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ABSTRACT This paper presents results of using a simple bit-serial architecture as a method of designing an
extremely low-power and low-cost neural network processor for epilepsy seizure prediction. The proposed
concept is based on a novel bit-serial data processing unit (DPU) which implements the functionality of a
complete neuron and uses bit-serial arithmetic. Arrays of DPUs are controlled by simple finite state machines.
We show that epilepsy detection through such dedicated neural hardware is feasible and may facilitate
development of wearable, low-cost and low-energy personalized seizure prediction equipment. The proposed
processor extracts epileptic seizure characteristics from electroencephalogram (EEG) waveforms. In order
to facilitate the classification of EEG waveforms, we develop a dedicated feature extraction hardware that
provides inputs to the neural network. This approach has been tested using various network configurations
and has been compared with related work. A complete system which can predict epileptic seizures with high
accuracy has been implemented on an ALTERACyclone V FPGA using 3931 ALMs which constitutes about
7% of the Cyclone V A7 capacity. The design has a prediction accuracy of 90%.

INDEX TERMS Artificial neural networks (ANN), bit-serial neural processor, FPGA.

I. INTRODUCTION
The World Health Organization (WHO) estimated 50 million
of the world’s population today are afflicted with epilepsy [1].
It was approximated that 80% of these reported epileptic
cases are located in developing countries where the availabil-
ity of treatment facilities and medications that are needed are
questionable. There exists the posibility that many epileptic
cases are not reported in many parts of the world where the
people still suffer from stigma and discrimination. Epilepsy
treatment to date still involves the use of various anti-epileptic
drugs (AEDs) across the globe. Therefore, accurate seizure
prediction is significant in order to prevent the recurrence of
seizures through timely administration of the AEDs. Accu-
rate seizure prediction is based on the research of complex
electroencephalogram (EEG) signals. State-of-the art seizure
prediction mainly involves complex software methods and
these methods can be categorized as: time-domain analy-
sis, frequency-domain analysis, and non-linear dynamics [2].
Unfortunately, as of today there is still no reliable, home-
based seizure prediction system to help an epileptic patient

with timely administration of AEDs. A novel approach is
proposed in this paper to implement a low-cost hardware
neural network which is primarily intended for use in portable
equipment to predict epilepsy seizures.

This paper is organized as follows. Firstly, the paper
presents a brief review on state-of-the-art seizure detection
techniques. Secondly, a bit-serial data processing unit (DPU)
is introduced. The DPU is extremely small and has the
capability of implementing a biological neuron. It is then
demonstrated how a multi layer neural network can be built
using DPUs. Thirdly, a simple feature extraction hardware
has also been proposed and implemented to work with the
network. The feature extraction hardware is implemented as
a dedicated simple processor. A preliminary version of this
work has been reported [3].

II. BACKGROUND RESEARCH
In general, an EEG signal is defined as a non-stationary
biomedical signal where epileptic seizures are character-
ized by recurrent spike patterns. An EEG signal has a few
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useful characteristics which can be beneficial when detect-
ing a seizure event. Specifically, the delta (0-4Hz) and
theta (4-8Hz) sub waves in an EEG signal exhibit low fre-
quency and high magnitude during a seizure event [4]. The
traditional procedure of analysing an EEG scan requires
expensive manpower where a specialist is needed to review
the whole EEG recording. As part of the ongoing research
into epilepsy detection, automatic seizure identification
methods have been considered, such as Wavelet Trans-
form [5] andAutoregressive (AR)modelling [6]. Thesemeth-
ods present a better resolution for short data segments, and
they can be used when real-time data processing is required.
The EEG research relies on state-of-the-art waveform analy-
sis methods which include Short Time Fourier Transforms,
Wavelet Transforms, Lyapunov Exponent, Autoregressive
Modelling etc [7]. As described above, the frequency com-
ponents can be extracted using Short Time Fourier Trans-
form (STFT) as the basic Fast Fourier Transform (FFT)
method suffers from large noise sensitivity [8]. The aver-
age electric potential that is emitted by a group of neurons
is recorded by specific placement of the electrodes on the
human scalp [9]. With the Rosenstein algorithm, Lyapunov
Exponent for the EEG signals can be used with the combina-
tion of a fuzzy-logic based system which allow the detection
of an epilepsy seizure event [10]. AR modelling can reduce
the spectral loss and increase the resolution of the EEG
spectrum. The optimum order of an AR model is determined
by the Bayesian Information Criterion (BIC) and the AR
parameters of an EEG signals [6].

Recent work [5] proposed a new algorithm, tunable-Q
wavelet transform in conjunction with fractal dimensions
to detect epilepsy seizures. This tool decomposes the EEG
signal into the various sub-bands previously mentioned. The
fractal dimensions of the sub-bands are used as discriminat-
ing features for epilepsy detection. A 10-fold cross-validation
was used to reduce the possibility of over-fitting. The
work achieved an average classification sensitivity of 100%
and has many advantages, including an ability to analyse
seizures within a short time with no errors. However, this
approach requires high computational power and complex-
ity, and would not be suitable as a wearable seizure detec-
tion. Another work [11], employs a multivariate approach
to detecting epilepsy by using an empirical wavelet trans-
form, and has a patient specific model for EEG seizure
detection. The data sets used for testing were obtained from
the scalp EEG database of the Children’s Hospital, Boston
Massachusetts Institute of Technology (CHB-MIT). The tests
evaluated 177 hours of EEG recording, using six classifiers.
Evaluations achieved the following averages: accuracy 99%;
specificity 100%; sensitivity 98%. The work used oversam-
pling in an attempt to address the imbalance issue of the
dataset. This approach was adopted in the training process
of our work.

The main conventional classification techniques for
machine learning which can be applied to epilepsy diagno-
sis include: the Naive Bayes (NB) Classifier [12], Decision

Tree Classifier (DTC) [13], k-Nearest-Neighbours (k-NNs)
Classifier [14], support vectormachines (SVM) [8], empirical
mode decomposition [15] and classifiers based on artificial
neural networks [16].

The NB classifier is a simple probabilistic classifier which
utilises the Bayes Theorem. It can also be considered as a
conditional probability model. This classifier is often used
in data mining applications as well as automated medical
diagnosis. Thus, it is suitable for epilepsy detection. The
Naive Bayes classifier uses the independence assumption
that focuses on each feature independently of each other
while ignoring any possible correlation between the fea-
tures [12]. One of the main advantages of utilising the
Naive Bayes classifier is the limited use of training data for
classification.

Decision trees are also used in epilepsy detection because
they are efficient at classifying different sets of data. As a
sample is only tested against a subset of the classes, this
method does not require complex computations. It has been
suggested in a recent paper [13] to utilise neural networks
in the design of a DTC. However, there are a few dis-
advantages when using a decision tree. They are not as
accurate as the other classifiers. Furthermore, DTC perfor-
mance heavily depends on the effectiveness of the particu-
lar DTC implementation [13]. They tend to be less robust
than other methods as a very small change in the train-
ing datasets might result in a huge change in the output
prediction.

The k-NN classifier is a non-parametric, non-linear yet
relatively simple classifier. This classifier is effective when
dealing with large data sets. It relies on class assignment
based on a nearby data set where similarities between the
samples used are measured with a distance function. A recent
work [14] points out that k-NN is applicable to medical clas-
sification problems. The basic algorithm for a k-NN classifier
is relatively similar to that of a neural network classifier with
training stage and a prediction stage. The training stage of the
k-NN classifier involves all the different samples which are
stored in some form of memory.

SVMs have also been used to analyse EEG signals. A smart
sensor IC was proposed [8] with a CMOS chip for scalp EEG
acquisition. This chip with an area of 0.35um is integrated
with the local processing of the sensor node. Feature vectors
of the signal are extracted and classified through machine
learning. A number of sensors would have to be worn to
achieve spatial correlation in order to produce a functional
system for epilepsy detection. Each individual output of the
classifier could then be combined to detect the onset of an
epileptic seizure. SVM have also been used in lung cancer
diagnosis along with image processing techniques [17]. The
advantage of high generalisation and an assurance of global
optimisation makes SVMs useful for such applications. They
have been successfully as classifiers inmany other fields [17].
In a more recent work [15], the proposed method involves
the use of empirical mode decomposition (EMD) to distin-
guish seizure and non-seizure EEG waveforms. The datasets
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used in this work are the same as used in our research.
They combine the use of least square support vector
machines (LS-SVM) and the EMD algorithm. The work
has managed to achieve an accuracy higher than 90%.
However it uses a software approach that requires com-
plex computations. A very relevant study was conducted
by Zhong et al. [18]. In that work, it was proposed to use
Gaussian Progression (GP) classification to binary discrim-
ination of motor imagery of EEG data. Zhong’s approach
is also computationally intensive but outperforms SVM and
k-nearest neighbour (k-NNs) in terms of 0 to 1 loss class
prediction error.

Artificial Neural Networks (ANNs) can solve very com-
plex problems and have been used in biological modelling
where they are an efficient tool that can ease the burden on
experts in medical diagnosis [16]. It is possible to use ANNs
to complete an automatic epilepsy detection system through
the prediction of the onset of a seizure occurrence can be
achieved with the assumption that the EEG generated is a
very complex but linear system. However, the brain is non-
linear. By analysing the power spectrum, it is also possible
to continue the analysis through a linear approach. Back
propagation neural networks include two stages, a forward
propagation stage and a back propagation stage. The nor-
mal neural operation uses the forward propagation to pass
along the EEG sample provided along the input layer to
the hidden layer where calculations are being made which
in turn is passed to the output layer to produce the output
sample of the neural network which can determine if a seizure
occurrence will appear with the input EEG sample. The back
propagation stage includes a learning process which reduces
the error between the calculated output sample and the tar-
get output, i.e. the possibility of seizure occurrence. This
process is performed by adjusting the weights of the neural
network in real time [19]. Spiking Neural Networks (SNNs)
are a third generation ANNs that have been researched in
recent years [20]. SNNs are a distinct form of ANNs as
each individual spiking neuron propagates information by
the timing of the neuron while other forms of ANNs uses
the rate of the spikes. SNNs are useful in detecting epilepsy
through the process of modelling the brain of an epileptic
patient [21]. Hardware implementations of SNNs were per-
formed using NVIDIA CUDA [20] and the SpiNNaker [22].
The latter has the capability to simulate and implement
the SNN which is used in brain modelling mentioned
above.

In summary, a hardware neural network solution may
prove to be better suited for a dedicated hardware imple-
mentation as compared to the other software implemented
classifiers described in this section. This hardware neural
network would need to meet the research specifications of
being small and power-efficient classifier. Neural networks
can be implemented in hardware such that high performance
is achieved when processing huge amounts of data. In the
next section, a novel bit-serial implementation of a neural
network (BSNN) is proposed.

III. IMPLEMENTATION OF BIT-SERIAL HARDWARE
NEURAL NETWORKS (BSNN)
Bit-serial architectures which process data bit by bit during
each clock cycle are largely historic. Most modern processors
use bit-parallel data processing for performance. However,
when high performance is not a priority but instead the
emphasis is on very low-power and low-cost bit-serial com-
puting has its advantages. In modern applications bit-serial
processing is still used in digital filters where input samples
are processed in a bit-serial manner [23].

Here we consider the classical model of a perceptron that
receives a vector input pattern xi where i = 1, . . . , I and
I the size of the vector. These inputs are weighted by the
weight vector of a given perceptron (w1,w2, . . . ,wI ) which
is obtained in the off-line learning process. The neuron is a
summation unit that performs the sum of products to calculate
its output u. The output u is then processed by the activation
function used in the output neuron. In our case the activation
function is a simple threshold operation converting u into a
logic signal y which has the value of ‘0’ or ‘1’.

u =
I∑
i=1

wixi (1a)

y = 8(u) (1b)

The conventional bit-serial architecture can model this
behaviour with ease and complex feed forward neural net-
works (FNNs) based on such neurons can be created using
simple, regular hardware structures controlled by simple
state machines. The learning process of such designs can be
accomplished off-line by using simulation software.

The proposed Data Processing Unit (DPU) is illustrated
in Figure 1. It is designed to calculate equation 1a. The
Wmem is a RAM memory that stores the weight values. The
ALU consists of a custom multiplier which utilises bit-serial
processing. This custom multiplier is a modified version of
a simple multiplier. When the DPUs are used in a vector
arrangement, they can be controlled by a single state machine
(Figure 2(b)) as they perform the same operations. In this
way, an entire neural network layer can be implemented as a
vector processor. The computational complexity of the design
is kept to a minimum as to decrease the cost of the hardware
design.

A three layer neural network with layer control FSMs and
a central controller is shown in Figure 2(a). In Figure 2,
the range of x0 to x3 indicate the inputs, w indicates the
weights with u0 and u1 as separate outputs. u outputs will
later be passed through an activation function to obtain a
single output y (eq.1b).

Table 1 shows that an 8-bit DPU requires only 24 Logic
Elements (LEs) on an inexpensive Altera Cyclone V FPGA,
out of over 300,000 LEs available on a Cyclone V chip. The
control path for a network with three layers requires 103 LEs
(Central Control FSM: 3 LEs, 2 layer FSMs: 18 LEs each
and 2 counters with 32 LEs each). This compares favourably
with the size of the datapaths of typical bit-serial processors
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FIGURE 1. DPU Design (Logic element counts are included in table) [3].

FIGURE 2. (a) Hardware topology of the proposed implementation of a multi-layer perceptron, (b) Central control FSM chart [3].

mentioned in the Table. Bearing in mind that the control
logic of the proposed approach requires only simple state
machines, rather than fully-fledged program control paths
used in general-purpose processors, expected overall benefits
of an ASIC implementation will include faster operation and
lower power consumption.

The performance of the proposed hardware is tested on
FPGAs. The power performance of FPGAs can not be
directly compared to that of an equivalent ASIC. However,
the proposed hardware in this work is much smaller than
other equivalent processors as discussed above in Section III.

Therefore, it can be expected that an equivalent ASIC imple-
mentation of the proposed system will be more power
efficient than existing solutions. As a form of estimation,
we addressed the issue of power consumption through a
simple comparison between our design the Cyclone V NIOS
general processor design. It was found that the dedicated
hardware neural network design requires less than 10% of the
resources needed to implement a NIOS processor executing
the same algorithm. With this fact in mind, we can infer that
an equivalent ASIC will consume an order of magnitude less
energy than a dedicated processor.
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FIGURE 3. Sample EEG input data.

TABLE 1. Cost comparison between three different processors.

TABLE 2. Recognition accuracy for different number of inputs in a
n-1-1 network against training data.

IV. EEG WAVEFORM CLASSIFICATION
The input data used in the evaluation of the proposed FNN
was obtained from an on-line open source [26] provided by
the Epilepsy Center of the University of Bonn, Germany [27].
The source provides sets of EEG waveforms for both seizure
free instances and EEG waveforms during seizures taken
from the brain (epileptogenic zone) of the same patient.
Figure 3 shows samples of an epileptic and a normal EEG.
Our results were obtained from a number of implementations
of the proposed FNN and were evaluated using standard met-
rics [28] in seizure detection, namely: the sensitivity (TPR),

specificity (TNR), positive predictive value (PPV) and nega-
tive predictive value (NPV). The hardware implementations
were trained offline in MATLAB and then tested with two
sets of 100 EEGwaveforms. As part of the validation process,
the same input data used for training was used to test the n-
1-1 network, i.e. n neurons in the input layer, one neuron in
the hidden layer and one output neuron as shown in Table 2.
Then, additional data was used to test the same network and
the results obtained are shown in Table 3. The n-1-1 network
configuration has a very bad recognition rate when additional
data was used for testing. From the results it can be concluded
that a multi-input single neuron in the hidden layer is not
sufficient to detect epilepsy accurately.

TABLE 3. Recognition accuracy for different number of inputs in a
n-1-1 network for additional testing (not training data).

Therefore, other configurations have been tested, for exam-
ple a 40-n-1 network with n hidden neurons. The DPUs used
in these tests had a 12-bit precision to increase the accuracy.
Table 4 presents the response of the 40-n-1 network using
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TABLE 4. Evaluation of a 40-n-1 network on data sets with additional
data (not training datasets.

MATLAB results as a form of comparison. The logic element
counts needed for different numbers of neurons are also
included. In summary, the network configuration of 40-30-1
provides promising results in terms of detecting epileptic
waveforms.

V. FEATURE EXTRACTION HARDWARE AND
IMPROVED SYSTEM
A. SLOPE CALCULATOR
In order to complete the wearable seizure detection sys-
tem, it is imperative to include a simple feature extraction
hardware to provide the inputs to the BSNN. The proposed
hardware will use picoMips as the basis of the design.

FIGURE 4. Feature extraction hardware.

The data path of the feature extractor as illustrated
in Figure 4 which consists of a synchronous RAM, a simple
subtractor implemented as an ALU and registers. The data
path is controlled by a simple FSM module. The hardware

cost for the ALU requires only 13ALMswhen synthesised on
a Altera Cyclone V chip. This hardware will serve as a mean
of extracting the slope, S of the EEG waveform from two
adjacent points (x1 and x0) on the EEG sample. It is calculated
using this simple equation, S = x1−x0. Each S value is stored
in the registers and used as inputs for the BSNN.

This section presents results of experiments that have have
been conducted to obtain better accuracy by using the slope
of the EEG waveform. The tested network configurations
are 11-10-10-1, 11-20-20-1, 11-30-30-1 and 11-40-40-1. The
results are evaluated using the same statistic metrics used in
the above section. The metrics are presented in Table 6 and
Table 7. With 11 inputs, the best correct recognition rate that
was obtained was the 11-40-40-1 configuration with 70% and
precision rate of 100%when tested using training data. When
tested with additional data, the network configuration have an
recognition rate of 61% and a precision rate of 80%.

TABLE 5. Results obtained when tested with different EEG segments.

TABLE 6. Statistic for network configuration evaluation (against training
data).

TABLE 7. Statistic for network configuration evaluation (against
additional data).

Further testing using single feature inputs, i.e. EEG signal
slope values are tested across 4 different EEG segments and
the results of the experiments is shown here in Table 12.

Table 8 presents the rates of correct recognition when
different numbers of inputs were used within a double layer
network configuration. 40 hidden neurons were used for each
hidden layer as it has the best recognition and precision rate
when tested with 11 inputs.

B. EXPERIMENTS WITH MEAN ENERGY
The energy of a designated EEG signal window was also
extracted from the EEG input signals; this is in addition to the
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TABLE 8. Network configuration with different number of inputs.

slope calculator featured above. Mean energy is calculated by
the following equation [29]:

MeanEnergy =
1
w
∗

I∑
i=1

a(i)2 (2)

The amplitudes of the EEG signal spikes are represented
by a(i); w represents the number of a values used. A new
system using the extraction hardware component was used on
FPGAs and achieved a 62% accuracy in 100 EEG samples.

C. IMPROVED SYSTEM
The improved system uses the mean energy and slope val-
ues from the EEG signals which are to be used in the
proposed network. The 100-40-40-1 network configuration,
with a recognition rate of 88%, has been tested and formed
a comparison. The recognition rate has improved by 2%
in the improved system. Using experiment statistics, it is
demonstrated that a 16-bit system has the highest correct
recognition rate. A high possibility of correctly identifying
a seizure would be maintained, even if the system was made
smaller and an associated degree of accuracy lost. A detailed
comparison is shown in Table 9 below.

TABLE 9. Improved system statistics using 100-40-40-1 network
configuration.

D. CONCLUSIVE REMARK
In conclusion, we maintain that with only a 2% increase
improvement of the improved system; the 12-bit network
using only EEG slope features can still provide a reliable
performance when predicting seizure events. A comparison
of the three systems is shown in Table 10.

TABLE 10. Comparison between three different proposed systems.

VI. HARDWARE NETWORK TESTING AND COMPARISON
WITH RELATED WORK
In this section, the network proposed is tested thoroughly
and comparisons is made against related research. A brief
work flow is explained here. Firstly, the range of EEG data
waveform is obtained from the open source database pub-
lished by Andrzejak RG et. al, members of the Department
of Epileptology at University of Bonn in Germany [27].
Secondly, the datasets are segmented using the OAT method
proposed by recent work [30]. The training of our neural net-
work are completed off-line using simulation software. The
hardware of our design encompasses the feature extraction
and the BSNN. The work flow of the dedicated hardware
can be referred to in Figure 1 and Figure 2. As mentioned
above in Section III, there is no complex algorithm in play in
this proposed method as to minimise the hardware cost and
optimise its efficiency. The results of the hardware design are
shown here in Table 12.

The EEG samples obtained from the University of
Bonn [27] are 100-sample single channel EEG datasets. The
experiments in our work use both free seizure and seizure
EEG datasets of a single epileptic human patient. Half of the
datasets consist of free seizure samples and the other half are
seizure samples. Each sample consists of up to 800 data points
obtained from the dataset mentioned above.

The feature vector that was used by a recent research [30]
consists of statistic metrics which are: mean (XMean), median
(XMedian), mode (XMode), standard deviation (XStdDev), first
quartile (XQ1), third quartile (XQ3), inter-quartile range
(XIQR), skewness (Xskew), kurtosis (Xkurtosis), minimum
(XMin), and maximum (XMax) [31] have also been included
as part of the experiments. Using this feature vector, the
11-7-1 hardware neural network with a 12 bit architecture
obtained a sensitivity, specificity and sensitivity of 60%.
It could recognise 30 out of 50 waveform used to training
datasets.

Ten other network configuration have also been designed
and tested. Table 11 presents the configurations and their
recognition rates. The table shows that that a single hidden
layer with 100 neurons have a similar performance to that of
a double layer network (10 neuron in each layer). It would be
more cost-effective to use the double layer configuration as it
requires less number of hidden neurons.

By analysing these results, it can be seen that this simple
feature vector may prove lacking in providing a very accu-
rate classification for our dedicated hardware neural network
when compared with an input vector consisting of multiple
slope values obtained from different EEG samples.

Both optimized hardware neural network system is tested
and compared against several software implementations for
epilepsy detection [30], [31].When compared with the results
from another paper [30], it is possible to argue that the design
proposed in this paper is more practical than designs using
the SVM approach. As it is a simple wearable hardware
design, many more input neurons are used as compared
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TABLE 11. Correct recognition of different hardware ANN configuration
using the feature vector used by a recent work [30].

TABLE 12. Results Obtained when tested with different Classifiers
(S = Slope Feature, E = Mean Energy Feature).

with the design proposed previously [30]. In a software
implementation of a epilepsy detection system [30] LMT,
MLR and SVM classifiers were used. Table below presents
a close comparison between our design and the software
implementation [30]. It should be noted that the network used
for comparison is of a 12-bit architecture.

The dedicated hardware design was implemented and syn-
thesised on an Altera Cyclone V FPGA. Different type of
configurations are used as a form of comparison to fully
explore the capabilities of the proposed network. Therefore,
examples of 2 and 3 hidden layers were used. The hardware
costs for different network configuration are included here,
i.e. 100-20-20-1 and a 100-40-40-1 configuration. They cost
2303 and 3931 Adaptive Logic Modules (ALMs) accord-
ingly. The configurations with 3 hidden layers are 100-10-10-
10-1 and 100-5-5-5-1. The costs are 2259 and 1748 ALMs.

VII. CONCLUSION
In conclusion, experiments with bit-serial neurons confirm
that an extremely small logic system can successfully imple-
ment effective epileptic seizure detection. The key benefit of
a dedicated neural processor compared to known, equivalent
general-purpose processors, is that very small control logic
and a low bit-precision are sufficient to obtain correct opera-
tion.Multiple tests have been conductedwith various network
configuration to test the feasibility of detecting epilepsy when
using the proposed approach. The clinical significance of our
work is that it provides a technique to develop a wearable
and reliable hardware for epileptic patients in their daily
activities. However, a system conceived as a compromise
between performance and cost has limitations. The 90%
seizure pediction accuracy is high but mispredictions are

still possible. Furthermore, the testing conducted during this
research were performed using EEG benchmark waveforms.
Future work will involve personalised EEG waveform tests
suited to individual patients and further investigation into
suitable sizes and accuracies of bit-serial FNNs which will be
followed by a development of a low-power ASIC. The aspect
of power consumption can then be fully addressed using an
ASIC implementation.
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