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Development and prospective 
validation of COVID‑19 chest 
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attending emergency departments
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Chest X-rays (CXRs) are the first-line investigation in patients presenting to emergency departments 
(EDs) with dyspnoea and are a valuable adjunct to clinical management of COVID-19 associated lung 
disease. Artificial intelligence (AI) has the potential to facilitate rapid triage of CXRs for further patient 
testing and/or isolation. In this work we develop an AI algorithm, CovIx, to differentiate normal, 
abnormal, non-COVID-19 pneumonia, and COVID-19 CXRs using a multicentre cohort of 293,143 
CXRs. The algorithm is prospectively validated in 3289 CXRs acquired from patients presenting to ED 
with symptoms of COVID-19 across four sites in NHS Greater Glasgow and Clyde. CovIx achieves area 
under receiver operating characteristic curve for COVID-19 of 0.86, with sensitivity and F1-score up 
to 0.83 and 0.71 respectively, and performs on-par with four board-certified radiologists. AI-based 
algorithms can identify CXRs with COVID-19 associated pneumonia, as well as distinguish non-COVID 
pneumonias in symptomatic patients presenting to ED. Pre-trained models and inference scripts are 
freely available at https://​github.​com/​berin​grese​arch/​brave​cx-​covid.

An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the COVID-19 pandemic 
of 20201. The early clinical course of COVID-19, which often includes non-specific symptoms such as fever, dry 
cough, and dyspnoea, can be challenging for clinicians to distinguish from other respiratory illnesses2–4. Whilst 
most COVID-19 patients have a mild clinical course, a proportion of patients demonstrate rapid deterioration 
from the onset of symptoms into severe illness with or without acute respiratory distress syndrome (ARDS)5,6.

Effective screening of infected individuals is a critical step in the COVID-19 triage process7,8. Laboratory 
based real-time (RT) polymerase chain reaction (PCR) tests of nasopharyngeal swabs are considered as the 
gold standard for identifying clinical cases of infection. However, RT-PCR has several limitations3,9, including 
limited sensitivity (83.3%)9,10, a long turnaround time of up to 72 h, and requirements for specialist labora-
tory infrastructure and expertise11. Furthermore, some patients, including those with high clinical suspicion of 
COVID-19, test falsely negative on initial RT-PCR test, sometimes requiring multiple subsequent tests to return 
an eventual positive result. Antigen or molecular point-of-care tests offer rapid turnaround but with a drop in 
sensitivity for symptomatic patients (72%)12.

Thoracic imaging forms part of the COVID-19 assessment13 and plays an important role in early COVID-
19 diagnosis14. In mainland China, CT was often the investigation of choice for COVID-1914,15. However, such 
practice was burdensome on radiology departments and challenging for infection control16. Most patients with 
dyspnoea undergo chest radiography (CXR) at presentation to hospital, with CXRs seen as first-line investigation 
of the COVID-19 pathway17. Indeed, while awaiting the RT-PCR result, most suspected COVID-19 patients are 
clinically diagnosed with the triad of clinical assessment, CXR, and blood tests.

Despite their utility, radiological interpretation of CXRs in suspected COVID-19 patients remains challenging 
due to the idiosyncratic nature of this disease. For example, no single feature on chest radiography is diagnostic 
of COVID-19 pneumonia18 and early or mild disease is often accompanied by a paucity of radiological signs15,18. 
Computer-aided diagnostic systems that can aid radiologists to more rapidly and accurately detect COVID-19 
cases have been suggested as important operational adjuncts with potential to alleviate radiology workloads and 
improve patient safety19.
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Several deep learning-based techniques have been introduced to identify COVID-19 pneumonia on frontal 
CXRs20–24. COVID-Net was one of the first neural network models tailored for COVID-19 diagnosis and released 
as an open-source framework20. More recently, DeepCOVID-XR, an ensemble of convolutional neural networks 
trained on a large multi-centre cohort of n = 14,788 images (n = 4253 COVID-19 positive) and validated on an 
external testing set from a single institution, performed on par with a consensus of five thoracic radiologists24.

Despite their rapid proliferation, AI models have been limited by either methodological weaknesses and/
or underlying biases25. First, publicly-available images used to train COVID-19 deep learning models are often 
of variable quality and questionable validity24,26. Given the subtlety of radiological signs and challenges in their 
interpretation, high-resolution and multi-centre radiographs are needed to establish effective baselines. Second, 
neural networks have demonstrated propensity to learn features that are specific of the dataset more than the ones 
that are specific of the disease27, resulting in overestimated performance with poor generalisability potential28,29. 
This is exacerbated by increasing prevalence of “Frankenstein” datasets, that is, datasets assembled from multiple 
sources and redistributed under a new name25, leading to problems with algorithms being trained and tested on 
identical or overlapping datasets while believing them to be from distinct sources. Finally, training and testing 
set selection has often been carried out retrospectively with an equal balance between positive and negative cases 
as well as clear symptomatic differences between cases and controls. Given the rapidly changing prevalence of 
COVID-19 in the community and machine learning model sensitivity to class imbalance30, generalisability of 
COVID-19 classifiers to symptomatic patients with a clinical suspicion of COVID-19 infection remains poorly 
understood.

In this paper we analyse n = 293,143 CXRs (n = 1650 COVID-19 positive) across 14 acute sites in NHS Greater 
Glasgow and Clyde (GG&C) between March and May, 2020. We apply a patch-wise neural network training 
approach that takes advantage of high-resolution CXR imaging and evaluate prospective model performance on 
continuously collected CXRs (n = 3289, n = 249 COVID-19 positive) of patients presenting to EDs with COVID-
19 symptoms across NHS GG&C in June–September, 2020. Finally, we compare the performance of our AI 
ensemble (CovIx) with interpretations of board-certified radiologists.

Materials and methods
Delegated research ethics approval for this study (reference: 104,690/WP11/S1) was granted by the Local Privacy 
and Advisory Committee at NHS Greater Glasgow and Clyde. Cohorts and de-identified linked data were pre-
pared by the West of Scotland Safe Haven at NHS Greater Glasgow and Clyde. In Scotland, patient consent is not 
required where routinely collected patient data is used for research purposes through an approved Safe Haven. 
This is set out by the Scottish Government in the Safe Haven Charter31. For that reason, informed consent is not 
required and was not sought. All research was performed in accordance with relevant guidelines/regulations.

Dataset.  All chest radiographs in our dataset (Fig. 1, n = 314,042) were obtained between February 2008 and 
September 2020 across 14 acute sites in NHS GG&C.

Images were produced by 11 different X-ray systems, including those used for portable studies. The Non-
COVID-19 cohort (n = 284,904 images) comprised of images collected prior to January 2020, whilst the COVID-
19 cohort (n = 29,138 images) comprised of patients who were placed on the COVID-19 clinical pathway between 
March and September, 2020 (Fig. 2). Image resolution ranged from 253 × 902 to 4280 × 3520 pixels, with each 
pixel represented in grayscale with 16-bit precision. Identifiable patient data was removed from DICOM files and 
corresponding radiological reports using Named Entity Recognition algorithms within the Canon Safe Haven 
AI Platform (SHAIP). SHAIP is a trusted research environment constructed specifically for machine learning 
within the health board network and deployed in NHS GG&C through Industrial Centre for Artificial Intelligence 
Research in Digital Diagnostics (iCAIRD).

Quality control and inclusion criteria.  Prior to analysis, all images have undergone rigorous qual-
ity control procedure. First, images with width less than 1,500 pixels were excluded from the study. Second, 
DICOM Body Part Examined (0018, 0015) and View Position (0018, 5101) attributes were filtered by “Chest” 
and Anteroposterior (“AP”) or Posteroanterior (“PA”) respectively. In cases where attributes contained miss-
ing information, results were inferred using pre-trained deep neural network classifiers, retaining images with 
very high probability of Chest (> 0.99) and AP/PA (> 0.99) labels (see “Quality control classifiers”. Paediatric 
(patients < 16 years old) and follow up X-rays were excluded from this study.

Ground truth generation and natural language processing.  CXRs in the COVID-19 cohort were 
assigned one of the following labels—Normal, Abnormal Non-Pneumonia (“Abnormal”), Non-COVID-19 
Pneumonia (“Pneumonia”), or COVID-19 (“COVID+”). Normal and Abnormal Non-Pneumonia classes were 
assigned to CXRs at the time of their interpretation by a reporting radiologist, whilst Non-COVID-19 Pneu-
monia label was assigned to CXRs with confirmed viral or bacterial pneumonia laboratory result during the 
associated clinical encounter.

COVID-19 positivity was assigned to a CXR if either (1) any single RT-PCR result was positive for SARS-
CoV-2 within 14 days of image acquisition or (2) a diagnosis of COVID-19 by ICD-10 code during the associated 
clinical encounter. Patients with only documented negative RT-PCR tests for COVID-19 during their clinical 
encounter were labelled as COVID-19 negative.

Annotation of the free-text radiological reports was automated by training a custom DistilBERT Natural 
Language Processing (NLP) model32. The model was used to detect both normality of a radiological report33 
and assign each report with one or more labels, including Atelectasis, Consolidation, and Effusion. An uncased 
DistilBERT model was initialised using weights provided by Sanh et al.32 We then continued to pre-train the 
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model for three epochs using n = 2,067,531 full text PubMed articles distributed under Creative Commons (CC) 
BY or CC0 license34, totalling n = 224,427,218 sentences. All words were converted to lower case and punctua-
tion was removed. Tokenization was performed using a custom WordPiece35 tokenizer with a vocabulary size 
of 52,000 words and word occurrence frequency of greater or equal to two. Finally, the pre-trained DistilBERT 
model was further finetuned using 1500 manually annotated free-text radiological reports (sourced from the 
non-COVID-19 cohort), with a batch size of four, for five epochs using Adam optimizer36 with a learning rate of 
1 × 10–5 and Binary Cross-Entropy loss with logits. The finetuned multi-label DistilBERT model was trained to 

Figure 1.   Dataset Characteristics. Entire dataset comprised of Non-COVID (n = 284,904) and COVID-19 
(n = 29,138) cohorts. Images in the non-COVID cohort (collected between February 2008 and December 2019) 
were used to pre-train all classifiers and generate Projection and Body Part classifiers, as well as the Lung and 
Heart Segmentation model. Images in the COVID-19 cohort (collected between March 2020 and September 
2020) have undergone rigorous Quality Control process and were used to train and test the COVID-19 
Ensemble.

Figure 2.   Study design used for the development and prospective validation of the CovIx ensemble. Non-
COVID Cohort (n = 284,904 CXRs collected between February 2008 and December 2019) was used to pre-train 
all classifiers used in this work. CXRs collected between March and May 2020 were used to train CovIx model 
ensemble, whilst prospective evaluation was carried out on n = 3289 CXRs between June and September 2020.
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output probabilities of the following labels–Atelectasis, Pleural Calcification, Cardiomegaly, Consolidation, Effu-
sion, Emphysema, External Medical Device, Fracture, Internal Medical Device, Interstitial Opacity, Metalwork, 
Nodule, Pleural Thickening, Other Abnormality, and No Findings. The labels were selected due to occurrence 
in at least 20 radiological reports from the training set. Model performance was validated on an independent 
dataset of n = 500 manually-labelled reports.

Deep neural networks.  Quality control classifiers.  Two quality control (QC) classifiers were trained to 
differentiate (1) chest versus non-chest body part (“body part classifier”) and (2) AP versus PA projection (“pro-
jection classifier”). The Non-COVID-19 cohort (n = 284,904 images, non-COVID-19 cohort) was selected for 
both classifiers. Images were randomised into training (80%), validation (10%), and testing (10%) sets using 
stratified splits. To avoid data leakage, we ensured that patient identifiers do not overlap between splits.

QC classifiers were built using the InceptionV337 architecture and initialised with ImageNet weights38. Global 
Average Pooling and two dense layers comprised the classification head. Softmax activation was applied to the 
final dense layer. Models were trained on 16-bit DICOM files with 32 images per batch using Adam optimizer 
with a learning rate of 1 × 10–3, whilst minimising the Categorical Cross-Entropy loss. Input images were resized 
to 299 × 299 using bilinear interpolation without preserving the aspect ratio. During training, images were subject 
to random augmentations, which included brightness adjustments, angular rotation, and left–right flipping. 
Training was terminated early if validation loss did not improve after ten consecutive epochs.

Ensemble of deep neural networks for COVID‑19 prediction.  All networks used in the CovIx ensemble utilise 
an InceptionV3 backbone and a classification head comprising of a Global Average Pooling layer, Dense layer 
(n = 1024 neurons), Dropout (dropout rate of 0.2) layer, and a final Classification layer (a Dense layer with 
number of neurons reflecting the number of desired classes). The InceptionV3 backbone produced the best 
performing-classifiers compared to VGG16, DenseNet, and ResNet both in our experiments as well as external 
studies39. Network weights for all InceptionV3 backbones were obtained by training a multi-label classifier to 
identify one or more of the NLP labels extracted from free-text radiological reports in n = 284,904 images from 
the non-COVID-19 cohort. (see Ground Truth Generation and Natural Language Processing).

CovIx is an ensemble of three models (Fig. 3) designed to capture micro- and macro-level features of the 
dataset—the high-resolution patch-wise classifier, low resolution image-wise classifier, and a high-resolution 
image-wise classifier. The final probability value produced by the ensemble is the weighted mean of the output 
probabilities produced by the Softmax output of each constituent model.

The low- and high-resolution image-wise classifiers were trained on frontal CXRs scaled to 299 × 299 and 
764 × 764 pixels respectively. When constructing the InceptionV3 networks with varying input shapes, the num-
ber of channels in each layer of the network remained constant, with only the dimensions of the intermediate 
feature maps being affected. The final feature map output prior to Global Average Pooling had a dimension of 
8 × 8 in the 299 × 299 model and a dimension of 22 × 22 in the 764 × 746 model. The classification head contained 
two outputs—an NLP multi-label classifier and a COVID-19 classifier. The NLP multi-label classifier was trained 
to identify one or more of the NLP labels extracted from free-text radiological reports, whilst the COVID-19 
classifier assigned a probability value to Normal, Abnormal Non-Pneumonia, Non-COVID-19 Pneumonia, and 
COVID + classes. The network was trained end-to-end, such that the NLP label outputs were used as auxiliary 
targets for the COVID-19 classifier. This auxiliary training objective served to regularize the network training 
by encouraging the neural networks to extract a variety of useful features from all input images, whether the 
COVID class was present or not, making the networks more generalizable and more resilient.

The patch-wise classifier was built by scaling each image to 1500 × 1500 resolution (the lowest DICOM reso-
lution in our training set) and taking 50 random patches with a size of 299 × 299 as the network inputs (default 
InceptionV3 input size). To ensure that random patches represent meaningful information, the centres of each 
patch were randomly selected from segmented lung areas40. Segmentation masks were obtained by training a 
UNet model41 with a ResNet-5042 backbone and ImageNet weights on a collection of 2,000 manually labelled lung 
and cardiac fields. At inference stage, 50 random patches were acquired for each image and fed to the classifier to 
generate class probability values for Normal, Abnormal, Pneumonia, and COVID + classes. The final prediction 
was taken as the average class probability across 50 patches.

All models were trained on 16-bit DICOM files with 64 images per batch using Adam optimizer. For the 
models with multiple outputs (low- and high- resolution image-wise classifiers), the final loss function was the 
sum of the categorical cross entropy loss applied to the Softmax output and the binary cross entropy loss of the 
output of the NLP layer. The 16-bit DICOM images were linearly rescaled to the range [− 1, 1] before being fed 
into the models. A learning rate of 1 × 10–4 was applied to the neural network backbone, whilst layers within 
the classification head were trained with a learning rate of 1 × 10–5 to minimise effects of the double descent 
phenomenon43. Images were subject to random train-time augmentations, which included brightness adjust-
ments, angular rotation, and left–right flipping. Training was terminated early if validation loss did not improve 
after ten consecutive epochs.

Comparison with COVID‑Net, DeepCOVID‑XR, and consensus radiologist interpreta‑
tions.  COVID-Net20 and DeepCOVID-XR24 models were used to establish testing set performance reference 
standard. Briefly, COVID-Net, trained and validated on n = 13,975 CXRs (n = 358 COVID + images), utilises a 
bespoke convolutional network architecture to differentiate Normal, COVID-19, and non-COVID-19 Pneumo-
nia CXRs, whilst DeepCOVID-XR, trained and validated on n = 14,788 CXRs (n = 4253 COVID + images), is 
an ensemble of 24 neural networks that assigns each CXR a probability of displaying signs of COVID-19. Prior 
to inference, all images in the prospectively-collected testing set were converted to 8-bit PNG files, preserving 
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original resolutions. Pre-trained model weights were obtained from respective GitHub repositories and class 
probabilities calculated using the author-supplied inference scripts.

One hundred images were selected from patients presenting to ED in NHS GG&C in June 2020. Images were 
acquired over a continuous time period, representing “real-world” incidence of COVID-19 presentation. Expert 
interpretations were independently provided by four radiologists with 6 months to 4 years (average 2.5 years) 
post Fellowship of the Royal College of Radiologists examination. Radiologists were blinded to any identifying 
patient information or clinical characteristics.

Statistical analysis.  The predictive performance of the NLP and AI systems was assessed by using the area 
under the receiver operating characteristic (AU ROC) and precision-recall (AU PR) curves and 95% Confidence 
Intervals (CIs) were produced using 2000 bootstrap samples. Sensitivity, positive predictive value (PPV), and 
F1-score (a measure of accuracy, reflecting the harmonic mean of PPV and sensitivity, where 1 represents per-
fect PPV and sensitivity) were determined. Interobserver agreement was measured using Cohen’s Kappa. Model 
sensitivity and specificity were compared using McNemar’s test44 and AU ROCs were compared using DeLong 
test45. A two-tailed p value of 0.05 was considered statistically significant.

Results
Cohort characteristics.  All CXRs in our dataset (n = 314,042) were obtained between February 2008 and 
September 2020 across 14 acute sites in NHS GG&C. Of the 314,042 images, n = 2,313 (0.74%) and n = 253,141 
(80%) had missing Body Part Examined (0018, 0015) and View Position (0018, 5101) DICOM attributes respec-
tively. To extrapolate the missing attribute values, we trained two classifiers that determine whether an X-ray is 
a chest radiograph (body part classifier) and whether its projection is AP or PA (projection classifier). Both clas-
sifiers achieved AUROC > 0.99 on a held-out testing set and were used to inform our quality control procedure 
(see “Methods”).

Of the 29,138 images in the COVID-19 cohort, n = 11,123 images (38%) from 8,511 patients passed our inclu-
sion and QC criteria (4407 females, average age of 66, range 16–105 years, see “Methods”). The training set con-
sisted of n = 8239 images obtained from patients presenting across 14 acute sites in NHS GG&C with symptoms 

Figure 3.   Constituents of the CovIx ensemble. The low- and high-resolution image-wise classifiers were trained 
on frontal CXRs scaled to 299 × 299 and 764 × 764 pixels respectively. The classification head (H) contained 
two outputs —an NLP multi-label classifier output (L1-LN) and a COVID-19 classifier (Softmax). The NLP 
output consisted of a Dense layer with a neuron per NLP target class (classes = 10) followed by a Sigmoid 
activation function, while the COVID-19 classifier output likewise consisted of a Dense layer with four output 
neurons representing Normal, Abnormal, Pneumonia and COVID + respectively followed by a Softmax output. 
The patch-wise classifier was built by scaling each image to 1500 × 1500 resolution, extracting lung and heart 
masks, and taking 50 random patches cropped to image masks with a size of 299 × 299 as the network inputs. 
At inference stage, 50 random patches were acquired for each image and fed to the classifier to generate class 
probability values for Normal, Abnormal, Pneumonia, and COVID + classes.
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of COVID-19 between March and May, 2020. Of these 63% (n = 5190) were obtained in ED, whilst remaining 
were obtained in in-patient facilities. The testing set images were collected continuously in ED from symptomatic 
NHS GG&C patients presenting between June and September 2020 (Table 1). The rate of positivity for COVID-19 
among chest radiographs in the test set (249/3,289; 7.6%) was lower than in the training (1,650/8,239; 20%). The 
proportion of anteroposterior radiograms was congruent between training and testing sets (28%).

Construction of CovIx ensemble for COVID‑19 diagnosis.  CovIx is a neural network ensemble that 
aims to capture macro- and micro-level features of the disease. All ensemble constituents utilise an InceptionV3 
backbone, pretrained on CXRs from the non-COVID-19 cohort (n = 284,904 images). The pre-training task was 
a multi-label classification problem that aimed to assign a CXR with one or more of the 15 labels—Atelectasis, 
Pleural Calcification, Cardiomegaly, Consolidation, Effusion, Emphysema, External Medical Device, Fracture, 
Internal Medical Device, Interstitial Opacity, Metalwork, Nodule, Pleural Thickening, Other Abnormality, and 
No Findings.

To automate label extraction from free-text radiological reports, we trained a bespoke DistilBERT model 
using n = 2,067,531 full text PubMed articles (see “Methods”). NLP model performance on an independent set 
of 500 reports across the 15 labels achieved micro-average AUROC of 0.94 (AUROCExternal Medical Device = 0.71 to 
AUROCAbnormal Other = 1.0). NLP labels were subsequently assigned to all CXRs. Following multilabel pre-training, 
weights of the InceptionV3 model were transferred for further finetuning on the COVID-19 cohort.

CovIx ensemble is comprised of four components (Fig. 3) – (1) lung segmentation network, (2) high resolu-
tion patch-wise classification network, (3) low resolution image-wise classifier, and (4) high resolution image-wise 
classifier. The lung segmentation model was trained and validated on n = 2000 manually labelled lung fields. The 
resulting masks were used to select centres of the 50 random patches for every CXR, ensuring that only relevant 
information is captured. We have systematically assessed patch-wise model AUROC on a validation set using 
10, 25, 50, and 100 patches per image. AUROC metric increased proportionally to the number of patches, with 
50 and 100 patches producing identical validation set performance. The final patch-wise model consisted of 50 
random patches, representing a balance between required computational resources and model performance.

Low- and high-resolution networks utilised 299 × 299 and 764 × 764 sized images respectively. The networks 
were trained to label each image with one or more of the 15 NLP labels extracted from free-text reports and 
subsequently use label probabilities to classify an image as Normal, Abnormal, Pneumonia, or COVID+. Final 
CovIx class probabilities were obtained by averaging outputs produced by constituent classifiers.

Model performance.  CovIx performance was evaluated on a prospective continuously-collected testing 
set of n = 3289 images (n = 249 COVID-19 positive, collected June – September 2020) obtained from patients 
referred to the COVID-19 pathway following ED presentation in NHS GG&C. Performance of individual CovIx 
models is shown in Supplementary Fig. S1. The CovIx ensemble identified COVID-19 CXRs with AUROC and 
AUPR of 0.86 and 0.51 respectively (sensitivity = 0.55, PPV = 0.40, and F1-score = 0.47 [Fig. 4, Table 2]). Concur-
rent model identification of Normal, Abnormal, and Pneumonia CXRs resulted in AUROCs of 0.89, 0.70, and 
0.96 respectively (Fig. 4). 

Impact of age on model performance was assessed by evaluating sensitivity, PPV, and F1-scores for every age 
quintile. The model achieved peak COVID-19 sensitivity (0.83), PPV (0.61), and F1-score (0.71) in the 49–60 
age group (2nd age quintile) (Fig. 5). Furthermore, CovIx demonstrated increased COVID-19 detection in AP 
views and Male patients, exemplified by increased sensitivities (0.63, 0.68), PPVs (0.47, 0.45), and F1-scores 
(0.54) (Fig. 5).

To determine whether CovIx identifies COVID-19-specific features from CXRs, we applied the algorithm to 
n = 5000 randomly selected radiographs (n = 2819 normal radiological reports) obtained from patients present-
ing to NHS GG&C ED between September 2009 and August 2019. CovIx labelled 156 images (3%) as having 
radiological signs indicative of COVID-19. Of the 156 images 80 (51%) had normal radiological reports, 15 
(10%) exhibited basal consolidations, and two (1%) had laboratory-confirmed Pneumonia. Remainder exhibited 
a diverse range of radiological signs, including cardiomegaly, emphysema, and atelectasis.

Finally, we compared CovIx algorithm to state-of-the-art, by evaluating COVID-Net and DeepCOVID-XR 
algorithms on our continuously-collected testing set. CovIx achieved better performance, expressed through 
significantly greater (DeLong p < 0.05) AUROC and AUPR values compared to other algorithms (Fig. 3) as well 
as higher PPV and F1-scores (Table 2).

Comparison with expert radiologists.  CovIx predictions were compared to board-certified radiologist 
interpretations on the first 100 continuously-collected CXRs of patients presenting to ED in June 2020 (n = 17 
COVID-19 positive). Average inter-reader agreement, expressed as Cohen’s Kappa, for Normal, Abnormal, 
Pneumonia, and COVID-19 CXRs was 0.68, 0.49, 0.43, and 0.60 respectively (Fig. 6A).

Table 1.   Patient characteristics in the training and testing sets. *Reported as average ± standard deviation.

Size (number of images) Age* (years)
Female Sex (number of 
images)

Anteroposterior 
frequency

COVID-19 positive 
(number of images)

Training Set 8239 67 ± 18 4090 28% 1650

Testing Set 3289 64 ± 18 1664 28% 249
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The overall multi-class accuracy of CovIx on this test set was 60% compared with the reference standard, while 
the accuracy of individual radiologists ranged from 55 to 69% and the accuracy of the consensus interpretation 
of all four radiologists was 66%. Differences in overall performance were not statistically significant between 
CovIx and consensus radiologists’ labels (McNamara’s p value = 0.48, Supplementary Fig. S2).

At single-label level, CovIx performance was comparable to radiologists in Normal and Abnormal CXRs 
(McNamara’s p value = 0.82 and 0.53 respectively, Fig. 6B-D, F-H). However, CovIx exhibited statistically sig-
nificant performance improvements in Pneumonia and COVID-19 classes (McNamara’s p value = 0.02 and 
0.04 respectively, Fig. 6E,I), further exemplified through greater sensitivity, F1-score, and PPV (Table 3, Fig. S2).

Discussion
In this paper we present development and prospective evaluation of an AI algorithm—CovIx—for screening of 
putative COVID-19 CXRs in symptomatic patients presenting to emergency department. The study population, 
aggregated across NHS GG&C, is representative of “real-world” patients presenting to ED between the peaks 
of the COVID-19 pandemic. On a continuously-collected testing set of n = 3,289 images (n = 249 COVID-19 
positive), CovIx achieved AU ROC and AU PR of 0.86 and 0.51 respectively, outperforming state-of-the-art 
COVID-Net and DeepCOVID-XR models. Additionally, on a continuously-collected sample of 100 test images, 
CovIx performed favourably when compared to four board-certified radiologists, achieving statistically signifi-
cant performance improvements for Pneumonia and COVID-19 identification.

Our work introduces several advantages. First, we use an ensemble approach that evaluates macro- and 
micro-level features of COVID-19 CXRs. The image-wise classifiers (macro-level) were pre-trained on n = 284,904 
images using ground truths derived from a state-of-the-art NLP model trained on 224,427,218 sentences from 
medical literature. To the best of our knowledge this represents the largest medical corpus in a language model-
ling task46, providing high-quality annotations. Second, the patch-wise classifier (micro-level) enabled training 
on a relatively small training set, whilst still outperforming state-of-the-art models, such as DeepCOVID-XR. A 
similar approach, utilising 100 random patches during inference step, has been previously proposed40. We dem-
onstrate that training a model using 50 random patches obtained from CXR lung fields, combined with a simple 

Figure 4.   Discriminative performance of Chest-Xray classification algorithms on prospectively collected testing 
set of 3289 images. Discriminative capacity of CovIx (blue), COVID-Net (red), and DeepCOVID-XR (black) 
is represented as Receiver Operating Characteristics (ROC) (A-D) or Precision-Recall (PR) (E-H) curves. 95% 
Confidence Intervals (CI), generated using 2000 bootstrap samples, are visualised as pale curves.

Table 2.   Model performance comparison in identifying COVID-19 CXRs. Top results are shown in bold.

Model Label Sensitivity PPV F1-score AUROC AUPR

CovIx COVID-19 0.55 0.40 0.47 0.86 0.51

COVID-Net COVID-19 0.99 0.07 0.14 0.54 0.08

DeepCOVID-XR COVID-19 0.07 0.14 0.09 0.65 0.13
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image augmentation schedule, yields superior performance. Third, AI models for COVID-19 detection have 
focused either on a binary COVID versus non-COVID classification task24,47 or on differentiation of COVID-
19 pneumonia from viral or bacterial pneumonias20,21,48. Our algorithm introduces simultaneous detection of 
normality, COVID-19 pneumonia, viral or bacterial pneumonias, as well as non-pneumonia abnormalities. 
This approach makes it more versatile in diverse clinical environments such as the ED, where earlier diagnosis 
of bacterial pneumonia reduces mortality and length of stay49. Finally, most AI studies have been carried out 
at the time of considerable load on the healthcare system, with over-represented prevalence of COVID-19. As 
such, it is unclear how well these algorithms perform when COVID-19 is not the dominant viral pneumonia.

In this work, we rely heavily on the InceptionV3 architecture, which produced better performance compared 
to VGG16, DenseNet, and ResNet both in our experiments as well as external studies39. However, deep neural 
network models may suffer from over-fitting when there is a small number of training exemplars50, whilst shallow 
architectures may achieve comparable results with shorter training times51. Shallow architectures have already 
been explored in the context of COVID-19 screening52,53 and may provide a plausible alternative in cases where 
limited training data is available.

We demonstrate first evidence of AI performance in “real-world” settings on continuously collected CXRs 
in patients presenting to ED between the peaks of the pandemic. As such, our experiments reflect the changing 
prevalence of COVID-19 in the symptomatic ED population (20% March–May, 2020 vs. 8% June–September 
2020). The training and testing sets represent an imbalanced machine learning problem, whereby the prevalence 
of a positive class (COVID-19) is considerably lower than that of the negative class (Normal, Abnormal-Other, 
Non-COVID Pneumonia). When class imbalance exists, learners will typically over-classify the majority group 
due to its increased prior probability54. To address this phenomenon, both undersampling the majority class and 
over-sampling the minority class have been proposed55,56. Generating synthetic samples through linear inter-
polation between data samples belonging in the same minority class57 or weighing the training loss function58 
have also been suggested. These techniques assume that the prevalence of the minority class is a known and 
stable quantity, however prevalence of SARS-CoV-2 is changing rapidly59. To mitigate the impact of class imbal-
ance in our models, we pre-trained every constituent of the CovIx Ensemble using a large collection of frontal 
CXRs (n = 284,904) obtained from patients prior to emergence of COVID-19 (Non-COVID Cohort, Figs. 1, 

Figure 5.   Effect of patient age, sex, and view position on CovIx performance. Model performance, expressed 
as sensitivity, positive predictive value (PPV), and F1 Score is represented as lines, whilst class frequencies, 
expressed as proportion of total images in the testing set, are shown as bars.
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2, see “Methods”). This approach has been demonstrated to improve model robustness against imbalance and 
shown to outperform techniques such as over-/under-sampling and Synthetic Minority Oversampling Technique 
(SMOTE)60.

Furthermore, evaluation of CovIx on 5000 CXRs collected between September 2009 and August 2019, where 
COVID-19 prevalence is expected to be 0%, the algorithm identified only 156 images with high likelihood of 
COVID-19, suggesting that the algorithm is highly specific (97%). We believe this sets realistic expectations of 
AI performance.

Errors made by our algorithm were explainable. Of the 226 images with negative RT-PCR findings classified 
as COVID-19 positive by CovIx (false positives), 196 (87%) demonstrated signs including co-occurrence of 
bilateral small pleural effusions and unilateral lower lobe consolidation. Although individually these findings 
are present in a minority of COVID-19 patients61, presence of multiple abnormalities on a single CXR resulted 
in greater COVID-19 probability values. Similarly, of the 105 images with positive RT-PCR findings classified 
as non-COVID-19 (false negatives), only 23 (22%) had typical COVID-19 findings, such as multifocal ground 
glass opacity, linear opacities, and consolidation.

Due to variabilities in COVID-19 severity across our testing cohort, it’s likely that false negative predictions 
reflect limitations of CXR imaging rather than the algorithm itself. For example, 56% of symptomatic COVID-19 
patients can demonstrate normal chest imaging, especially early in their disease course14,18. Additionally, many 
of the findings seen in COVID-19 imaging are non-specific and overlap with other viral pneumonias62. Conse-
quently, CXR imaging alone is not recommended for COVID-19 diagnosis, but should be used concomitantly 
with clinical assessment, blood tests, and RT-PCR17. As such, our model, either on its own or in consort with 

Figure 6.   Comparison with board-certified radiologist interpretations. (A) Heatmaps visualising inter-reader 
agreement for Normal, Abnormal, Pneumonia, and COVID-19 images. (B-E) Receiver Operating Characteristic 
(ROC) curves and (F-I) Precision-Recall (PR) curves demonstrating CovIx model performance on the first 100 
images collected in June 2020 across EDs in NHS GG&C (n = 17 COVID-19 positive). Individual radiologist 
performance is visualised as “ + ”. Grey lines indicate 95% Confidence Intervals (CI) calculated on 2000 
bootstrap samples.
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other biomarkers/clinical findings, could play an important triage role in earlier identification of patients likely 
to have COVID-19, enabling improved flow and infection control.

A number of research and industrial groups have published deep learning-based studies and non-peer 
reviewed preprints20–24,40,48,63. Although the studies report extremely high sensitivity and specificity of AI algo-
rithms to detect COVID-19 on CXRs, most have been limited by small sample sizes or have relied on images 
from publicly available datasets of variable quality and label accuracy64. Although larger open access COVID-
19 datasets are becoming more prevalent, for example the COVIDx dataset comprising of 13,975 CXR images 
across 13,870 patient cases20, the utility of these resources is uncertain. Indeed, aggregation of disease-specific 
CXR datasets to produce a meta-training set can often lead to overinflated performance metrics25. Given that 
neural networks have propensity to learn features that are specific of the dataset more than the ones that are 
specific of the disease27, resulting models generalise poorly to independent testing sets28,29. We demonstrate this 
characteristic by assessing performance of the COVID-Net model our testing set. The model classified 98% of 
all images as COVID+ , resulting in poor PPV, AU PR, and AU ROC values (Fig. 4).

Murphy et al.47 present an evaluation of a commercial patch-based convolutional neural network, CAD-
4COVID-Xray, on a cohort of continuously acquired CXRs (n = 454) obtained in patients suspected of having 
COVID-19 pneumonia presenting to a single centre between March 4 and April 6, 2020. The network was first 
trained on a large collection of CXRs for tuberculosis detection and subsequently finetuned using publicly-
available pneumonia dataset (n = 22,184 images)65 and internally-curated COVID-19 images (n = 416). The AI 
system correctly classified chest radiographs as COVID-19 pneumonia with an area under the receiver operating 
characteristic curve of 0.81. By contrast, our system was trained on four times as many COVID-19 cases obtained 
across 14 different institutions. Furthermore, our testing set represents “real-world” incidence of COVID-19 
positivity (249/2,889 images, 9%) among patients presenting with symptoms of COVID-19 to ED.

More recently, an ensemble of 24 neural networks, DeepCOVID-XR24, has demonstrated high accuracy of 
COVID-19 detection (AUROC = 0.90 compared to RT-PCR reference standard) and compared favourably to 
consensus of five thoracic radiologists (AUROC = 0.95) on an independent testing set. The network was pre-
trained on a large CXR dataset of over 100,000 images66 and finetuned on 14,788 frontal CXRs (4,253 COVID-19 
positive) from 20 sites, producing a binary prediction of COVID-19 likelihood. Evaluation of DeepCOVID-
XR on our testing set demonstrated considerable performance boost compared to the COVID-Net model 
(AUROC = 0.65, AUPR = 0.13, Table 2). Nevertheless, DeepCOVID-XR did not perform on par with the CovIx 
ensemble (AUPRDeepCOVID-XR = 0.13 vs. AUPRCovIx = 0.51). Given similar inclusion criteria (RT-PCR positivity 
during a clinical encounter), and study population characteristics (comparable age and gender profiles), it’s 
likely that technical differences account for discrepancies in DeepCOVID-XR performance67. For example, 
DeepCOVID-XR training and testing sets contained more AP images (89% and 97% respectively), compared to 
only 28% in our study population. Patients undergoing AP examination are more likely to exhibit severe symp-
toms with increasingly discernible signs of COVID-19 infection68. This is further supported by improved CovIx 
performance on AP projections (Fig. 5G-I). Previous studies also report that AP CXRs have shown an overall 
better inter-rater agreement for COVID-19 diagnosis compared to PA68.

CovIx ensemble performed best in patients within the 49–60 age group (2nd age quintile) (Fig. 5A-C). Young 
age has previously been associated with increased likelihood of false negative findings on CXR in retrospective 

Table 3.   Comparison of model performance with Radiologist labels. Top results are shown in bold.

Class Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4 Radiologist Consensus CovIx

Accuracy

Normal 0.92 0.79 0.77 0.87 0.88 0.86

Abnormal 0.74 0.64 0.71 0.71 0.72 0.67

Pneumonia 0.91 0.84 0.82 0.88 0.88 0.73

COVID-19 0.84 0.86 0.87 0.84 0.86 0.94

Sensitivity

Normal 0.91 0.91 0.94 0.88 0.94 0.62

Abnormal 0.60 0.40 0.44 0.60 0.63 0.42

Pneumonia 0.25 0.25 0.38 0.38 0.25 1.0

COVID-19 0.71 0.41 0.35 0.41 0.41 0.82

F1-score

Normal 0.88 0.73 0.72 0.81 0.83 0.74

Abnormal 0.67 0.49 0.57 0.64 0.66 0.52

Pneumonia 0.31 0.20 0.25 0.33 0.25 0.37

COVID-19 0.60 0.50 0.48 0.47 0.50 0.82

PPV

Normal 0.85 0.62 0.59 0.76 0.75 0.91

Abnormal 0.74 0.63 0.79 0.68 0.69 0.69

Pneumonia 0.40 0.17 0.19 0.30 0.25 0.23

COVID-19 0.52 0.64 0.75 0.54 0.64 0.82
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multi-institutional study, of 254 RT-PCR verified COVID-19 positive patients69. Additionally, older patients are 
more likely to present with more severe symptoms and multiple lobe involvement than young and middle-age 
groups70.

Notably, whilst model performance for Normal, Abnormal, and Pneumonia classes was independent of patient 
sex, CovIx demonstrated decreased performance in female patients, as exemplified by reduction in sensitivity, 
F1-Score, and PPV (Fig. 5D-F). Sex differences in COVID-19 severity and outcomes are well documented71–73, 
with men exhibiting more severe symptomatology, increased likelihood of intubation, and greater chances of 
mortality. CT imaging has also demonstrated significantly greater severity scores in men with a trend toward 
more bilateral lung involvement74. Additionally, breast tissue may project onto lung fields, thus increasing the 
density of the lung periphery and simulating ground-glass opacities75. To the best of our knowledge this is the 
first report of sex-related accuracy differences in AI-guided COVID-19 diagnosis using CXR imaging.

Our study has several limitations. First, the inclusion criteria was broadened to ensure sufficient numbers of 
COVID-19 positive images in our training set. As high-quality COVID-19 CXRs become more readily available, 
it’s likely that model performance can be refined further by building bespoke classifiers for AP and PA projec-
tions as well as opportunities to address age- and sex-driven discrepancies in model performance. Second, the 
performance of our algorithm was compared to RT-PCR as a reference standard, which itself has limited sensi-
tivity due to sampling error or viral mutation76. Third, although we used a continuously collected testing set for 
model validation, we did not assess model performance in an independent institution. Therefore, the generalis-
ability potential of our algorithm is unclear. Finally, CovIx is limited to only a single data type – frontal CXRs. 
It is anticipated that inclusion of multimodal dataset in clinical decision support will further improve model 
accuracy, reliability, and interpretation77. To support this area of research, we made the pre-trained CovIx models 
and inference scripts available to the research community (https://​github.​com/​berin​grese​arch/​brave​cx-​covid).

Overall, we present and evaluate a deep learning algorithm for detection of COVID-19 infection in symp-
tomatic patients presenting to emergency department. The algorithm was trained on a large representative 
population and tested on continuously collected data in a “real-world” setting. CovIx has the potential to miti-
gate unnecessary exposure to COVID-19 in busy ED settings by serving as an automated tool to rapidly triage 
patients for further testing and/or isolation. Planned future studies include (1) incorporation of imaging data 
with readily-available point-of-care clinical data such as demographics and vital signs to further boost the per-
formance, (2) evaluation of model generalisability in external institutions outside NHS GG&C, and (3) adoption 
of the algorithm for risk prediction of clinically meaningful outcomes in patients with confirmed COVID-19. By 
providing the CovIx code base as an open-source project, we hope investigators will further improve, fine-tune, 
and test the algorithm using clinical images from their own institutions.
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