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of the vertebrate brain in guiding body morphogenesis
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ABSTRACT
A recent study in Xenopus laevis embryos showed that the very early brain has important functions
long before behavior. While the nascent brain is being constructed, it is required for normal
patterning of the muscle and peripheral nerve networks, including those far away from the head. In
addition to providing important developmental signals to remote tissues in normal embryogenesis,
its presence is also able to render harmless exposure to specific chemicals that normally act as
teratogens. These activities of the early brain can be partially compensated for in a brainless embryo
by experimental modulation of neurotransmitter and ion channel signaling. Here, we discuss the
major findings of this paper in the broader context of developmental physiology, neuroscience, and
biomedicine. This novel function of the embryonic brain has significant implications, especially for
understanding developmental toxicology and teratogenesis in the context of pharmaceutical and
environmental reagents.
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Introduction

A computer, automobile, or any other man-made
object is generally expected to function only after it
rolls off the assembly line – the system is first booted
up and functions after its construction is complete.
But what about the self-assembling process of
embryogenesis – when do organs first operate during
development? A recent paper [1] shows that the brain
does not wait for its construction to be complete:
rather, it is a remarkable early example of a complex
structure that is functional during the very earliest
stages of its self-assembly de novo.

It is widely taught in embryology texts that the heart is
the first functional organ to form. However, it is now
seen that the brain has functions long before behavior
and appears to be providing important signals for devel-
opmental patterning as early as two days after fertiliza-
tion in the Xenopus laevis frog embryo.

It was already known that the frog embryo’s brain
receives input from many body tissues, including distant
cells in the gut, which help the brain to form with the
right shape and size [2,3]. Thus, scaling and morphogene-
sis of the brain are themselves instructed by other tissues.
But, it turns out that this set of control mechanisms is bi-
directional: the brain itself is regulating patterning of
remote body tissues, in a control loop that operates at the
very earliest stages of development (Figure 1).

When does the brain start working? Long before
we thought.

The recent findings, which make use of a simple surgical
brain amputation process (followed by extensive molecu-
lar and cellular analysis) can be summarized as follows
(Figure 2).
(1) Absence of the early brain leads to muscle and

peripheral nerve mispatterning (defects). Animals
that developed without a brain exhibited abnormal
patterns of segmented embryonic tissues known as
somites, and aberrations in organization and struc-
ture of the trunk muscle fibers (Figure 2A–2C;
lower collagen density; shorter/longer myotomes
with greater angles, leading to the lack of the typi-
cal chevron-shape; and overall displacement of the
body axis, with highly bent tails). Development of
the peripheral nervous system was also profoundly
altered in the brainless embryos, with intense and
disorganized ectopic growth of internal nerve
fibers in the entire animal body (Figure 2D–2F).
The aberrant nerve sprouting was not due to defi-
ciencies of a putative pruning phase, as we showed
that it occurs long before the endogenous pruning
of the peripheral innervation in Xenopus embryos.
One interesting observation is that the nascent
brain affects peripheral nerve formation via the
spinal cord, but uses a different pathway – one that
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does not involve the spinal cord – to influence
muscle patterning.

(2) Absence of the early brain causes embryos to be
much more sensitive to certain drugs, turning oth-
erwise harmless compounds into potent terato-
gens. For example, while the NMDA glutamate
receptor agonist (RS)-(tetrazol-5-yl)glycine [4] had
no effect on normal embryos, it provoked severe
deformities in animals developing without a brain
(such as highly bent notochords and multiple ‘pig-
tail’ spiraling at the tip of the tail; Figure 2G &
2H). This experiment indicated that a normal
brain serves to protect developmental patterning
from drug-induced effects that otherwise result in
serious abnormalities.

(3) The functions of the early brain can be mimicked
by artificially providing signals via neurotransmit-
ters and bioelectric activity of ion channel proteins.
Specifically, the phenotypes induced by early
absence of brain can be partially rescued in brain-
less animals by neurotransmitter drugs and by mis-
expression of Hyperpolarization-activated Cyclic
Nucleotide-gated 2 (HCN2) ion channels
(Figure 2C & 2F). Scopolamine treatment (an anti-
cholinergic agent that inhibits the activity of the

muscarinic acetylcholine receptor [5] immediately
after brain removal and applied continuously dur-
ing the first week, prevented the defects in seg-
mented muscle tissues – both in terms of
organization and size. Specific alterations in the
bioelectric state, by ectopic expression of the
HCN2 ion channel [6] also counteracted the effects
of a missing brain on somitic myogenesis and neu-
ral development, allowing fully organized muscle
fibers and peripheral neural network. The HCN2-
rescue effects acted on tissues that were not them-
selves expressing the exogenous HCN2 (a non-
cell-autonomous effect), as injecting the mRNA
encoding the channel in only one half of the
embryo was sufficient to protect the contralateral
side. Further analysis of HCN2 expression within
neural and non-neural cells suggested that the
modulation of bioelectrical states within the neural
structures mimics endogenous signaling from the
brain during morphogenesis and patterning.

Probing long-range patterning control loops

Establishment of this brain amputation assay exploited
unique advantages of the Xenopus embryo model system.

Figure 1. The processes of embryogenesis instructing patterning form a closed-loop control system between the brain and the body. A
schematic drawing of a developing Xenopus embryo, representing how the embryonic brain (purple) is receiving instructive inputs from
different (distal and proximal) body tissues to help building the right brain parameters (for example, shape and size). We have recently
shown that this control operating system is bi-directional. The very early brain itself has, in turn, an instructive role on morphogenesis
and patterning of remote tissues, such as peripheral neural network (blue) and somitic myotome (green). This closed-loop between
brain and body is the earliest example of scaling and effective communication for self-assembly of complex biological structures.
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For example, mouse mutants with genetically-induced
brain defects would not have been ideal for this work
because many brain-specific genes are widely expressed
during embryogenesis, and any mutation could have
directly affected numerous tissues. By surgically remov-
ing the brain in a genetically wild-type background, it
was possible to cleanly study the effects of the brain itself
on normal tissues. The optical, surgical, and pharmaco-
logical accessibility of the frog embryo, and the ability to
remove the brain at a precisely-defined time-point in

development is a uniquely advantageous aspect of the
Xenopus model. At the same time, these data are likely to
be relevant beyond frog embryos, as the Xenopus model
system has many conserved molecular and anatomical
features with mammalian models and is used for bio-
medically-relevant research in areas of birth defects,
[7–9] immunology [10], neuroscience [11,12], regenera-
tive medicine [13,14], and cancer [15].

Importantly, the observed defects occurred in areas
very far from the brain, suggesting that the effect is not

Figure 2. Functions of the very early brain include guiding and protecting correct embryo morphogenesis, which can be mimicked by
ectopic expression of ion channels. Comparative images of muscle (A-C, under polarized light) and nerve (D-F, revealed by immunofluo-
rescence against acetylated-alpha tubulin) structures of embryos that developed with a brain (Control), embryos that developed without
a brain (Brainless), and embryos that developed without a brain and were injected with messenger RNA encoding the HCN2 ion channel
(Brainless + HCN2 Inj). The absence of a brain during development leads to abnormal development of the muscles and the peripheral
nerves, at considerable distances from the head, with disorganization of the body plan, myotomes lacking proper angles (magenta-
dashed line in B), alterations in somite length (represented by two-headed arrows) and ectopic growth of nerve tissue (yellow arrows in
E). By manipulating bioelectricity, for example via the mis-expression of HCN2, rescues the devastating muscle and nerve mispatterning
that occurs in brainless animals (turquoise arrows in C, F). Rostral is right and dorsal is up. Scale bar = 100 mm. G, H. The effects of the
drug (RS)-(tetrazol-5-yl)glycine during development depends on the presence or absence of the nascent brain in the embryo. While
exposure to this drug does not cause developmental defects in control embryos (turquoise arrows in G indicate correct tail phenotype),
it leads to severe deformities (yellow arrows in H demarcate bent spinal cord and tail aberrations) when the brain is not present to pro-
tect. Rostral is left and dorsal is up. Scale bar = 1 mm.
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simply due to local mechanical damage that can affect
morphogenesis in that region. This instead suggests the
existence of specific long-range signaling mechanisms by
which developmental information is delivered to remote
areas by organizing structures such as brains and begs
the question: might there be others remaining to be dis-
covered? Such long-range mechanisms, even at early
stages before an extensive circulation and hormonal sys-
tem is available to spread chemical messages body-wide,
have already been observed – for example, in the field of
cancer, where decisions as to whether an oncogene-bear-
ing group of cells will make a tumor or not is a function
of the physiological state of remote tissues [16,17].

Innervation has traditionally considered to be formed
long before it becomes functional, remaining in a quies-
cent state until a stimulus triggers response [18]. Could
the early embryonic brain be acting like a relevance indi-
cator to the rest of the cells/tissues/systems in the body?
The nascent brain might be an ‘organizer’, communicat-
ing to the rest of the body (secondary systems like muscle
and nerves) by long-distance signals when a significant
developmental event has occurred, closing the control
loop for proper morphogenesis. This might explain why
a relatively low information-content treatment, like neu-
rotransmitter drug soaking, can mimic the protective
effects of the brain on morphogenesis. For example,
Strauss et al. [19] activated the silent (but fully formed)
putative neural substrate implicated in lung breathing in
Xenopus larvae just by using a GABA receptor antagonist
(developmental disinhibition). One straightforward con-
sequence of this hypothesis is the possibility of finding
the signals/events that trigger the activation (or disinhi-
bition) of one specific brain signaling, and, in turn, path-
ways and molecules by which the brain responds.
Understanding this could be relevant to therapeutic
applications (specific treatments in potential hazardous
situations that mimic and/or push one specific brain
response) and in morphogenetic engineering.

Open questions

Many interesting questions for future work are raised by
these studies. First, what other organs/structures require
the presence of the brain? Extensive analysis of other tis-
sue systems and markers is likely to reveal additional tar-
gets beyond the PNS and muscle. Conversely, what
other organs besides the brain might provide instructive
influences? The development of specific ablation strate-
gies – chemical and optical [20,21], in addition to micro-
surgical –will facilitate the search for additional organizing
centers. With respect to the brain-derived signaling, it will
be important to not only better characterize the molecular
mechanisms by which it instructs remote regions, but even

more importantly to gain an understanding of themeaning
(information content and degree of pattern encoding) of
the signals. This will directly enable biomedical mimicry of
such signals to improve outcomes in birth defects, injury
response, and in vitro bioengineering of synthetic mor-
phology. The extensive use of ion channel and neurotrans-
mitter hardware to implement control of complex
structure and function is a clear pointer to the common
evolutionary origin of somatic and neural cognition
[22,23]. In this sense, these experiments are part of an
emerging field in which the spatial (patterning) and tem-
poral (behavioral) information is integrated, blurring the
boundaries between brain and body [24–27].

Implications for therapeutics

These data have many potential implications for biomed-
icine. The fact that the affected areas are far away from
the normal site of the brain suggests long-range interac-
tions that could be capitalized upon, to provide surro-
gate-site diagnostics or interventions for hard-to-reach
anatomical locations that could be applied elsewhere –
especially relevant in neurotherapeutic applications. This
also suggests that when looking for etiologies of specific
birth defects, it is important to not restrict the suspected
area to the locality of the damage site – the culprit could
be in another part of the body. This provides a daunting
view of the complexity of understanding and repairing
defects. However, there is a silver lining here, even
beyond the possibility of more convenient treatment or
diagnostic locales. Might it be possible to provide brain-
like signals to augment patterning and healing responses,
by co-culturing with a mini-brain or brain organoid? For
example, to help integration of transplants, improve pat-
terning of regeneration therapies, shield embryos from
teratogenic insults, or improve the patterning of syn-
thetic biological structures in vitro? While (temporary)
implants of brain tissue or brain organoids is certainly in
the realm of possible therapies even in vivo, that may not
be necessary. The original study showed that the brain-
less phenotype could be ameliorated by a rather limited
number of brain-like influences (bioelectric and neuro-
transmitter interventions); it may not require an entire
brain to recapitulate the important signaling dynamics.
Thus, the potential therapeutic implications of this work
extend beyond the embryo and toward regenerative
medicine and synthetic biology of large-scale structures
[28–30].

Birth defects: Context is crucial

A key area of impact for these new findings is likely in
teratology and the etiology of birth defects. One of the
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biggest questions in this field is why many compounds
induce defects in some embryos but not others. In some
cases, the percentage of affected individuals is so low that
it confounds the issue of whether the reagent involved is
a teratogen; for example, in the case of serotonin reup-
take inhibitors, which affect a set of serotonergic path-
ways that are important for neural and non-neural
embryogenesis [31–33], but are not yet officially labeled
as teratogens [34–37]. The finding that the compound
(RS)-(tetrazol-5-yl)glycine has no effect on wild-type
embryos but causes drastic defects in brain-deficient
embryos suggests a more nuanced understanding of tera-
togenesis. A compound may be safe for many embryos,
but may dramatically affect others whose brain pattern-
ing signals are delayed or impaired by genetics or other
physiological/environmental factors. Thus, it may be
simplistic to assign categories of ‘teratogenic’ or ‘safe’ to
a specific compound itself: whether or not it will disrupt
embryonic development may be a function of the
embryo’s state as much as the drug itself.

While it is widely acknowledged that susceptibility
varies within populations, this knowledge is not generally
used in any practical way to guide fetal exposure scenar-
ios or formulate regulatory practices. The novel brain
patterning data show that impairment of brain function
can lower the threshold for otherwise innocuous drugs
to cause severe defects; this suggests that the develop-
mental toxicology of the future may be able to predict
the conditions under which specific chemicals pose sig-
nificant dangers; it will indicate not merely whether a
compound is ‘safe’ during pregnancy, but also specify
how much risk it poses given specific environmental and
genetic co-factors. Better yet, it may be possible to use
specific neurotransmitter or ion channel-modulating
drugs as anti-teratogens: augmenting brain signaling to
provide a degree of protective influence in high-risk cases
where fetal exposure is medically necessary. We are cur-
rently screening such interventions for the ability to
ameliorate a wide range of common teratogens.

Another interesting field in which our findings could
have an impact is in early-life stress (both prenatal and
postnatal). Prenatal and postnatal stress has been tradi-
tionally related to neurophysiological, neuroendocrine
and cognitive alterations (neurotransmitter levels [38],
dysregulation of the hypothalamus-pituitary-adrenal axis
[39], and intimate relationship to the psychopathology
[40–42] in postnatal life (reviewed in References
[43,44]). Prenatal stress is also associated in the adult off-
spring with cardiovascular [45], metabolic [46], immune,
[47] and reproductive [48] dysfunctions. But what about
the potential implications of early stress on patterning/
morphogenesis of the embryo? Recently, cognitive
defects in the offspring due to maternal stress have been

shown to be related to an impaired neurogenesis during
development in mammals [41]. This relationship seems
to be well-conserved, as a recent paper using young
zebrafish showed that stress exposure has an impact on
the brain size, leading to smaller brain volume [49] (sim-
ilar results have been found after prenatal ethanol expo-
sure [50,51]). However, no prior studies have focused on
patterning defects at distant regions from the brain. Con-
sidering our results, early stress, or any other condition
affecting neurotransmitters and brain signaling in the
embryo, could have a direct impact on long-range mor-
phogenesis. The nascent brain should not be necessarily
considered as the final target of any neuroactive drug or
condition, since it is sending out signals to guide large-
scale patterning and formation and the consequences
may spread widely throughout the many tissue patterns
of the developing body.

Future prospects

The finding that the brain instructs morphogenesis dur-
ing its self-assembly has many implications for regenera-
tive medicine and developmental biology. Moreover, it
reveals perhaps the earliest known example of the brain-
body interface. This connects the developmental biology
context to the emerging field of primitive cognition
[52–58] and neuroplasticity [59–62]. Understanding
how structures process information and instruct other
events while their own hardware is being remodeled will
impact our fundamental understanding of how memo-
ries are encoded in biological media, and thus how brains
might keep memories during the inevitable development
of therapies for massive brain remodeling and regenera-
tion [63]. Ultimately, it may also be possible to exploit
the tightly-integrated feedback loop between brain func-
tion and body morphology for engineering robust self-
repairing bio- or artificial robotics, via the development
of unconventional computing platforms based on biolog-
ical principles [64–69]. Thus, analysis of model systems
that facilitate analysis of the events at the origin of both
mind and body [70] is likely to enrich both basic biology
and biomedicine in a wide range of fundamental
directions.
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