scales, the interaction between nanoscopic objects often includes uncertainties
such as thermal fluctuations, statistical distributions, and quantum effects. Total effects
are not always the same as a summation of individual actions. Therefore, materials pro-
ductions have to be considered with the harmonization of contributing interactions rather
than their simple summation. Another feature of the nanoarchitectonics approaches is
advantageous features to construct asymmetric and/or hierarchical material systems [124].
Self-assembling processes are mostly driven through an energy–consume-less equilib-
rium. Unlike conventional self-assembling processes, the nanoarchitectonics approaches
can include multiple steps where energy-consuming non-equilibrium processes are of-
ten involved. Stepwise processing and sequential treatment for materials fabrications
result in the formation of materials with hierarchical structural motifs. It can be said that
the nanoarchitectonics approaches are advantageous for the constraction of hierarchical
materials structures.

Based on these backgrounds, fabrications of functional materials with hierarchical
structural motifs from simple nano units of fullerenes (C60 and C70 molecules) are described
in this review article. Because fullerenes can be regarded as simple and fundamental build-
ing blocks with mono-elemental and zero-dimensional natures, these demonstrations for
hierarchical functional structures impress the high capability of the nanoarchitectonics ap-
proaches [125,126]. Especially, this review article exemplifies three classes of structures and
functions of hierarchical fullerene materials: (i) hierarchically structured fullerene assembly
for vapor sensor usage; (ii) fullerene assembly with microscopic recognition capability;
(iii) fullerene microstructure with a mesoporous framework for advanced functions.

2. Hierarchically Structured Fullerene Assembly for Vapor Sensor Usage

Recently, hierarchical nanostructures have gained immense attention due to their
multimodal versatility, such as porous architecture with high surface area, diverse func-
tionality, synergistic interactions, multiple functionalities, and easy bottom-up synthesis
method [127,128], which are in general difficult to achieve in cases of conventional nano-
materials. Owing to their versatility, hierarchical nanostructures have been used in areas
of advanced applications, such as optoelectronics, energy harvesting, sensing, and pho-
tonics [129,130]. The selection of buildings blocks for hierarchical nanostructures is a
challenging task and extremely important to obtain the desire materials for the specific
application. In this regard, fullerenes (C60 or C70) have recently received significant in-
terest due to their extended π-conjugation and applications in many advanced research
fields such as biomedical, semiconductors, optics, electronics, and spintronics [131–133].
Additionally, fullerene readily undergoes self-assembly to form dimensionally-controlled
nano or microstructures via the simple liquid–liquid interfacial precipitation method
(Figure 2) [134,135]. Along with the liquid–liquid interfacial precipitation method, precise
solvent engineering is also very important to control or transform the hierarchical fullerene
structure. The fabricated hierarchical fullerene assemblies often exhibit high capabilities in
vapor sensing.
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is displayed.

2.1. Fullerene C70 Cube for Sensing Platform for Volatile Aromatic Solvent Vapor

Bairi et al. demonstrated the preparation of hierarchically structured fullerene cubes
using C70 as building blocks through the liquid–liquid interfacial precipitation method
(Figure 3) [136]. Structural analysis through scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) suggested that these cubes are composed of meso-
porous fullerene C70 nanorods with crystalline pore walls, which make them an excellent
candidate as a receptor layer for volatile solvent detection. Detailed study of the forma-
tion mechanism highlights the importance of precise solvent engineering to control such
transformation of C70 fullerene cubes to hierarchically structured fullerene cubes. In this
case, isopropyl alcohol was used as an additional solvent to complete this transformation
process of C70 fullerene cubes to hierarchically structured fullerene cubes via handshak-
ing, followed by incubation at 25 ◦C for 1 h. SEM observations confirmed that isopropyl
alcohol triggers the structural changes of the cubes, resulting in the formation of fullerene
C70 nanorods, which subsequently formed the cube surface. The high surface area and
porous architecture of hierarchically structured fullerene cubes make them potential recep-
tor materials for volatile organic compound sensing in combination with quartz crystal
microbalance. These hierarchically structured fullerene cubes show excellent selectivity
towards aromatic vapors over other organic volatile organic compounds due to the strong
π–π interactions between host and guest. Sensitivity towards toluene is the highest among
all the aromatic vapors. Additionally, sensitivity towards water vapor is very low, which is
highly desirable for any kind of receptor material for gas sensing.
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nanorods with crystalline pore walls. Reprinted with permission from Reference [136]. Copyright
2016 American Chemical Society.

2.2. Dimension-Dependent Face-Selective Etching of Fullerene Assembly

Controlled structural modification and surface functionalization of such hierarchical
fullerene microstructure is highly desirable to widen their sensing ability towards nonaro-
matic vapors. Additionally, conversion of hydrophobic fullerene to their hydrophilic
counterpart through surface functionalization opens the possibility to use them in several
biological applications. Hsieh et al. demonstrated such modification through face-selective
chemical etching of fullerene assemblies (Figure 4) [137]. Their results showed a simple
and scalable strategy for the fabrication of hollow and hierarchical fullerene nanostructures
via face-selective etching of the self-assembled fullerene crystals.
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The fabrication of fullerene C60 nanorods, fullerene C60 nanosheets, and fullerene
C70 cubes was demonstrated by using the modified liquid–liquid interfacial precipitation
method called ultrasound-assisted liquid–liquid interfacial precipitation. SEM images re-
vealed the formation of fullerene C60 nanorods, fullerene C60 nanosheets, and fullerene C70
cubes with a uniform size distribution. X-ray diffraction (XRD) confirmed the crystalline
nature of the as synthesized fullerene assemblies. Chemical etching of these fullerene
assemblies was performed in solution with ethylene diamine treatment for 10 min un-
der ultra-sonication followed by incubation at 25 ◦C for 0 to 24 h depending on their
shape. SEM observations revealed that ethylene diamine selectively etches at the ends
of the one-dimensional nanorods, leading to the formation of hollow tubular structures,
whereas for two-dimensional fullerene C60 nanosheets, ethylenediamine etches largely
at their upper and lower surfaces and partially their edges. Similarly, ethylenediamine
etches the faces of the three-dimensional cube, not the edges. However, there were no
changes in the overall dimensions after etching indicated the perfect example of face-
selective etching of the fullerene assemblies. Chemical analysis suggested that the etching
of self-assembled fullerene assemblies is due to the amination reaction between the pri-
mary amine, ethylenediamine, and π-electron-rich fullerene. Additionally, the chemical
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etching of post-assembled fullerene crystals is highly dependent on the co-solvent as well
as different crystal forms. This effect can be attributed to the difference in solubility of
fullerene in different co-solvents. On the other hand, face-selectivity can be explained by
the different reactivity of the different faces of the as-prepared fullerene assemblies.

This kind of chemical etching leads to changes of fullerene assembly surfaces from
hydrophilic to hydrophobic. Additionally, porosity is also improved by such chemical etch-
ing, which leads to better sensing performance. Selectivity of these hydrophilic fullerene
assemblies towards hydrophilic acidic volatile components is higher than that of aro-
matic volatile organic compounds due to the favorable interaction with the amine group,
although, selectivity towards other hydrophilic solvents vapor like alcohol is very low.
Additionally, such water-dispersible fullerene assemblies are highly important for their use
in biological fields.

2.3. Bitter Melon Shaped Nanoporous Fullerene C60 Assembly

As a continuation of the previous discussion, not only the surface functionality but
also the shape of the fullerene hierarchical nanostructures has great importance to improve
their potential application in a different field. In this regard, the combination of good
solvent and poor solvent during the self-assembly of pristine fullerene via the liquid–
liquid interfacial precipitation method is the determining factor to control the hierarchical
structure. Furuuchi et al. demonstrated the assembly of C60 into exceptional morphology
called “bitter melon” shaped nanoporous C60 assemblies by tuning the liquid–liquid
interfacial precipitation method at room temperature (25 ◦C) (Figure 5) [138]. In this case,
isopropyl alcohol was used as a poor solvent, and C60 solution in dodecylbenzene as a
good solvent to form a clear liquid–liquid interface. Ultrasonication and vortex mixing
were applied to modify the conventional liquid–liquid interfacial precipitation method
before 24 h incubation at 25 ◦C. XRD and high-resolution transmission electron microscopy
(HRTEM) analysis confirmed the crystalline nature of the self-assembled fullerene structure.
Powder XRD patterns of the as synthesized “bitter melon” shaped C60 assemblies showed
mixed crystal phases, including fcc and hcp phases. TEM analysis confirmed the nanoporous
nature of the fullerene structure. Surface textural properties and nanoporous architectures
of bitter melon shaped fullerene C60 assemblies make them excellent receptor materials
of quartz crystal microbalance for sensing toxic volatile organic compounds. Here also,
selectivity towards aromatic solvent vapors is excellent over nonaromatic compounds due
to the favorable π–π interaction. Among aromatic vapor, selectivity towards aniline is
the highest.

Moreover, micro or mesoporous self-assembled hierarchical fullerene nanomaterials
are a class of materials that display excellent efficiency as volatile organic compound
sensors, with selectively for aromatic vapors due to their extended π-conjugated structure
and favorable π–π interaction with the aromatic vapors. Additionally, functional modifica-
tion from hydrophobic to hydrophilic while maintaining the morphology improves their
selectivity from aromatic to nonaromatic solvent vapor.
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3. Fullerene Assembly with Microscopic Recognition Capability

The concept of the nanoporous hierarchical structure has been studied extensively
and is now well established. However, the manipulation of micron-sized hollow ob-
jects with self-assembled hierarchical structures remains very challenging. Such kinds
of microscale hollow objects and manipulation of such hollow structures are highly im-
portant for advanced applications, which include loading, transportation, and release
of nano/micron-sized objects, especially cells, bacteria, biomolecules, and functional
nanoparticles [139–141]. Therefore, researchers are giving extensive effort to fabricate
such micron-sized hollow hierarchical objects, and there are only a few successful exam-
ples. In the following examples, fullerene C70 offers such manipulable micron-sized hollow
structures via the controlled liquid–liquid interfacial precipitation method.

3.1. Hole-in-Cube Fullerene Assembly with Microscopic Recognition Capability

Bairi et al. demonstrated the fabrication of a C70 cube with an open hole on each face
of the cube through controlled self-assembly at the liquid–liquid interface (Figure 6) [142].
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Additionally, it was established that the process to close and open the holes can be done
purposefully. Fullerene C70 cubes with open or closed holes were produced by the dynamic
liquid–liquid interfacial precipitation method at 25 ◦C using mesitylene as a good solvent
and tertiary butyl alcohol as a poor solvent followed by 24 h incubation under 25 ◦C. The
formation mechanism of such an open hole cube is different from the previously discussed
solvent or chemical etching mechanisms. Detailed structural analysis via cross-section
SEM confirmed that the holes are not hollow through. Additionally, TEM images of
fullerene assemblies formed just after the mixing of C70-mesitylene with tertiary butyl
alcohol confirmed the formation of a smaller cube with no holes. It was suggested from this
observation that the open hole formation is not driven by the solvent etching mechanism,
but rather the growth of open hole cubes involves a two-step process including a solid core
formation at the first step followed by slow growth to the final open hole cube formation.
In the second step, concentration depletion and the different reactivity of the corner, as
well as the edges, play important roles to form such a uniform open hole cube. This
observation is in line with the formation mechanism of the closed hole cube. When the
mesitylene/tertiary butyl alcohol ratio is fixed at 1:2, the C70 concentration is below the
critical concentration level to form the new core. Therefore, C70 molecules tend to grow
over each face of the open hole cube to form the closed hole cube.
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These open hole cubes show excellent microscopic recognition properties towards
the micron size particles. Open hole cubes specifically recognize the graphitic carbon
particles over resorcinol–formaldehyde polymeric resin particles with similar dimensions.
SEM observations show that the open holes of the cube were mostly occupied by the
graphitic particles, whereas polymeric resin particles were not recognized by these open
hole cubes. This phenomenon can be attributed to the favorable π–π interaction of the
graphitic carbon particles with the fullerene cube. Moreover, controlled synthesis of such
functional materials with precise manipulation of open or closed hollow structures is
highly important for many advanced applications, such as the controlled release of drugs,
protection of biologically active species, and removal of pollutants from air or water.

3.2. Fullerene Microhorns with Microscopic Recognition Properties

We discussed in the previous section that the manipulation of the hollow structure
with specific morphology is highly important for advanced nanotechnology. In addition
to this, the structural transformation from one morphology to another is also extremely
important. It is very important to find out an effective and versatile strategy to manipulate
the morphology of such self-assembled nanostructures. In this regard, solvent engineering
is showing extreme potential, which involves the use of different types of solvents or a
mixture of solvents with different ratios to control the self-assembly conditions to achieve
desired materials.

Recently, Tang et al. demonstrated the fabrication of fullerene microstructures with
a hollow framework from a mixture of C60 and C70 based on the dynamic liquid–liquid
interfacial precipitation method (Figure 7) [143]. Additionally, considering the different
crystalline phases and solubility of C60 and C70 and precise solvent engineering, they can
transform the microstructure into unique conical-shaped fullerene microhorns. A C60 and
C70 fullerene mixture with a 4:1 volume ratio was used in mesitylene as a good solvent.
A mixed fullerene microtube was fabricated by the dynamic liquid–liquid interfacial
precipitation method using tertiary butyl alcohol as a poor solvent. The overall reaction was
very fast and completed in a few seconds after the addition of the fullerene fixture into the
poor solvent. Details analysis suggests that the mixing ratio of fullerene C60 and C70 plays
an important role to control the formation of the microtube. Interestingly, the microtube
formation of fullerene C70 is not possible due to their crystal packing. However, with the
help of fullerene C60, fullerene C70 was forced to form the microtube through hexagonal
closed packing. Fullerene microtube-to-microhorn transformation was accomplished by
precise solvent engineering. Then, a mesitylene/tertiary butyl alcohol (volume ratio of
1:3) solvent mixture was used to wash the microtube to form the perfectly homogeneous
microhorn. Interestingly, there was no change in crystallinity of the microhorn, which
suggests that the process of such morphological transformation is fully dominated by the
physical changes. Additionally, such solvent engineering helps us to generate a nanoporous
architecture inside the microhorn.

Real-time optical microscope imaging suggests that the formation of microhorns
directs through the solid core dissolution of the fullerene microtube. This can be explained
by the difference in solubility in good and poor solvents. Solubility of fullerene C70 is lower
in alcohol than that of fullerene C60. Therefore, fullerene C70 molecules tend to form tiny
aggregates when the mixture of C60 and C70 starts to form the crystal, and that core forms
the center solid part of the microtube. Therefore, there is a higher concentration of C70
at the central part of the microtube. When the mesitylene–tertiary butyl alcohol solvent
mixture is added to the microtube, C70 molecules tend to dissolve faster in mesitylene due
to their higher solubility over C60. In this way, these fullerene microtubes transfer to their
secondary morphology microhorn.
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These hollow microhorns also show excellent microscopic recognition properties to
the silica particles over polystyrene particles. However, the recognition property towards
fullerene C70 nanoparticles is not so satisfactory, which suggests that this phenomenon
is not directed by typical π–π interactions between the microhorn and the C70 particles.
Zeta potential charge analysis suggests that the microscopic recognition phenomenon
is governed by the electrostatic surface charge of the microhorn. Moreover, such mor-
phological transformation of fullerene assemblies through solvent engineering delivers
important perceptions into the field of supramolecular self-assembly. Additionally, specific
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microscopic recognition by such hollow structures has immense potential for utilization in
different fields, as stated earlier.

4. Fullerene Microstructure with Mesoporous Framework for Advanced Function

Not only the microscopic hollow structure but also the mesoporous structural ma-
terials with crystalline frameworks also have great importance in many advanced fields.
Additionally, such post-synthesis modification of self-assembled materials to their meso-
porous architecture critically influences their overall properties including optical, electrical,
charge storage, etc. Thus, mesoporous materials with crystalline frameworks and tunable
pore sizes might have substantial technological advantages. Therefore, a proper synthesis
methodology and suitable building blocks for novel crystalline mesoporous materials
remain a high point of interest due to their significant potential in many advanced fields.
Here, fullerene also plays an important role to form such a crystalline framework via self-
assembly, and transformation to the mesoporous framework can be achieved by a simple
post-synthesis treatment, which leads to changes in its optical, charge storage mechanism.

4.1. Mesoporous Fullerene C70 Cube with Enhanced Photoluminescence Property

Bairi et al. have recently demonstrated one such novel piece of work, which includes
the formation of mesoporous fullerene C70 cubes with highly crystalline frameworks with
excellent photoluminescence properties [144]. Crystalline fullerene cubes with sharp edges
were fabricated by the ultrasound liquid–liquid interfacial precipitation method from
tertiary butyl alcohol as a poor solvent and a solution of C70 in mesitylene as a good
solvent at 25 ◦C. A good solvent to poor solvent ratio is one of the important parameters
to control the desired morphology, and here in this case it was 1:5. After the preparation
of the fullerene cube, the mother liquor was stirred at 300 rpm for 72 h at 75 ◦C and then
drop-casted on a silicon wafer and dried at 80 ◦C to prepared the mesoporous crystalline
fullerene cube. An adsorption isotherm confirmed the formation of mesopore inside the
fullerene cube, as the surface area of the mesoporous structure was higher than that of
the fullerene cube. Crystal structure analysis via XRD confirmed that the as-synthesized
fullerene cube contained the simple cube packing, whereas mesoporous has a mixed
crystal phase with a simple cube and hexagonal closed pack. This phenomenon can be
attributed to the entrapped solvent molecules, which change the crystal packing of C70 and
reducing the crystal symmetry. Photoluminescence properties of mesoporous fullerene
cubes are improved by such crystallographic modification, which can be confirmed from the
comparison of photoluminescence spectra of pristine C70, fullerene cubes, and mesoporous
fullerene cubes. It is worth noticing that for π-conjugated molecules, photoluminescence
intensity is quenched in the solid-state. However, the photoluminescence intensity of
mesoporous fullerene cubes is higher in the solid-state, which indicates the importance of
such structural and crystalline framework modification.

4.2. Mesoporous Carbon Cubes for Supercapacitors

We have discussed earlier that the incorporation of mesopores creates substantial
changes in material properties and makes them suitable for many advanced applications.
One such application of the mesoporous materials is in electrochemical charge storage.
During the last three decades, researchers have given enormous efforts to finding suitable
mesoporous materials for charge storage applications [145–147]. Carbon-based materials
with mesoporous architectures are supposed to be the best materials for such charge storage
properties [148–150]. However, unwanted surface functionality and poor electrochemical
conductivity of such carbon materials have to be addressed to improve their performance.
Fullerene C60 or C70 is a π-conjugated molecule and readily self-assembles to form a
homogeneous shape-controlled microstructure. Recently, researchers have focused on
these dimensionally-controlled fullerene assemblies as an exceptional source of π-electron-
rich carbon materials. Such extended conjugated π-systems with high surface areas and
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mesoporous frameworks will be advantageous for energy storage applications such as
supercapacitors, battery, etc. [151–153].

Bairi et al. demonstrated the direct transformation of porous crystalline fullerene C70
cubes into mesoporous carbon cubes that possess a very high specific surface area [154].
Synthesis of a porous crystalline C70 cube was done by the liquid–liquid interfacial precipi-
tation method followed by mild heat treatment at 70 ◦C. XRD and TEM analysis confirmed
the crystalline framework of the C70 cube. Conversion of porous crystalline fullerene C70
cubes to high surface area mesoporous carbon cubes was performed by high-temperature
heat treatment (900 ◦C) under a continuous flow of N2 gas in a tube furnace. A nitrogen
adsorption isotherm confirmed the formation of a mesoporous architecture with a narrow
pore size distribution. The Brunauer–Emmett–Teller surface area of the mesoporous carbon
cube was very high at ca. 642.6 m2 g−1, which is almost 14 times higher than that of the
porous crystalline fullerene cube (ca. 47.7 m2 g−1). Therefore, high-temperature heat treat-
ment is an essential step for such a large improvement of specific surface area. Pore size
analysis by Barrett–Joyner–Halenda and the non-local density functional theory method
confirmed the presence of both micropores and mesopores. The average pore size of the
obtained carbon cube was 3.44 nm with a high pore volume of 0.367 cm3 g−1. XRD and
Raman analysis of the obtained carbon cube confirmed the graphitic nature of carbon.

This newly synthesized mesoporous carbon cube with a high surface area showed
excellent electrochemical charge storage properties. Electrochemical measurements via
cyclic voltammetry and charge–discharge measurements revealed that this microstructure
carbon cube showed excellent specific capacitance of ca. 286 F g−1 at a scan rate of 5 mV s−1

and 205 F g−1 at a current density of 1 A g−1. These values are highly comparable with
other nanocarbon materials, such as graphene and carbon nanotubes. The rate capability
of this material is excellent, with a very high retention of specific capacitance of 56.0% at
a very high current density of 20 A g−1. Additionally, the cyclic stability of this material
is also very high, with almost no loss of specific capacitance even after 10,000 charge–
discharge cycles.

4.3. Quasi Two-Dimensional Mesoporous Carbon Microbelts for Supercapacitors

Electrochemical charge storage is highly dependent on the effective surface area
accessible to the electrolyte ions. Therefore, it is very important to change the morphol-
ogy of the fullerene-derived carbon to obtain maximum charge storage capacity. Here,
fullerenes offer a great opportunity, as they can form almost any kind of morphology
starting from one-dimensional rod to two-dimensional sheet to three-dimensional cube
through the supramolecular assembly. Studies on charge storage mechanisms suggest that
the sheet-like structure shows great performance.

Recently, Tang, et al. reported a novel method for fabrication of two-dimensional
fullerene microbelts, which can be transferred to mesoporous carbon with the retention
of their original sheet-like structure (Figure 8) [155]. Fullerene microbelts were made
using the conventional liquid–liquid interfacial precipitation method taking CS2 as a good
solvent and isopropyl alcohol as a poor solvent followed by 24 h incubation at 25 ◦C to
complete the full growth of the fullerene microbelts. Powder XRD analysis of the fullerene
microbelts confirmed the mixed fcc and monoclinic crystal phase, which is different from
the fcc crystal phase of the pristine C60 powder. Mesoporous carbon microbelts were
prepared by high-temperature heat treatment at the two different temperatures of 900 ◦C
and 2000 ◦C. A nitrogen adsorption isotherm confirmed the formation of the porous
architecture of the fullerene microbelt-derived carbon. Brunauer–Emmett–Teller surface
areas of mesoporous carbon microbelts derived at 900 ◦C and 2000 ◦C were 980 m2 g−1

and 297 m2 g−1, respectively. The surface area of the fullerene microbelt was much lower
compared to that of the fullerene microbelt-derived carbon materials, which confirmed the
importance of high-temperature heat treatment. Raman and XRD analysis confirmed the
graphitic nature of the derived mesoporous carbon belt. TEM and HRTEM analysis of the
derived mesoporous carbon confirmed the amorphous nature of the carbon.
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These mesoporous microbelts were used as active electrode materials for supercapac-
itive charge storage applications. Cyclic voltammetry curves of the mesoporous carbon
microbelts showed quasi-rectangular shapes even at a very high scan rates, which indi-
cated the typical feature of electrical double-layer capacitors. The specific capacitance of
mesoporous carbon microbelts obtained from cyclic voltammetry curves was 360 F g−1

at 5 mV s−1, which was very high compared to the fullerene microbelts (38.4 F g−1at
5 mV s−1). This improvement in specific capacitance can be attributed to the high sur-
face area of the mesoporous carbon microbelts. Chronopotentiometry (charge–discharge)
curves of the mesoporous carbon microbelts showed a triangular nature, which is also
the signature of the electrical double-layer capacitors. The specific capacitance obtained
from the charge–discharge curves for mesoporous carbon microbelts prepared at 900 ◦C
was 290 F g−1 at a current density of 1 A g−1. Additionally, these derived carbon mate-
rials showed excellent rate capability with retention of 48.8% specific capacitance even
at a very high current density of 10 A g−1. A cyclic stability test of the mesoporous car-
bon microbelts prepared at 900 ◦C was performed over 10,000 charge–discharge cycles
at 10 A g−1, which showed positive cyclic stability. This phenomenon can be recognized
as additional activation of intercalation or deintercalation of electrolyte ions during the
charging/discharging cycles.



Nanomaterials 2021, 11, 2146 15 of 21

5. Summary and Perspectives

This review article summarized several examples focused on syntheses and function
explorations of fullerene assemblies with hierarchical and asymmetric structural features.
Basic structures of these fullerene assemblies are fabricated first through very simple meth-
ods, mostly the liquid–liquid interfacial precipitation method, and then post-treatment
often results in conversion of rather simple symmetric structures to complicated hierar-
chical structural motifs. Process-integrated features in nanoarchitectonics approaches are
advantageous for the preparation of hierarchical functional structures. Even though very
simple fullerenes with mono-elemental (carbon) zero-dimensional structures are used
as building units, various hierarchical structures such as cubes with nanorods, hole-in-
cube assemblies, face-selectively etched assemblies, and microstructures with mesoporous
frameworks are fabricated upon easy fabrication protocols. Accordingly, the fabricated
fullerene assemblies are used in various applications including volatile organic compound
sensing, microparticle catching, supercapacitors, and photoluminescence systems.

It must be noted that these rich varieties of structures and functions are obtained
through nanoarchitectonics processes of simple building units. Expansion of these method-
ologies to a wide range of materials will create further huge possibilities in the fabrication
of functional materials with hierarchical structural motifs. Various structural units with
specific interactions such as host–guest systems [156–159] and biomolecules (and their
mimics) [160–162] would have high potentials as active building blocks. In addition, the
other material-based building units [163–165] and their hybrids/composites [166–168]
would open further possibilities in nanoarchitectonics materials predictions. This wide
range of possibilities could be logically handled by emerging approaches such as machine
learning [169–171].

This review article mainly discusses recent progress on hierarchical fullerene nanoar-
chitectonics, mainly from our own results that would have some progress from the first
step fullerene assemblies [172]. Not limited to our results, some examples on fullerene
assemblies with certain complexities have been reported from some groups [173–175].
Various factors including molecular designs and assembling conditions would effectively
work on the construction of desired structures, which is not fully clear yet. Accumulation
of research facts would lead to total understanding of hierarchical fullerene nanoarchitec-
tonics in the near future. From basic science to practical applications such as biomedical
usages, various outputs can be highly expected.
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