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Effect of thymoquinone
on sepsis-induced cardiac
damage via anti-inflammatory
and anti-apoptotic
mechanisms
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Abstract

Objective: Sepsis is a systemic and deleterious host reaction to severe infection. Cardiac dys-

function is an established serious outcome of multiorgan failure associated with this condition.

Therefore, it is important to develop drugs targeting sepsis-induced cardiac damage and inflam-

mation. Thymoquinone (TQ) has anti-inflammatory, anti-oxidant, anti-fibrotic, anti-tumor, and

anti-apoptotic effects. This study examined the effects of thymoquinone on sepsis-induced cardiac

damage.

Methods: Male BALB/c mice were randomly segregated into four groups: control, TQ, cecal

ligation and puncture (CLP), and CLPþTQ groups. CLP was performed after gavaging the mice

with TQ for 2 weeks. After 48 hours, we estimated the histopathological changes in the cardiac

tissue and the serum levels of cardiac troponin-T. We evaluated the expression of factors asso-

ciated with inflammation, apoptosis, oxidative stress, and the PI3K/AKT pathway.

Results: TQ significantly reduced intestinal histological alterations and inhibited the upregulation

of interleukin-6, tumor necrosis factor-a, Bax, NOX4, p-PI3K, and p-AKT. TQ also increased

Bcl-2, HO-1, and NRF2 expression.

Conclusion: These results suggest that TQ effectively modulates pro-inflammatory, apoptotic,

oxidative stress, and PI3K/AKT pathways, making it indispensable in the treatment of sepsis-

induced cardiac damage.
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Introduction

Sepsis is a systemic, deleterious host reac-
tion to severe infection, and it is recognized
as one of the deadliest conditions in the
intensive care unit.1,2 According to reports,
the incidence of sepsis is 535 cases per
100,000 person-years, and it is continually
rising. The in-hospital mortality rate is as
high as 25% to 30%.3 Cardiac dysfunction
is an established risk factor for multiorgan
failure associated with this critical condi-
tion.4 Septic cardiac dysfunction has been
associated with the excessive production of
pro-inflammatory cytokines, including
interleukin-6 (IL-6) and tumor necrosis
factor-a (TNF-a), which also contribute to
myocyte apoptosis and damage.5–7 In addi-
tion, previous studies demonstrated that the
mechanisms underlying sepsis-induced
myocardial dysfunction include inflamma-
tory mediators, structural alterations,
dysfunctional cardiomyocyte contractility,
mitochondrial dysfunction, reduced energy
metabolism, and cell death.8–13 Oxidative
stress and inflammation are interdependent,
and excessive reactive oxygen species (ROS)
production at inflammatory sites can lead
to oxidative stress, which in turn can induce
mitochondrial damage.14 However, the pre-
cise mechanism of the pathogenesis of
septic cardiomyopathy remains undefined.

In recent years, it has been reported that
many active ingredients of natural drugs
have viable anti-oxidant and anti-
inflammatory effects and that they can
exert protective effects against multiple car-
diac diseases.14–16 A review concluded that

natural anti-oxidants can effectively protect

myocardial and endothelial cells from

stress-induced injury by regulating mito-

chondrial quality control.17 Chang et al.

found that quercetin exerts cardioprotective

effects by improving myocardial fibrosis

and regulating mitophagy and endoplasmic

reticulum stress.18,19 Thymoquinone (TQ,

2-isopropyl-5-methyl-1,4 benzoquinone), a

natural phytochemical compound, is the

main active component of Nigella sativa

oil (commonly known as black cumin or

black seed, an annual flowering plant

native to Mediterranean countries).20,21

Several studies revealed that TQ has anti-

inflammatory, anti-oxidant, anti-fibrotic,

anti-tumor, and anti-apoptotic effects.22–25

Nagi et al. reported that TQ protected

against doxorubicin-induced cardiac

damage.26

This study examined the utility of TQ for

the treatment of sepsis-induced cardiac

damage. Our results will contribute to clar-

ification of the beneficial role and mecha-

nism of action of TQ in sepsis-induced

cardiac disorders.

Materials and methods

Animals

Male BALB/c mice were purchased from

Beijing Vital River Lab Animal Technology

Co., Ltd. (Beijing, China). All mice were

housed in a room under controlled conditions

(temperature, 23–25�C; humidity, 40%–60%;

12-hour/12-hour light/dark cycle).

2 Journal of International Medical Research



Murine model of sepsis

To induce polymicrobial sepsis, an estab-

lished murine model of cecal ligation and

puncture (CLP) was used as previously

described.21 The mice were anesthetized

with sodium pentobarbital (100mg/kg

intraperitoneal injection). After surgically

opening the peritoneum and exposing the

bowel, two-thirds of the cecum were tied

and cut with a 21-gauge needle. Gentle

pressure was applied at the perforation

sites to extrude a small amount of feces,

which was then returned to the peritoneal

cavity. Subsequently, the laparotomy site

was stitched. The same procedure was

applied in sham-operated mice, including

surgical opening of the peritoneum and

bowel exposure. However, needle perfora-

tion of the cecum and ligation were not

performed. Eight-week-old male mice were

randomly segregated into four groups

(n¼ 12/group): control, TQ (100mg/kg/

day; Sigma-Aldrich, St. Louis, MO, USA),

CLP, and CLPþTQ. CLP was performed

after gavaging the mice with TQ for

2 weeks. After 48 hours, all surviving mice

were killed, and blood samples were

obtained from the inferior vena cava, col-

lected in serum tubes, and stored at �80�C
until further use. Coronal sections of the

cardiac tissues were fixed in 10% formalin

and then embedded in paraffin for histolog-

ical evaluation. The remaining cardiac tis-

sues were snap-frozen in liquid nitrogen for

mRNA or immunoblotting analysis. All

animal experiments were performed in

accordance with the Guide for the Care

and Use of Laboratory Animals. All

animal experiments were approved by the

Ethics Committee of Affiliated Zhongshan

Hospital of Dalian University.

Serum analysis

Blood samples were collected, and the

serum was stored at �80�C. The serum

concentrations of cardiac troponin-T

(cTnT) were measured using an enzyme-

linked immunosorbent assay kit (Westang,

Shanghai, China).

Hematoxylin and eosin (H&E) staining

Cardiac tissues were fixed in 10% buffered

formalin solution for 30 minutes and dehy-

drated in 75% ethanol overnight, followed

by paraffin embedding. Serial sections

(4mm, n¼ 3/group) were stained with

H&E, and the lesion area in the cardiac

tissue was observed using a BX40 upright

light microscope (Olympus, Tokyo, Japan).

Masson’s trichrome staining

Cardiac tissues were fixed in 10% buffered

formalin solution for 30 minutes and dehy-

drated in 75% ethanol overnight, followed by

paraffin embedding. Slides were stained with

Masson’s trichrome to investigate changes in

cardiac tissues and observed using a BX40

upright light microscope. Blue staining indi-

cated collagen accumulation.

RNA isolation and reverse transcription-

quantitative PCR (RT-qPCR)

Total RNA was isolated from cardiac tissue

and transcribed into complementary DNA

(cDNA) using a TransScript One-Step

gDNA Removal and cDNA Synthesis

Supermix kit (Transgen, Beijing, China)

according to the manufacturer’s protocol.

Gene expression was analyzed quantitative-

ly by qPCR using a TransStart Top Green

qPCR Supermix kit (Transgen). b-actin
cDNA was amplified and quantitated in

each cDNA preparation to normalize the

relative amounts of the target genes.

Primer sequences are listed in Table 1.

Immunohistochemistry (IHC)

Paraffin-embedded cardiac tissues were cut

into 5-lm-thick cross-sections and
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deparaffinized prior to staining using a

standard protocol. Immunohistochemical

staining was performed according to

the manufacturer’s instructions (Zsbio,

Beijing, China) using antibodies against

Bax (rabbit anti-Bax antibody, 1:200;

Proteintech, Wuhan, China), Bcl-2 (rabbit

anti-Bcl-2 antibody, 1:200; Proteintech),

NRF2 (rabbit anti-NRF2 antibody, 1:200;

Proteintech), NOX4 (rabbit anti-NOX4

antibody, 1:200; Proteintech), and HO-1

(rabbit anti-HO-1 antibody, 1:200;

SOLARBIO, Beijing, China). All sections

were examined using a BX40 upright light

microscope.

TUNEL staining

The cardiac tissues were embedded in par-

affin and serially sectioned to a thickness of

5 lm. The sections were deparaffinized,

hydrated in xylene and gradient concentra-

tions of ethanol, incubated with proteinase

K (37�C, 22 minutes), and stained using

a Fluorescein TUNEL Cell Apoptosis

Detection kit (Servicebio Technology Co.,

Ltd., Wuhan, China). All images were cap-

tured using a fluorescence microscope

(Nikon). The cells that were positive for

both TUNEL staining that aligned with

DAPI staining were considered apoptotic

cells and counted.

Western blot analysis

Proteins were extracted from cardiac tissues
using radioimmunoprecipitation assay
buffer (P0013B; Beyotime, Shanghai,
China). First, the protein samples were sep-
arated using 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and then
transferred to polyvinylidene fluoride mem-
branes (Immobilon, Millipore, Billerica,
MA, USA). The membranes were blocked
with 5% skimmed milk in TBST buffer
(TBS containing 0.1% Tween-20) at room
temperature for 1 hour and incubated with
the primary antibodies at 4�C overnight.
Primary antibodies against Bax (rabbit
anti-Bax antibody, 1:1000; Proteintech,
Wuhan, China), Bcl-2 (rabbit anti-Bcl-2
antibody, 1:1000, Proteintech, Wuhan,
China), p-PI3K (rabbit anti-p-PI3K anti-
body, 1:500; BIOSS, Beijing, China),
t-PI3K (rabbit anti-t-PI3K antibody,
1:2000, Proteintech), p-AKT (rabbit anti-
p-AKT antibody, 1:2000, Proteintech),
t-AKT (rabbit anti-t-AKT antibody,
1:2000, Proteintech), and b-actin (anti-
b-actin, 1:1000; Cell Signaling Technology)
were used. After three washes with TBS-T
(15 minutes each), the membranes were incu-
bated with the secondary antibody (anti-
rabbit IgG, 1:1000; Cell Signaling
Technology) for 1 hour. This analysis
was performed independently three times.

Table 1. Primer sequences.

Gene Primers

TNF-a Forward: 50-TCTCATGCACCACCATCAAGGACT-30

Reverse: 50-ACCACTCTCCCTTTGCAGAACTCA-30

IL-6 Forward: 50-TACCAGTTGCCTTCTTGGGACTGA-30

Reverse: 50-TAAGCCTCCGACTTGTGAAGTGGT-30

b-actin Forward: 50-CGATGCCCTGAGGGTCTTT-30

Reverse: 50-GGATGCCACAGGATTCCAT-30

TNF, tumor necrosis factor; IL, interleukin.
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The blotted proteins were quantified using

ImageJ software (National Institutes of

Health, Bethesda, MD, USA). b-actin was

used as an internal control. Protein levels

are expressed as protein/b-actin ratios.

Statistical analysis

All data are presented as the mean� stan-

dard error of the mean. SPSS software

v.23.0 (IBM, Armonk, NY, USA) was
used to analyze all data. Differences

among multiple groups were measured

using one-way analysis of variance followed

by Tukey’s range test. P< 0.05 was consid-

ered statistically significant.

Results

Metabolic characterization

The metabolic characteristics of the mice in

the four different groups are presented in

Figure 1. The body/cardiac weight ratio

did not differ among the four groups. At

48 hours after CLP injury, we observed a

significant increase in serum cTnT levels in

the CLP group compared with those in the

control group (P< 0.01), but treatment

with TQ significantly decreased serum

cTnT levels (P< 0.05).

TQ reduced cardiac histopathological

damage in the CLP group

H&E and Masson’s trichrome were used

to evaluate histopathological changes in

cardiac tissues (Figure 2). Cardiac tissues

appeared normal in control mice. CLP

mice exhibited obvious pro-inflammatory

cell infiltration compared with the findings

in control and CLPþTQ mice. H&E stain-

ing revealed that TQ reduced leukocyte infil-

tration into the cardiac tissue of BALB/c

mice. Collagen deposition was determined

using Masson’s staining. The CLPþTQ

group displayed markedly reduced collagen

deposition in cardiac tissue compared with

the findings in the CLP group (P< 0.05).

This result illustrated that TQ reduced fibro-

sis in cardiac tissue in BALB/c mice.

TQ inhibited apoptosis in cardiac tissues

in the CLP group

To evaluate apoptosis in the cardiac tissues

of mice in the four groups after treatment,

TUNEL staining was performed. The

number of TUNEL-positive cells was

increased in the cardiac tissues of CLP

mice compared with that in control mice

(P< 0.05), whereas cardiac apoptosis was

reduced in CLPþTQ mice (P< 0.05,

Figure 1. Cardiac/body weight ratio and serum cTnT levels in each group. Data are presented as the
mean� standard error of the mean (n¼ 7 per group). * P< 0.05 vs. CLP group, ** P< 0.01 vs. CLP group.
cTnT, cardiac troponin-T; CLP, cecal ligation and puncture; TQ, thymoquinone.
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Figure 3a and c). Bax and Bcl-2 gene and
protein expression was measured using

immunohistochemistry and western blot-

ting, respectively (Figure 3). Bax expression
was higher in the CLP group than in the

control group (P< 0.05). This increase
was attenuated in the CLPþTQ group

(P< 0.05). Interestingly, the expression of
Bcl-2 displayed the opposite trend.

Compared with its control expression, Bcl-2

expression was decreased in the CLP group
(P< 0.05), and this decrease was attenuated

by TQ treatment (P< 0.05). This result dem-
onstrated that TQ inhibited apoptosis in CLP

mice by suppressing the upregulation of Bax
and downregulation of Bcl-2.

TQ inhibited pro-inflammatory cytokine

expression in the cardiac tissue of CLP mice

IL-6 and TNF-a gene expression was mea-
sured by real-time PCR (Figure 4) to evaluate

the involvement of pro-inflammatory cyto-
kines in the cardiac tissue changes in the

four groups. IL-6 and TNF-a gene expression

was higher in the CLP group than in the con-
trol group (both P< 0.05). However, this

increase was attenuated in the TQþCLP
group (both P< 0.05).

TQ inhibited oxidative stress in the

cardiac tissue of CLP group

To evaluate oxidative stress in cardiac tis-
sues in the four groups after treatment, IHC

of HO-1, NRF2, and NOX4 was performed
(Figure 5). We observed an increase in

NOX4 expression and decreases in HO-1

and NRF2 expression in the CLP group
compared with the findings in the control

group (all P< 0.05). However, TQ treat-
ment inhibited the upregulation of NOX4

and downregulation of HO-1 and NRF2
(all P< 0.05).

Figure 2. (a) Representative H&E staining of cardiac tissue from BALB/c mice in the four groups after
treatment. The arrows indicate damage. Magnification, �40. (b) Representative images of Masson’s tri-
chrome staining of cardiac tissue from BALB/c mice in the four groups after treatment. The arrows indicate
damage. Magnification, �40 and (c) Bar graph presenting the quantification of Masson’s trichrome-positive
cells. Data are presented as the mean� standard error of the mean (n¼ 3 per group). *P< 0.05 vs. CLP
group, **P< 0.05 vs. CLP group.
CLP, cecal ligation and puncture; TQ, thymoquinone.
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TQ inhibits PI3K/AKT pathways in cardiac

tissue of CLP group mice

To investigate the effect of TQ on regula-

tion of the PI3K/AKT signaling pathway,

immunoblotting with PI3K and AKT were

performed (Figure 6). We observed
increases in p-PI3K and p-AKT expression
in CLP mice compared with that in control
mice (both P< 0.05); however, these
increases were markedly suppressed in the
TQþCLP group (both P< 0.05).

Figure 3. (a) TUNEL- (green fluorescence) and DAPI-stained (blue fluorescence) photomicrographs.
Magnification, �40. (c) Quantification of apoptotic cardiomyocytes. * P< 0.05 vs. CLP group. (b)
Representative immunohistochemical staining for Bax and Bcl-2 in cardiac tissue. Magnification, �40.
Arrows indicate positively stained cells (n¼ 3). (d) Immunoblotting for Bax and Bcl-2 in cardiac tissue and
(e) Bar graph presenting the quantification of Bax and Bcl-2 protein expression. Data are presented as the�
standard error of the mean (n¼ 3 per group). *P< 0.05 vs. CLP group.
CLP, cecal ligation and puncture; TQ, thymoquinone.
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Discussion

This study demonstrated that TQ exerts pro-
tective effects against sepsis-induced cardiac

damage through anti-inflammatory, anti-
apoptosis, and anti-oxidant effects and

the inhibition of PI3K phosphorylation
(Figure 7).

We established a sepsis-induced cardiac
damage model via CLP surgery to investi-
gate the effects of TQ. Regarding metabolic

Figure 4. Relative mRNA expression of IL-6 and TNF-a expression in cardiac tissue from mice in the four
groups after treatment. Data are presented as the mean� standard error of the mean (n¼ 3 per group).
*P< 0.05 vs. CLP group.
IL, interleukin; TNF, tumor necrosis factor; CLP, cecal ligation and puncture; TQ, thymoquinone.

Figure 5. (a) Representative immunohistochemical staining for NOX4, NRF2, and HO-1. Magnification,
�40. Arrows indicate positively stained cells (n¼ 3). (b) Bar graph presenting the quantification of NOX4-,
NRF2-, and HO-1–stained cells. Data are presented as the mean� standard error of the mean (n¼ 3 per
group). *P< 0.05 vs. CLP group.
CLP, cecal ligation and puncture; TQ, thymoquinone.
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characteristics, cTnT has high specificity,
and its levels are directly proportional to
the degree of myocardial damage.28 In our
study, the CLP group displayed

significantly higher cTnT levels than the
control group. However, treatment with
TQ markedly reduced serum cTnT levels,
thereby alleviating sepsis-induced cardiac

Figure 6. (a) Immunoblotting for p-PI3K and p-AKT in cardiac tissue and (b) Bar graph presenting the
quantification of p-PI3K and p-AKT protein expression. Data are presented as the mean� standard error of
the mean (n¼ 3 per group). *P< 0.05 vs. CLP group.
CLP, cecal ligation and puncture; TQ, thymoquinone.

Figure 7. Diagram of the mechanism by which TQ suppresses sepsis-induced cardiac damage.
IL, interleukin; TNF, tumor necrosis factor; TQ, thymoquinone.
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damage. These results are in agreement with
a report by Chu et al.29 In addition, H&E
and Masson’s trichrome staining revealed
obvious pro-inflammatory cell infiltration
and collagen deposition in the CLP group;
however, these histopathological changes
were suppressed in the CLPþTQ group.
Thus, TQ reduced histopathological
changes in cardiac tissue in BALB/c mice.

Apoptosis, a form of programmed cell
death, plays a critical role in sepsis-
induced multiorgan dysfunction syn-
drome.30 A previous study reported that
inhibition of myocardial apoptosis is relat-
ed to the improvement of cardiac function
in mice with sepsis.31,32 The key regulators
of apoptosis are members of the Bcl-2
family of proteins. This protein family fea-
tures a variety of pro-apoptotic (e.g., Bax,
Bak) and anti-apoptotic (e.g., Bcl-2, Bcl-xL,
Bcl-w) proteins.33,34 In the current study,
Bax protein expression was increased and
Bcl-2 protein expression was decreased in
the CLP group compared with that in the
control group. It is worth noting that TQ
inhibited the expression of Bax and
enhanced that of Bcl-2, suggesting that apo-
ptosis was inhibited.

Inflammation is an important mecha-
nism of myocardial injury in sepsis that
can mediate apoptosis and oxidative
stress. During sepsis, it is believed that
increased systemic levels of endotoxins acti-
vate immune cells, which in turn promote
the production of inflammatory mediators
and cytokines.35 Pro-inflammatory genes
(e.g., TNF-a, IL-6) are reportedly expressed
at high levels in sepsis, and they are respon-
sible for cardiac damage.36,37 As mentioned
previously, we observed increased apoptosis
in vivo, and IL-6 and TNF-a expression was
obviously higher in the CLP group than in
the control group. This increase was signif-
icantly inhibited by treatment with TQ.
This illustrated that TQ acts against
sepsis-induced pro-inflammatory cytokine
release.

Oxidative stress and inflammation are
interdependent. Oxidative stress is consid-
ered an important factor in the pathogenesis
of cardiovascular disease.38 NOX-derived
ROS promote coronary microvascular
damage, which then causes aberrant apo-
ptosis, inflammation, and fibrosis.39 It has
been reported that natural anti-oxidants
protect myocardial and endothelial cells
against oxidative stress.17,40 In this study,
we examined the expression of anti-
oxidant oxidative stress indicators. We
detected decreases of HO-1 and NRF2
expression and an increase of NOX4 expres-
sion in the CLP group, but TQ treatment
inhibited these changes. Xing et al. reported
that a natural antioxidant (puerarin) can reg-
ulate inflammatory responses and oxidative
stress injury induced by LPS.14

Autophagy is a type II cell death mech-
anism. Mitochondrial autophagy induced
by LPS-induced sepsis contributes to cardi-
ac dysfunction.41 Akt phosphorylation has
been found to prevent apoptosis and pro-
mote cell survival in the ischemic heart.42

In numerous studies on sepsis, PI3K and
its downstream target AKT have been
reported to participate in the regulation of
cell activation, inflammation, and apopto-
sis.43,44 Chen et al. observed that inhibition
of the PI3K/AKT signaling pathway
can mitigate sepsis-induced myocardial
injury.45 The present study evaluated the
effect of TQ on PI3K and demonstrated
that PI3K expression was markedly higher
in the CLP group than in the control group.
Interestingly, TQ treatment reversed the
increase in PI3K expression, demonstrating
that TQ acted against sepsis induced-cardiac
damage by inhibiting PI3K signaling.

In fact, mitochondrial dysfunction, as
typified by inflammation, oxidative stress,
and apoptosis, is a fundamental challenge
in cardiomyopathy.16,46,47 This study had
several limitations. First, we did not directly
detect mitochondrial damage. In future
experiments, we will conduct in-depth
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experiments and further detect mitochon-
drial damage. In addition, we only per-
formed in vivo studies. We will conduct
cell experiments to verify the specific mech-

anisms and pathways in the future.

Conclusion

Our study established that TQ has a protec-
tive effect on sepsis-induced cardiac damage
as demonstrated by the downregulation of
cTnT and suppression of inflammatory cell
infiltration, pro-inflammatory cytokine

expression, apoptosis, oxidative stress, and
PI3K/AKT pathway activation. These find-
ings provide novel insight into cardiac
damage caused by sepsis and present the
possibility of a new therapeutic intervention
for the treatment of cardiovascular diseases.
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