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Analysis and understanding of trained deep neural networks (DNNs) can

deepen our understanding of the visual mechanisms involved in primate

visual perception. However, due to the limited availability of neural activity

data recorded from various cortical areas, the correspondence between

the characteristics of artificial and biological neural responses for visually

recognizing objects remains unclear at the layer level of DNNs. In the current

study, we investigated the relationships between the artificial representations

in each layer of a trained AlexNet model (based on a DNN) for object

classification and the neural representations in various levels of visual cortices

such as the primary visual (V1), intermediate visual (V4), and inferior temporal

cortices. Furthermore, we analyzed the profiles of the artificial representations

at a single channel level for each layer of the AlexNet model. We found

that the artificial representations in the lower-level layers of the trained

AlexNet model were strongly correlated with the neural representation in V1,

whereas the responses of model neurons in layers at the intermediate and

higher-intermediate levels of the trained object classification model exhibited

characteristics similar to those of neural activity in V4 neurons. These results

suggest that the trained AlexNet model may gradually establish artificial

representations for object classification through the hierarchy of its network,

in a similar manner to the neural mechanisms by which afferent transmission

beginning in the low-level features gradually establishes object recognition as

signals progress through the hierarchy of the ventral visual pathway.
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Introduction

Deep neural network (DNN) models provide a powerful tool
that has been used as the basis of advanced computer algorithms
for artificial intelligence (Silver et al., 2016, 2017; Vaswani et al.,
2017; Devlin et al., 2018; Brown et al., 2020) and computer vision
(Ren et al., 2015; Ronneberger et al., 2015; He et al., 2016; Isola
et al., 2016; Carion et al., 2020; Ramesh et al., 2021). Recent
models using deep convolutional neural networks (DCNNs)
provide a mechanism for resolving specific issues, such as
object classification, through training using large-scale datasets
(Simonyan and Zisserman, 2014; He et al., 2016). Trained
DCNN models as represented by AlexNet (Krizhevsky et al.,
2012; Krizhevsky, 2014; Figure 1) have significantly improved
object recognition in computer vision. The overall design of a
DCNN reflects the hierarchical structure of the ventral stream
for visually recognizing objects in primates (Hubel and Wiesel,
1968; Felleman and Van Essen, 1991; LeCun et al., 2015).
Analysis of the mechanisms underlying these trained DCNN
models may be useful for extending current understandings of
the biological mechanisms of visual perception.

Deep neural network approaches potentially enable an even
deeper understanding of the neural mechanisms involved in
perceptual processing (Cadieu et al., 2014; Güçlü and van
Gerven, 2015; Yamins and DiCarlo, 2016; Rajalingham et al.,
2018; Wagatsuma et al., 2020; Dobs et al., 2022). In addition
to achieving comparable object classification performance to
that of human beings, AlexNet (Krizhevsky et al., 2012)
promotes mutual understanding of neuroscientific and artificial
approaches for explaining the information processing involved
in visual object recognition (Yamins and DiCarlo, 2016; Geirhos
et al., 2018). Previous studies reported that after training
AlexNet on a large-scale dataset, model neurons in the lower
layers were selective for both orientation and spatial frequency
(Krizhevsky et al., 2012; Zeiler and Fergus, 2013), similarly
to neurons in the primary visual cortex (V1) (Hubel and
Wiesel, 1968) and Gabor filters (Lee et al., 1999; Itti and Koch,
2000; Deco and Lee, 2004; Sakai et al., 2012; Wagatsuma,
2019). Furthermore, various studies reported that artificial
representations in a DCNN model for object classification
correspond, at least in part, to the neural representations for
visually perceiving objects in the ventral visual stream (Le et al.,
2012; Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte,
2014; Mahendran and Vedaldi, 2014; Güçlü and van Gerven,
2015; Rajalingham et al., 2018; Storrs et al., 2021). These studies
indicate the characteristics of artificial representations in specific
layers of the DCNN model using activities in specific visual
cortices as a reference. However, due to the limited availability
of neural activity data recorded from a variety of visual cortices,
the relationship between neural and artificial representations for
object classification has not yet been clarified at the layer level.

To understand the interactions between the artificial
mechanisms of DCNN-based object classification models and

neural systems for object perception, we investigated the
correspondence (for natural image representations) between the
layers of the trained AlexNet model and monkey visual cortices.
We quantitatively analyzed the artificial representations in each
AlexNet model layer using the neural responses in the primary
visual (V1), intermediate visual (V4), and inferior temporal
(IT) cortices as a reference. The large-scale data of neural
activity in various levels of visual cortices (Tamura et al., 2016)
allowed us to investigate the detailed correspondence between
each visual cortex and each layer of DCNN. Furthermore, we
analyzed the profiles of model neurons at a single channel
level in each AlexNet model layer. The responses of the
trained AlexNet model in lower-level layers were strongly
correlated with neural responses in V1. In contrast, artificial
representations in intermediate and higher-intermediate layers
appeared to exhibit an artificial representation that was similar
to the neural representation of object perception in V4.
Our analyses suggest that the trained AlexNet model may
gradually establish representations for object classification as
signals progress through the hierarchy of its artificial network.
This seems to resemble the object recognition mechanism of
primates originating in afferent transmission of the ventral
visual pathway, which begins in the low-level features extracted
by early vision.

Materials and methods

Physiological experiments for
recording activities of monkey V1, V4,
and inferior temporal in response to
surfaces of natural objects

Tamura et al. (2016) recorded neuronal responses in three
visual cortical areas (V1, V4, and IT) of Macaca fuscata to
images of natural object surfaces (Figure 2). The details of
surgery, neural recording, and experimental procedures have
been reported in our previous studies (Tamura et al., 2016;
Wagatsuma et al., 2020). Spiking responses of single V1, V4,
and IT neurons were recorded from four analgesized monkeys
(Tamura et al., 2016; Wagatsuma et al., 2020). The effect of
analgesia was likely immaterial given that the stimulus selectivity
of V1 and IT neurons recorded from analgesized/paralyzed
monkeys has been shown to be similar to that of awake-behaving
monkeys (Wurtz, 1969; Tamura and Tanaka, 2001).

In the present study, we used firing rate of spiking activity
of single unit from these visual cortices as a reference for
investigating the artificial representations of each layer of the
trained AlexNet model (Krizhevsky, 2014; Figure 1). The
mean firing rates were standardized according to a Gaussian
distribution with a mean of zero and variance of one for each
V1, V4, and IT neuron.
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FIGURE 1

Convolutional neural network architecture of AlexNet for object classification (Krizhevsky, 2014). This deep convolutional neural networks
(DCNN) comprises five convolutional (Conv), three max pooling (Max Pool), one average pooling (Average Pool), and three fully connected
(Fully Connected) layers. We applied an ImageNet subset (RGB color images, 227 × 227 pixels) from the ILSVRC-2012 competition (Russakovsky
et al., 2015) to the network model.

The stimulus set of natural object images used by Tamura
et al. (2016) is shown in Figure 2, and includes eight types of
natural objects, comprising 64 images in total: stones (St, #1–8),
tree bark (Ba, #9–16), leaves (Le, #17–24), flowers (Fl, #25–
32), fruits and vegetables (FV, #33–40), butterfly wings (BW,
#41–48), feathers (Fe, #49–56), and skins and furs (SF, #57–
64). Neuronal responses to these 64 images were recorded from
V1 (691 neurons), V4 (494 neurons), and IT (294 neurons).
In this previous experiment, Tamura et al. (2016) used two
monkeys to obtain neuronal activities in V1. In the same way,
two and three monkeys were used for recording from V4 and
IT, respectively.

AlexNet model for object classification

To examine the relationship between neural and artificial
representations for perceiving objects, we used the AlexNet
model (Krizhevsky, 2014). Figure 1 shows the DCNN
architecture of the AlexNet model provided by the PyTorch
framework (Paszke et al., 2019). This network architecture
follows the model proposed by Krizhevsky (2014), which is
slightly different from the architecture of the original AlexNet
that competed in the ImageNet Large Scale Visual Recognition
Challenge in 2012 (ILSVRC-2012) (Krizhevsky et al., 2012).
This DCNN consists of five convolutional, three max pooling,
one average pooling, and three fully connected layers. Each
convolutional layer is followed by an activation function, a
rectified linear unit (ReLU; Nair and Hinton, 2010) nonlinearity.
In addition, the activated model neurons by ReLU in layers 1,

2, and 5 are given to 3 × 3 max pooling layers with a 2-pixel
stride. After the third fully connected layer (layer 8 in Figure 1),
an output layer is used to represent the probability of the object
classification for the input image (of 1,000 possible classes).

Before training, the filters of AlexNet for object classification
were randomly initialized. To train the network, we applied a
subset of the ImageNet dataset that was used for the ILSVRC-
2012 competition (Russakovsky et al., 2015). This subset
includes approximately 1,200 images in each of 1,000 object
categories. In total, approximately 1.2 million training images
and 50,000 validation images were used.

Training of the network employed stochastic gradient
descent (Kiefer and Wolfwitz, 1952) with cross-entropy loss
(Murphy, 2012). The learning rate parameter was 0.01, which
was reduced three times prior to termination. The batch size was
128 images, and the number of epochs was 90. Network training
using the PyTorch framework (v.1.6.0) (Paszke et al., 2019) with
a ZOTAC GeForce RTX 2070 GPU required approximately 20 h.
For validating our analyses, we obtained 10 distinct trained
AlexNet models by repeating the network training for 10 trials.
In this study, the AlexNet model trained for 90 epochs is referred
to as the trained model. After training, the 10 AlexNet models
achieved mean top-1 and top-5 accuracy values of 72.00± 0.12,
and 90.21 ± 0.06%, respectively, for the training set. We will
present the accuracy values of these trained AlexNet models for
the validation set in the “Results” section. The code for training
the AlexNet model is available from GitHub.1

1 https://github.com/pytorch/examples/tree/master/imagenet
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FIGURE 2

Stimuli comprising images of natural object surfaces used for
understanding the relationship between neural representations
in V1, V4, and IT cortices, and artificial representations of the
AlexNet model. Tamura et al. (2016) recorded the responses of
V1, V4, and IT neurons of Macaca fuscata to a stimulus set
comprising 64 images of eight types of natural objects: eight
images of stones (St, #1–8), eight images of tree bark (Ba,
#9–16), eight images of leaves (Le, #17–24), eight images of
flowers (Fl, #25–32), eight images of fruits and vegetables (FV,
#33–40), eight images of butterfly wings (BW, #41–48), eight
images of feathers (Fe, #49–56), and eight images of skins and
furs (SF, #57–64). In the present study, for investigating the
artificial representation of the trained AlexNet model
(Krizhevsky, 2014), we analyzed the responses of the model
neurons induced by these images.

We provided the 64 images representing surfaces of natural
objects (Figure 2) to the trained AlexNet model. The original
dimensions of these images were 256 × 256 pixels with RGB
values. We cropped the images at the central 227× 227 pixels for
applying the image set to the trained model (Krizhevsky et al.,
2012). We recorded the responses of all model neurons in each
layer of the trained AlexNet model to each of the input images,
and compared these responses with the neural representations
of V1, V4, and IT. These images for surfaces of natural objects
(Figure 2) were not given during the training of the network.

Methods for the comparison of neural
representations with artificial
representations for visually
recognizing objects

Representational dissimilarity matrices
Representational dissimilarity matrices (RDMs) allow for

direct comparison of neural representations in monkey IT
with those of human IT, irrespective of radically different
measurement modalities, such as single-cell recording for
monkeys and functional magnetic resonance imaging for
humans (Kriegeskorte et al., 2008). Previous studies used
RDMs for investigating the mechanisms of DCNN models

(Cadieu et al., 2014; Güçlü and van Gerven, 2015; Rajalingham
et al., 2018). We also used RDMs to investigate the relationship
between the artificial representations in the AlexNet model and
neural representations in V1, V4, and IT. In this section, we
describe the basic methods used in this manuscript. Please see
our previous study for a detailed description of the procedure
for computing RDMs (Wagatsuma et al., 2020).

In the current study, as described in the previous section,
for the computation of RDMs, the mean firing rates were
standardized according to a Gaussian distribution with a mean
of zero and a variance of one for each V1, V4, and IT neuron
(Wagatsuma et al., 2020). The representational dissimilarityRDv

between two input images of natural object surfaces (i and
j) based on the standardized firing rates of V1, V4, and IT
neurons is given by correlation distance (Kriegeskorte et al.,
2008; Hiramatsu et al., 2011; Goda et al., 2014; Wagatsuma et al.,
2020), as follows:

RDv(i, j) = 1−Rv(i, j) (1)

where Rv is the Pearson’s correlation coefficient, using the
standardized firing rates of visual cortex v, for two input images
i and j. Because the value of Rv ranges from -1 to 1, the
index RDv ranges from 0 to 2. If the response patterns of
two neurons are identical, the index RD is 0. In contrast, RD
increases as the representational dissimilarity for the response
of two neurons increases. We computed the RD in terms of
all 2016 pairs of surface images, and displayed the RD values
as percentiles as each element of an RDM (Kriegeskorte et al.,
2008; Wagatsuma et al., 2020). In this study, we obtained and
used an RDM with 64 × 64 elements. Each element of an RDM
represents the magnitude of the representational dissimilarity
across neurons induced by two natural object images. Each
RDM is symmetrical, with zeros on the main diagonal. Similarly,
the RDl for all pairs of inputs was computed using the model
neuron responses with respect to layer l (Kiani et al., 2007;
Haxby et al., 2011).

To quantify the relationship between neural and artificial
representations for object classification, we employed Pearson’s
correlation coefficient rvl between the RDMs based on monkey
V1, V4, and IT, and those for each layer of the AlexNet
model. It is possible that the correlation between the RDMs
for the visual cortex and those in the layer of the model
noticeably strengthens with an increase in similarity between
the artificial representation in the AlexNet layer and the neural
representation of the visual cortex in the monkey (Wagatsuma
et al., 2020).

Partial correlation between artificial and neural
representations for object perception

To understand the relationship between neural and artificial
representations for object classification in more detail, we
computed the partial correlation of RDMs between the
specific visual cortex and each layer of the AlexNet model
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(Wagatsuma et al., 2020), removing the effects of other visual
cortices. Partial correlation is defined as:

rlx·y =
rlx − rxy · rly√

1− r2
xy

√
1− r2

ly

, (2)

where rlxy is the partial correlation between the activities of
AlexNet layer l and the responses of visual cortex x, resulting
from the removal of the effect of visual cortex y. In addition,
rlx, rxy, and rly represent the correlations between the activities
of AlexNet model layer l and the responses of visual cortex x,
those between the responses of visual cortices x and y, and those
between the activities of AlexNet model layer l and the responses
of visual cortex y, respectively.

Results

In the current study, for validating the artificial
representation for object classification of the trained DCNN
model, we obtained 10 AlexNet models by repeating the
independent training for 10 trials with distinct initialization
states, using the ImageNet dataset with image batches in a
random order. We first tested whether these trained AlexNet
models were able to classify the objects into 1,000 distinct
classes. The accuracy of the 10 trained AlexNet models for
classifying 50,000 natural images from the validation set of the
ImageNet dataset is summarized in Table 1. The 10 AlexNet
models achieved mean top-1 and top-5 accuracy values of
54.83 ± 0.04 and 77.81 ± 0.04%, respectively, for the validation
set. These object classification results show slightly lower
accuracy than those achieved by the original version of AlexNet
(Krizhevsky et al., 2012). However, for our purposes, our models
appeared to be sufficiently well-trained for classifying input
images into specific object categories by the application of a
large-scale dataset.

Relationship between neural and
artificial representations for object
classification

We computed RDMs from the neural representation of
monkey visual cortices and the artificial representation in the
layers of the trained AlexNet model. Figures 3, 4 show RDMs

for the neural and model activities, respectively. Each element
of a provided RDM indicates the representational dissimilarity
for the response patterns based on two input images of natural
object surfaces (Figure 2). As shown in Figure 4, the artificial
representations of the AlexNet model for object classification
varied as the signals passed through the layers.

We investigated the relationships for each visual cortex
v and each layer l of the AlexNet model by computing the
correlation coefficient rvl between the RDM based on the neural
representation in v (Figure 3), and that based on the artificial
representation of model neurons in layer l (Figure 4). Figure 5A
plots the values of rvl between each of the three visual cortices
and each AlexNet layer. We present mean values of rvl for the
10 trained models. The correlations for V1 (rV1), V4 (rV4),
and IT (rIT) are indicated by the blue, red, and green lines,
respectively. A noticeable peak of correlation rV1 between V1
and the model is apparent at lower-level layers (layers 1 and
2), whereas the correlations with V1 decreased with increasing
levels of AlexNet layers. In contrast, the correlation rV4 for
V4 increased noticeably from layer 1 to convolutional layer 3.
Intriguingly, for convolutional layer 3 and higher layers, the
artificial representation of the trained AlexNet model was more
similar to the neural representation of V4 (rV4) compared with
those of V1 and IT. The fluctuations in the correlations with
IT (rIT) were smaller than those for other visual cortices. These
results suggest that the artificial representations in lower-level
layers of the trained AlexNet model correspond to V1 neural
representations, whereas the model neurons of the AlexNet
model in layers at the intermediate and higher-intermediate
levels may exhibit characteristics and selectivity similar to those
of V4 neurons. Correspondence between model neurons in
intermediate layers and V4 neurons might be consistent with
neuronal representations of surfaces in V4 (Yamane et al.,
2020). Additionally, we used firing rates of V1, V4, and IT
neurons from analgesized monkeys as a reference. These results
suggested that, regardless of the effects of analgesia on the
feedforward-dominant network, the biological mechanism of
object recognition had similar characteristics to the trained
DCNN model for object classification.

Our analysis using RDMs suggests that the trained
AlexNet model gradually established representations of object
classification as signals passed through the hierarchy of the
artificial network, similarly to neuronal afferent transmission.
However, it is plausible that the artificial representation of
the AlexNet model depended on the number of training

TABLE 1 Accuracy rates (%) of 10 trained AlexNet models with respect to 50,000 natural images from the validation set of the ImageNet dataset.

Model

Model ID 1 2 3 4 5 6 7 8 9 10

Top 1 54.64 54.74 54.93 54.90 54.71 55.01 54.93 54.98 54.75 54.70

Top 5 77.67 77.78 77.77 77.66 77.87 78.08 77.74 77.86 77.75 77.84
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FIGURE 3

Representational dissimilarity matrices (RDMs) (Kriegeskorte et al., 2008; Hiramatsu et al., 2011; Goda et al., 2014) computed from the responses
to surface stimuli (see Figure 2) with respect to V1, V4, and IT (Tamura et al., 2016). Each RDM element demonstrates the representational
dissimilarity between the firing rates induced by pairs of stimulus images. The values of the RDM cells are normalized to range between 0 and 1.
A large value represents a high level of representational dissimilarity for the response of neurons to stimulus pairs [see Eq. (1) in the main text].
These RDMs based on neural activities are identical to those from our previous study (see Figure 4A in Wagatsuma et al., 2020).

FIGURE 4

Representational dissimilarity matrices (RDMs) computed from the model neuron responses from the trained AlexNet models with the same
conventions used in Figure 3. The element of the RDM shows the mean values of 10 trained models. These RDMs were computed using all
model neuron activities in all channels of each layer of the DCNN model. The variance of each element of the RDMs ranged from 7.53 × 10−3

to 4.39 × 10−2.

epochs. We provided surface images (Figure 2) to the AlexNet
model based on one training epoch (a partially trained
model) and investigated the relationship between the artificial
representation of each layer and the neural representation in

three visual cortical areas. Figure 5B plots the correlation rvl
between the responses in v and those in layer l of the partially
trained model. Note that v represents each of the visual cortices
(V1, V4, and IT). Irrespective of the layer level of the partially
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FIGURE 5

Correlation between the artificial representations of AlexNet models and the neural representations in V1, V4, and IT. The mean magnitudes of
correlation are plotted for 10 distinct trained models. Shading indicates the standard deviation of the mean for 10 trained models.
(A) Correlation rvl between the three visual cortices v and layers l of the trained AlexNet model. The models were obtained by training for 90
epochs. To investigate the correspondence between artificial and neural responses for object classification, the correlation coefficient rvl was
computed between the RDM for the model neuron activities in each layer of the trained AlexNet model (Figure 4) and the representational
dissimilarity matrice (RDM) for firing rates in each visual cortex (Figure 3). The x-axis shows layer l of the AlexNet model (see Figure 1). The
correlations rV1 for V1, rV4 for V4, and rIT for IT are represented by the blue, red, and green lines, respectively. (B) Correlation rvl between the
layers l of the partially trained model (trained for one epoch) and the three visual cortices v. The conventions are common to those used in
panel (A). The conventions are the same as those used in panel (A).

trained AlexNet model, the correlations of rV1 (blue line) were
consistently higher than those of the other cortices. This result
contrasts with the results of the trained model, indicating that
the structure of the AlexNet model in the early training stages
may be distinct from its structure after sufficient training. For
the AlexNet model, a sufficient number of training epochs might
be necessary to produce hierarchical representations similar to
those observed in the primate visual cortices.

Partial correlation between neural and
artificial representations

To examine the relationships between neural and artificial
representations of object classification in greater detail, we

investigated the partial correlation of RDMs between each
specific visual cortex and each layer of the AlexNet model [see
the “Materials and methods” section and Eq. (2); Wagatsuma
et al., 2020]. Figure 6A presents the partial correlations for
three visual cortices as a function of the trained AlexNet model
layers. From layer 1 to layer 2 of AlexNet, the partial correlations
between the responses in each layer of the AlexNet model and
those in V1 after removing the effects of V4 (blue solid line)
and IT (cyan dashed line) were substantially stronger than the
partial correlations with the other visual cortices shown by the
other lines. However, the partial correlation for V1 decreased in
strength as the level of the model layer increased. These results
suggest that an artificial representation in low-level layers of
AlexNet similar to the neuronal responses in V1 is essential
for object classification. Additionally, the V1 partial correlations
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after removing the V4 effect (blue solid line) were consistently
weaker than those resulting from removing IT (cyan dashed
line). This implies that, in almost all of the layers of the trained
AlexNet model, the correlations with the activities in V1 were
more strongly affected by activities in V4 than by those in IT.

The partial correlations between each layer of the AlexNet
model and V4 revealed by removing the effects of V1 and IT
are represented in Figure 6A by the red solid and pink dashed
lines, respectively. In contrast to the case of V1, the strength of
the partial correlation based on V4 responses increased as the
level of the model layer increased. In particular, from layer 4,
the partial correlation with V4 after removing the effect of V1
(red line) was strongest, compared with all of the other partial
correlations. These results suggest that, for the intermediate-
level and higher layers of the trained AlexNet model, the model
neurons may have characteristics similar to those of monkey
neurons in V4. The important characteristics appear to resemble
the feedforward processing of the ventral stream for visually
recognizing objects.

The partial correlations calculated from IT responses after
removing the effects of V1 and V4 are shown in Figure 6A
by the green solid and yellow–green dashed lines, respectively.
The partial correlations for IT that resulted from removing
the effect of V1 (green solid line) became stronger as the level
of the model layer increased. In contrast, the removal of the
effect of V4 induced small fluctuations in the partial correlation
with IT (yellow–green dashed line). Furthermore, for almost
all layer levels of the trained model, the strength of the partial
correlations with IT was intermediate, between the strength of
those with V1 and those with V4.

We repeated this analysis for the partially trained AlexNet
models. Figure 6B presents the partial correlations between the
artificial representations in each layer of the partially trained
AlexNet models and the neural representations in a specific
visual cortex resulting from removing the effects of the other
two cortices. As in the case of the correlations (Figure 5B),
irrespective of the layer level, the partial correlations for V1 (the
blue solid and cyan dashed lines in Figure 6B) were consistently
higher than those for the other cortices. The partial correlations
for V4 and IT increased from convolutional layer 1 to max
pooling layer 1 but remained almost constant after layer 2. This
implies that a DCNN-based object classification model may
obtain a network mechanism corresponding to the ventral visual
stream for visually recognizing objects after a large number of
training epochs using a large-scale dataset.

Artificial representations of a single
channel in each trained model layer for
object classification

In the analyses described above, the responses in all model
neurons, from all channels of each layer of the AlexNet

model, were used to investigate the relationships between
the artificial representations of the AlexNet model and the
neural representations of visual cortices with respect to natural
object surfaces. To clarify the characteristics of the artificial
representation for object classification in greater detail, we
investigated the responses in model neurons from a single
channel in each AlexNet model layer (prior to the fully
connected layers) for their artificial representations of surface
images. In the current analysis, we compared RDMs based
on the responses in V1, V4, and IT with those based on
each channel of the trained AlexNet model using Pearson’s
correlation coefficients. Note that it was difficult to compute the
RDMs on the basis of each channel in the fully connected layers
of the AlexNet model because each channel of these layers has
just one model neuron.

The frequency histograms plotting the correlations between
each channel of the trained AlexNet model and each of the visual
cortices are shown in Figure 7. The correlation magnitudes
for all channels of 10 trained models are summarized in
Figure 7. For all monkey visual cortices and AlexNet layers,
the correlation coefficients of almost all channels were <0.2.
However, the correlation coefficients of a few channels in
the lower layers for V1 responses were >0.4. In contrast, in
intermediate and higher-intermediate layers, we did not find
any channels that were strongly correlated (r > 0.4) with
V4 responses. These results suggest that the characteristics
of the artificial representation in trained AlexNet models are
distinct among single channels. Additionally, the frequency
distributions for convolutional layers (Conv in Figure 7) were
unimodal. The values of the medians (the white triangles
in Figure 7) of these convolutional layers were fixed at
approximately 0.1, irrespective of the level of the AlexNet layer.
Interestingly, activation via the ReLU function consistently
reduced the median, in contrast with the slight increase in
the strength of the correlation between V4 and IT responses
and all model neurons at layers 4 and 5 in the trained
model by the ReLU function (the red and green lines in
Figure 3A). These results imply that the characteristics of
the artificial representations for object classification exhibit a
marked distinction between the responses in model neurons
from a single channel and the population responses calculated
based on all model neurons arising from all channels. This
possibility will be discussed further in the “Discussion” section.

Object classification of the trained
AlexNet model for natural object
surfaces

Finally, we investigated the object classification responses
of the 10 trained AlexNet models to inputs for natural object
surfaces. Examples of the object classification results produced
by the 10 trained models, indicating the most probable object,
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FIGURE 6

Partial correlations between each layer of the AlexNet model and V1, V4, and IT. Data were obtained from the responses of 10 models. As shown
in Figure 5, the mean values are presented for the 10 distinct trained models. Shading represents the standard deviation of the mean for the 10
models. (A) Partial correlations for the three visual cortices as a function of the trained AlexNet model layers. The partial correlations between
each layer of the AlexNet models and V1 after removing the effects of V4 and IT are represented by the blue solid and cyan dashed lines,
respectively. Similarly, the red solid and pink dashed lines represent the partial correlations for V4 after removing the effects of V1 and IT,
respectively. Finally, the green solid and yellow–green dashed lines indicate the partial correlations after removing the effects of V1 and V4,
respectively. (B) Partial correlations between the partially trained AlexNet model and three monkey visual cortices as a function of model layers.
Conventions are the same as those in panel (A).

are shown in Figure 8A. As shown in Table 1, there was no
marked difference between the 10 trained models with respect
to the total accuracy of object classification for the validation set
of ImageNet. The 10 distinct trained models produced similar
classification responses to the input images of #2 (stones), #28
(flowers), #34 (fruits and vegetables), and #60 (skins and furs)
(Figure 8A). In particular, all models accurately classified #34
(fruits and vegetables) and #60 (skins and furs) as a strawberry

and zebra, respectively, despite the absence of information on
their detailed shapes. These results support the possibility that
the trained AlexNet model classifies the objects depicted in
images by their textures and materials rather than by their shape
(Baker et al., 2018). This possibility is discussed further in the
“Discussion”.

In contrast to the four images above, the object classification
results for some images produced by the 10 trained models
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FIGURE 7

Frequency distributions of the correlations between each single channel of the trained model, prior to the fully connected layers, and V1, V4,
and IT. The left, middle, and right column indicate the correlation distribution for V1, V4, and IT, respectively. We normalized the frequency
histograms of the correlations based on the total numbers of channels in each layer from all models. Therefore, in each panel, the total of the
frequency histogram is 1.0. The white triangles show the median values of the distributions.

were quite different. This finding suggests that the random
initialization of the networks (as described in “Materials and
methods” section) produced AlexNet models with similar
mechanisms but distinct structures, while applying the same
training data to all networks.

In the current study, the results of object classification by
the trained AlexNet models substantially differed from those
of human perception in some cases. For example, 6 of the 10
trained models classified the surface image of broccoli (#40 fruits
and vegetables) as the anemone fish (middle row of Figure 8B),
despite the existence of the “broccoli” category in a subset of
the ImageNet dataset. However, intriguingly, sea anemones were
included in the background of many training images in the
ImageNet database (Russakovsky et al., 2015) for the “anemone
fish” category. The visual features of image textures for sea
anemones appeared to be common to those of the surface image
of #40 (fruits and vegetables). Additionally, in many of the
ImageNet training images for the “nail” and “tick” categories,
the target objects were surrounded by backgrounds comprising

“bark” and “animal fur,” respectively (top and bottom rows of
Figure 8B). These results suggest that the visual features of the
backgrounds in the presented natural images sometimes play a
more dominant role than those of the target object in training
the AlexNet model to discriminate between classes. We discuss
this possibility in more depth in the “Discussion” section.

Discussion

To clarify the relationship between the mechanisms of a
DCNN-based object classification model and the neural system
for perceiving visual objects, we investigated the correspondence
between the AlexNet model (Krizhevsky, 2014; Figure 1) and
monkey visual cortices V1, V4, and IT (Tamura et al., 2016)
when responding to natural object surfaces (Figure 2). From
layer 1 to layer 2, the artificial representations produced by
the trained AlexNet model in response to presented natural
object surfaces corresponded to neural representations in
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FIGURE 8

Object classification responses of the 10 trained AlexNet models to images of natural object surfaces. (A) Examples of our natural object
surfaces and results of the 10 trained models indicating the most probable object. All 10 trained models accurately classified #34 (fruits and
vegetables) and #60 (skins and furs) as strawberry and zebra, respectively, despite the absence of detailed shape information for these objects.
(B) Example images of natural object surfaces for which the object classification by the trained AlexNet models and the object perception by
humans differed (left), the labels considered to be the most probable object by the 10 trained models (middle), and three training images from
the most probable class (right). In many ImageNet training images, the “nail” and “tick” were surrounded by backgrounds comprising “bark” and
“animal fur,” respectively. Additionally, early-level visual features, such as colors and orientations, for the “sea anemone” surrounding the
“anemone fish” were qualitatively similar to those of “broccoli.”

V1 (Figure 5A). In contrast, the characteristics of responses
in the AlexNet model for layer 3 and higher layers were
more similar to V4 responses than to responses in the

other two cortices. These results imply that DCNN-based
object classification models may gradually establish their
representations for object classification through the hierarchy
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of the artificial network, similarly to the biological visual
system for object perception (Felleman and Van Essen, 1991;
Zhou et al., 2000; Pasupathy and Connor, 2001, 2002; Yamane
et al., 2020). Additionally, we analyzed the profiles of model
neurons at a single channel level in each AlexNet model layer
preceding the fully connected layers (Figure 7). In this analysis,
activation by the ReLU function reduced the median of the
frequency histograms for the correlations on the basis of each
channel of the AlexNet model, whereas the ReLU function
slightly increased the strength of the correlation between V4
and IT activities and all model neurons at layers 4 and 5
(Figure 5A). These results suggest that the characteristics of
the artificial representations for object classification exhibit a
marked distinction between the responses in model neurons
from a single channel and the population responses calculated
on the basis of all model neurons arising from all channels.

Possible mechanisms of the trained
AlexNet model for object classification

In the current study, we found that the artificial
representations in the lower-level layers of the trained AlexNet
model corresponded to the neural representations in V1. The
many neurons in V1 preferentially respond to the orientation
of a bar stimulus presented in the receptive field (orientation-
selective neuron; Hubel and Wiesel, 1968). Intriguingly,
previous studies reported that the profile of the trained AlexNet
model in lower-level layers appeared to be common to that of
Gabor filters (Krizhevsky et al., 2012; Zeiler and Fergus, 2013),
which are used as a model for orientation-selective neurons
(Lee et al., 1999; Itti and Koch, 2000; Deco and Lee, 2004; Sakai
et al., 2012; Wagatsuma, 2019). Orientation-selective neurons
in early vision, such as V1, and in lower-level layers of the
trained AlexNet model may play an essential role in classifying
objects in visual scenes. These results suggested that orientation
selectivity is developed in model neurons in lower-level layers
of the DCNN-based object classification model.

The results of our analyses suggest that, in contrast to lower-
level layers of the trained AlexNet model, the responses in
layers at intermediate levels exhibit characteristics similar to the
activities of neurons in V4. Neurons in the extrastriate cortex,
as represented by V2 and V4, receive feedforward inputs from
V1 (Felleman and Van Essen, 1991; Hilgetag and Goulas, 2020)
and may integrate these neuronal signals encoding fundamental
visual features for representing more complex visual cues, such
as angle (Ito and Komatsu, 2004), curvature (Pasupathy and
Connor, 1999), border ownership (Zhou et al., 2000; Franken
and Reynolds, 2021), and approximate shapes of objects
(Pasupathy and Connor, 2001, 2002) in the scene. Additionally,
computational models based on feedforward transmission
from V1 have been reported to reproduce properties of
responses in V2 and V4 neurons (Pasupathy and Connor, 2001;

Sakai and Nishimura, 2006; Ito and Goda, 2011; Sakai et al.,
2012). These feedforward mechanisms, describing visual cortical
networks, may be common to DCNN-based models. This
suggests the possibility that the trained AlexNet model might
exhibit an object classification mechanism that is similar to
the mechanisms of biological visual systems: for example, early
visual areas extract fundamental visual features and extrastriate
areas represent information in terms of the configuration of
these features. These studies and the current analyses suggest
that DCNN-based object classification models may provide
a bridge between neuroscientific and artificial approaches to
explain the mechanisms underlying the visual recognition of
objects (Cadieu et al., 2014; Güçlü and van Gerven, 2015; Yamins
and DiCarlo, 2016; Geirhos et al., 2018; Rajalingham et al., 2018;
Dobs et al., 2022).

Possible cue for object classification in
the trained AlexNet model

In the current study, we trained the AlexNet model on a
subset of image stimuli from the ImageNet dataset. This subset
consisted of approximately 1,200 images in each of 1,000 object
categories (approximately 1.2 million training images in total)
(Russakovsky et al., 2015). All of our trained models accurately
distinguished the strawberry and zebra from the patches of
these surfaces (Figure 8A), despite the absence of detailed object
shape information. This finding suggests the possibility that
representations of object texture may make a more important
contribution to object classification (in the AlexNet model
trained on the ImageNet dataset) than representations of shape.
This possibility is in accord with suggestions made in previous
studies (Baker et al., 2018; Geirhos et al., 2018). Physiological
studies have reported that neurons in V4 and IT selectively
respond to the texture and material of natural objects (Goda
et al., 2014; Okazawa et al., 2015, 2017; Komatsu and Goda,
2018; Kim et al., 2022). Interestingly, as we reported in sections
“Relationship between neural and artificial representations for
object classification” and “Partial correlation between neural
and artificial representations,” neural representations in these
visual cortices corresponded to artificial representations in
the intermediate and higher-intermediate layers of the trained
AlexNet models (Figures 5A, 6A). It is possible that each
channel in these layers expresses a preference for a specific image
texture and material as a cue for classifying the objects in natural
images.

For some natural object surfaces, we found qualitative
differences between object classification by the trained AlexNet
model and object perception by humans (Figure 8B). For these
object categories, as classified by the trained model, the majority
of the area of many training images is occupied by the same
background object, as demonstrated in Figure 8B. The artificial
representation for these backgrounds may be preferentially
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preserved and may survive in the intermediate and higher-
intermediate layers through the max pooling processes if the
background features are more significant than the target object.
It is possible that the trained AlexNet models classified objects
according to the representation of the common background that
appeared in the training images for each class.

Attentional selection refers to the brain functions by which
computational resources are allocated to direct attention to the
most important information at the time (Posner, 1980), neural
activity is enhanced (Martin et al., 2015; Wagatsuma et al.,
2021), and visual scenes are perceived (Carrasco, 2011; Yang
et al., 2018). Recently, attention has been modeled as a powerful
mechanism in the development of advanced DNNs (Vaswani
et al., 2017). Endowing a DCNN-based object classification
model with an attention mechanism may contribute to deeper
understanding of the visual system in the fields of neuroscience
and artificial intelligence.

Number of categories for object
classification

As discussed in the previous section, there were quantitative
differences between object classification by the trained AlexNet
model and object perception by humans (Figure 8) for some
natural object surfaces. However, the AlexNet model has only
1,000 categories for object classification, which is far fewer
compared with the number of categories of object perception
for human and non-human animals. It is possible that the
limited category number for object classification induces
differences between object classification by the AlexNet model
and object perception by humans. The datasets that included
a greater number of object categories might be necessary for
understanding more detailed interactions between the artificial
mechanisms of DCNN-based object classification models and
neural systems for object perception.

Distinction between the responses in
model neurons from a single channel
and the population responses in all
model neurons arising from all
channels

In the current study, we computed the RDMs using
responses from V1, V4, and IT neuronal populations (Tamura
et al., 2016) as a reference for investigating the artificial
representations in the trained AlexNet model (see “Materials
and methods” section). These neural populations might consist
of a variety of neurons with distinct selectivity. In contrast,
assuming that each channel in a layer of the AlexNet model
represents selectivity to specific visual feature (Dobs et al.,
2022), as shown in Figure 7, we compared the characteristics

of the neuronal population activities consisting of various
neurons with distinct selectivity to those of model neurons with
selectivity to a specific visual feature. Further studies with a
neuronal population with selectivity to a specific visual feature is
necessary for analysis of the mechanism underlying the trained
AlexNet model.

Activation by the ReLU function reduced the median of the
frequency histograms for the correlations on the basis of each
channel of the AlexNet model (Figure 7), in contrast with the
slight increase in the magnitude of the correlation between V4
and IT responses and all model neurons at layers 4 and 5 in
the trained AlexNet model by the ReLU function (Figure 5).
As previously discussed, our neural populations recorded from
V1, V4, and IT (Tamura et al., 2016) would be expected to
include various neurons with distinct selectivity. We assumed
that the ReLU activation function would emphasize the specific
artificial representation given by the single channel and increase
the selectivity of each channel. The analyses of the role of the
activation function of ReLU might provide further insight into
the underlying mechanism of object classification in the trained
DCNN model.

Effects of training epochs and training
images for developing the AlexNet
model

We reported that the structure of the AlexNet model in the
early stages of training (a partially trained model) appeared to
be relatively distinct from a model after sufficient training (a
trained model) (Figure 5). However, from convolutional layer
1 to max pooling layer 1, we found correlations of similar
strength between trained and partially trained models. This
implies the possibility that the artificial representation from
layers at the intermediate level of the AlexNet model were
obtained after the preferential development of low-level layers.
It is possible that the characteristics of V4-like representations
after the intermediate-level layers develop after the lower-level
layers obtain orientation selectivity and the function of edge
detection similarly to V1 neurons. Such a mechanism would
be consistent with feedforward models describing the neural
mechanisms of V2 and V4 (Pasupathy and Connor, 2001; Sakai
and Nishimura, 2006; Ito and Goda, 2011; Sakai et al., 2012;
Russell et al., 2014; Wagatsuma, 2019).

In this study, for training the network of the AlexNet,
we applied a subset of the ImageNet dataset including
approximately 1,200 images in each of 1,000 object
categories (Russakovsky et al., 2015). However, the artificial
representations in layers of a trained AlexNet model might
be modulated by the training images. The ImageNet dataset
includes both natural images and images of human artifacts. It
is possible that the structure of the AlexNet model after training
with only natural images may be distinct from the structure of
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our obtained models. In addition, the DCNN model trained
using images of natural object surfaces shown in Figure 2
might obtain an appropriate structure for classifying the texture
and material of natural objects, which would differ from the
structure of the trained AlexNet model for object classification.
Further studies are necessary for understanding the effects of
training images for developing the DCNN models.

The distinction in the network
structure between the AlexNet model
and the biological visual system for
object perception

The overall design of a DCNN reflects the hierarchical
structure of the ventral stream for visually recognizing objects
in primates (Hubel and Wiesel, 1968; Felleman and Van Essen,
1991; LeCun et al., 2015). In the current study, we suggested
that the trained AlexNet model gradually establishes artificial
representations for object classification through the hierarchy of
their network, similar to, at least in part, the biological visual
system for object perception (Felleman and Van Essen, 1991;
Zhou et al., 2000; Pasupathy and Connor, 2001, 2002; Yamane
et al., 2020). However, there are distinctions in the network
structures between the AlexNet model and the biological visual
system for object perception. The AlexNet model (Krizhevsky,
2014) used simple feedforward networks, whereas neurons in
visual cortices receive synaptic inputs from various types of
connections, such as feedforward, recurrent, horizontal, and
feedback connections (Song et al., 2005; Veit et al., 2017;
Franken and Reynolds, 2021). The structure of the AlexNet
model seems to be simpler compared with the biological visual
system. In addition, for perceiving visual objects, the visual
cortex might receive feedforward inputs from various levels of
lower cortical areas. For example, neurons in V1 directly project
their signals onto V4 cortex, not mediating V2 (Felleman and
Van Essen, 1991), which seem to be similar to the structure
of the residual network (He et al., 2016). Further studies of
DCNN models with more complex structure are needed for
deeper understanding of the interactions between the artificial
mechanisms of DCNN-based object classification models and
neural systems for object perception.

Comparison of previous studies for
understanding the mechanisms of
deep convolutional neural network
models

Several previous studies have reported the mechanisms used
by trained DCNN models for object classification. Khaligh-
Razavi and Kriegeskorte (2014) quantitatively compared neural

representations in IT with artificial representations of various
computational models, including the trained AlexNet model.
In their study, the trained AlexNet model exhibited the
greatest agreement with the characteristics of neural activities
in monkeys (Kiani et al., 2007) and human IT (Kriegeskorte
et al., 2008), compared with other models. However, in the
results of the current study, from layer 2 of the AlexNet
model, correlations with V4 activity were largely consistently
stronger than those with IT activity (Figure 5A). A possible
explanation for the difference between the findings of the
previous study (Khaligh-Razavi and Kriegeskorte, 2014) and
those of the current study is the difference in the experimental
conditions for awareness and analgesia. Khaligh-Razavi and
Kriegeskorte (2014) used neural activity from the IT cortices
of awake monkeys and humans to analyze the responses
of various models. In contrast, we used spiking responses
of single V1, V4, and IT neurons from four analgesized
monkeys (Tamura et al., 2016; Wagatsuma et al., 2020). Even
when monkeys are analgesized and paralyzed, V1 and IT
neurons are reported to maintain their stimulus selectivity
(Wurtz, 1969; Tamura and Tanaka, 2001). In the current
study, under analgesized conditions, the results indicated
that V1 neural representations corresponded to artificial
representations in lower-level layers of the trained AlexNet
model, whereas V4 neurons may exhibit characteristics and
selectivity that are similar to those of the model neurons
of the AlexNet model in layers at the intermediate and
higher-intermediate levels, which is in accord with the results
of previous studies (Krizhevsky et al., 2012; Zeiler and
Fergus, 2013; Pospisil et al., 2018). These results suggested
that, regardless of the effects on the feedforward-dominant
network of analgesia, the biological mechanism underlying
object recognition has similar characteristics to the trained
DCNN model for object classification. However, it is possible
that the analgesia and paralysis used for the physiological
experiments slightly modulated the neuronal responses in
IT.

Additionally, there were marked differences in visual
stimuli between previous studies and the current study. In
several previous studies (Kiani et al., 2007; Kriegeskorte et al.,
2008; Khaligh-Razavi and Kriegeskorte, 2014), photographs of
natural and artificial inanimate objects (as well as faces and
bodies of humans and non-human animals) were presented
to monkeys and human participants. Moreover, the images
presented in some previous experiments included detailed
object shape information, which could have activated neurons
in IT. In contrast, to investigate how surface-related features
derived from natural objects were represented in the ventral
visual stream, Tamura et al. (2016) used image patches
of surfaces for natural objects (Figure 2). Therefore, the
shapes of the objects were not presented to the monkeys.
In addition, physiological studies have reported that neurons
in V4 and IT selectively respond to the texture and
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material of natural objects (Goda et al., 2014; Okazawa
et al., 2015, 2017; Komatsu and Goda, 2018; Kim et al.,
2022). Especially, another physiological study has reported
the population coding of the surface and figure by V4
neurons (Yamane et al., 2020). Analyses of neurophysiological
data recorded with various conditions and stimuli may be
needed to elucidate the detailed mechanisms of DCNN-based
models.

Our method in the current study was similar to the
methods of previous studies (Cadieu et al., 2014; Yamins et al.,
2014; Rajalingham et al., 2018). These studies analyzed the
characteristics of artificial representations in trained DCNN
models using neural responses recorded mainly from V4
and IT, and human and monkey behaviors. In the current
study, in addition to V4 and IT, we reported that the neural
representation in V1 was strongly correlated with the artificial
representations in the lower-level layers of the trained AlexNet
model. It is difficult to record spiking responses of V1 neurons
from awake-behaving monkeys because small size of their
receptive field of V1 neurons in parafoveal region (<0.5◦)
induced the noise activities arising from the eye-movements
or head-movements. By contrast, in our previous physiological
study (Tamura et al., 2016), neuronal responses of V1 have been
recorded by paralyzing monkeys to eliminate eye- and head-
movements. Analyses using neuronal activities recorded from
early to IT visual cortices allowed us to suggest that DCNN-
based object classification models gradually establish their
representations for object classification through the hierarchy of
the artificial network, similarly to the biological visual system for
object perception.

Another previous study reported that many model neurons
of the trained AlexNet model, particularly in intermediate-level
layers, exhibit selectivity to boundary curvature like neurons in
primate V4 (Pospisil et al., 2018). Interestingly, we also found
that the artificial representations of the AlexNet model in layers
at the intermediate and higher-intermediate levels corresponded
to neural representations in V4 (Figures 5A, 6A). These reports
suggest that the boundary curvature, which may be represented
by the integration of the edges detected by low-level layers,
underlies the object classification decisions performed by the
AlexNet model. Additionally, in the previous study by Pospisil
et al. (2018), artificial representations in the AlexNet model
were quantified by the responses of the computational model
describing the neural mechanisms of V4 neurons (Pasupathy
and Connor, 2001). The activities of computational models
reproducing the neuronal responses may contribute to the
understanding of the mechanisms obtained by training DCNN
models.

In our previous study, the artificial representation in the
DCNN model for predicting the locations of gaze and attention
was consistent with the neural representation in V1 irrespective
of the DCNN layer level (Wagatsuma et al., 2020). For
generating the saliency map mediating attentional selection for

spatial location, we applied a large number of natural images
and eye-fixation data to the DCNN. It is possible that the
artificial representations of the DCNN saliency map model are
consistent with the neural representations of the dorsal visual
pathway representing the spatial locations of a presented object.
In contrast, the AlexNet model is often considered to be a model
of the ventral visual pathway for establishing the perception
of objects. These results imply that the mechanism used by
the trained DCNN model for producing the saliency map are
distinct from the mechanism used by the trained AlexNet model
for object classification.

As previously discussed, feedforward signals might be
dominant in our physiological data used as a reference because
of the effects of analgesia on the monkeys. Considering the
dynamics of neuronal responses, one possible availability of our
physiological data is analysis of the length of the visual response
latency after stimulus onset. In this study, regardless of the level
of visual cortex, we considered a response latency of 80 ms to be
appropriate to compensate for the neuronal responses (Tamura
et al., 2016; Wagatsuma et al., 2020). However, suitable response
latency durations may differ between different levels of visual
cortex. Analyses using various latencies for neuronal responses
might provide further insight into the underlying mechanisms
of the trained DCNN models.

Conclusion

In the present study, we quantitatively analyzed the
trained DCNN-based AlexNet model for object classification.
The characteristics of the artificial representation in layers
at different levels of the AlexNet model were distinct. The
responses of model neurons in the lower-level layers of the
trained AlexNet model were more similar to the characteristics
of the neural responses in V1, compared with the neural
responses in V4 and IT. In contrast, the artificial representation
of the trained model in layers at the intermediate and higher-
intermediate levels corresponded to the neural representation
in V4. Our analyses suggest that the trained AlexNet model
may gradually establish a representation for object classification
as the signal progresses through the hierarchy of the artificial
network, resembling the neural afferent transmission that begins
in early vision in biological systems. These findings might
extend current understanding of the mechanisms used by the
trained DCNN-based object classification model.
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