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ABSTRACT

We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA)
catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These
binding pockets were computed with an original geometric method that does NOT involve
any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the
deviation from convexity of each pocket shape with the pocket convexity index (PCI). We
defined a new pocket descriptor called distributional sphericity coefficient (DISC), which
indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere.
The DISC values were computed with the freeware PCI. The pocket descriptors and their
high correspondences with ligand descriptors are crucial for polypharmacology prediction.
We found that the protein heavy atoms lining the urokinases binding pockets are either
located on the surface of their convex hull or lie close to this surface. We also found that the
radii of the urokinases binding pockets and the radii of their ligands are highly correlated
(r 5 0.9).
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1. INTRODUCTION

Several thousands of molecular descriptors are known (Todeschini and Consonni, 2008). Although

they are suitable for protein ligands, most of them are meaningless for protein pockets. This is partic-

ularly true for geometric descriptors, because the ligand shape is commonly associated with some envelope

separating the ligand to its exterior, whereas the shape of a protein pocket is rather associated with the

boundary of a cavity internal to the protein. Thus, we used our own pocket descriptors (Section 3). Then, the

definition of a cavity inside a protein is highly polemical: see the many algorithms cited by Pérot et al. (2010)
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and by Benkaidali et al. (2014). The main problem encountered in pocket calculation algorithms, and more

generally in modeling algorithms, is the existence of arbitrary parameters having a crucial effect on the

results. It is why we built our own pocket calculation algorithm, which is parameter free (Section 2.2). We

applied this calculation to a set of human urokinase plasminogen activator (uPA) catalytic domains. It is an

attractive therapeutic target in cancer because it plays an essential role in the process of tumor cell migration

and metastasis (Andreasen et al., 2000). Furthermore, the uPA receptor system is known as a strategic

therapeutic target (Degryse, 2013).

2. METHODS

2.1. Data preparation

From the Protein Data Bank (PDB; Berman et al., 2000), we extracted a set of 97 crystallized uPA

catalytic domain–ligand complexes. To remove nonspecific and nonbiological ligands, we removed the

crystallization additives and salts. We also removed all hydrogen atoms to get a homogeneous set. In the

case of polymers with multiple ligands (e.g., 2VNT PDB code), we duplicated the file in the ones where

there are ligands, to launch an automated treatment for pocket calculations. The final working set con-

tained 71 human urokinase catalytic domains, from where 78 pockets are extracted, each pocket containing

one ligand.

2.2. Pocket calculation algorithm

We define a protein pocket as protein atoms extracted using the two following steps: (1) for each ligand

atom we retain its closest neighboring atom in the protein and (2) in the case of multiple copies of a protein

atom, we retain only one to get a nonredundant set. The drawback of this algorithm is that it cannot apply if

there is no ligand. However, the strong advantage of our algorithm is its simplicity, particularly the fact that

it does not require any parameter.

3. RESULTS AND DISCUSSION

We calculated the pocket descriptors of Table 1 with the PCI freeware. The 78 PCI values ranging

from 0 to 0.04 indicate highly convex pockets. The pocket sphericity index values range from 0.14 to

0.50: the largest inscribed sphere (radius Ri) is smaller than the radius of the smallest circumscribed

sphere (radius Rh): the pockets are a bit flat. It is stressed that a pocket could be nearly flat while its

bounding atoms indeed lie on the surface on a sphere. The distributional sphericity measured by the

distributional sphericity coefficient (DISC) parameter shows to which extent the pocket protein atoms lie

on the surface of a sphere (Appendix). The DISC values range from 0.01 to 0.27. Thus, the pocket shapes

are moderately fitted by spheres. To study the correspondence between pocket and ligand’s shapes, we looked

at the correlation between the pocket radii R (Appendix) and the radii RhL of the smallest sphere enclosing the

ligand. We found a high correlation coefficient r(R‚ RhL) = 0:89. The correlation coefficient r(Rh‚ RhL) = 0:91

is also high. These results show that our method is suitable to estimate pockets guided by the ligand. This

Table 1. The Main Pocket Descriptors Computed

with PCI

N Number of pocket atoms

Rh Radius of the convex hull of the N atoms (Petitjean, 1992)

Ri Radius of the largest sphere inscribed in the convex hull

PSI Pocket sphericity indexa: Ri/Rh; takes values in [0;1]

PCI Pocket convexity indexa,b; takes values in [0;1]

R Pocket radius (see Theorem 4.1 in Appendix)

DISC Distributional sphericity coefficient (Appendix)

aThese indices were first mentioned by Borrel et al. (2015).
bRatio of the squared quadratic mean distance of the N atoms to their hull, to R2

i .
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estimation is a crucial step to predict interaction partners and off targets, and to address polypharmacology

(Abi Hussein et al., 2017). Our combined use of descriptors with a free parameter pocket estimation permitted

us to evaluate the adaptation of the pocket to the size of the ligand.

4. APPENDIX: CALCULATION OF THE BEST FITTING SPHERE

Consider n points x1, x2, ., xn in Rd, d � 1. The best fitting sphere is defined so that its center c

minimizes the variance V of the population of the squared distances of the n points to c. The radius R of the

best fitting sphere is the square root of the mean of these n squared distances. When the minimized variance

is null, all the n points lie on the boundary of a sphere of radius R centered on c.

The calculation of R and c are done according to Theorem 4.1. For convenience, this theorem is

presented for random vectors. The case of n points in Rd is retrieved through a finite discrete random

vector. In what follows, the quote denotes the transposition operator and the symbol E denotes the ex-

pectation operator.

Let X be a random vector taking values in Rd. The random variable expressing the squared length of

X - c is Z = (X - c)0(X - c). The variance of Z is V = E(Z - EZ)2, assumed to exist. The variance matrix of X

is K = EYY 0, with Y = X - EX. K is assumed to be of full rank. V0 is the variance of Y 0Y . We set c = EYY 0Y
and s = c - EX.

Theorem 4.1. The center of the best fitting sphere is c = EX + K - 1c=2 and its squared radius

R2 = EY 0Y + s0s. The minimized variance is V = V0 - c0K - 1c.

Proof. Z = (Y - s)0(Y - s) and Z - EZ = Y 0Y - EY 0Y + s0s. The variance of Z - EZ is V = V0 - 4s0c + 4s0Ks.

The gradient of this variance with respect to s is =V = - 4c + 8Ks. Thus we deduce that the optimal value of

s is K - 1c=2. The minimal variance and the optimal radius are deduced from the latter. -

The support of X lies on the boundary of a sphere if and only if V = 0. When V > 0 we need to evaluate

how the distribution of X deviates from this ideal case. Having c = EX + K - 1c=2, we could look at the

normalized variance D= V=R4. Unfortunately, D can be arbitrarily large. Thus we define the quantity DISC,

which takes values in [0;1]:

Definition 4.1. DISC =D=(1 +D) is the distributional sphericity coefficient. DISC = V=(V + R4).

DISC is null if and only if the support of X lies on the boundary of a sphere. The larger DISC is, the more

the distribution of X deviates from this ideal situation. DISC is insensitive to isometries and scaling.

When d = 1, the value DISC = 0 is reached if and only if the random variable X follows a Bernouilli

distribution. Thus, when d = 1, DISC may also be viewed as a bimodality coefficient.

Still when d = 1, we retrieve in corollary 4 an interesting inequality, which goes back to Pearson (1929).

Let S be the skewness of X, that is, its reduced centered third order moment, and K its kurtosis, that is, its

reduced centered fourth order moment, assumed to be existing.

Corollary 4.1. K � S2 + 1.

Proof. Set d = 1 in Theorem 4.1. V = r4(K - 1 -S2), r being the standard deviation of X. Write that

V � 0. -

This inequality was also mentioned by Petitjean (2013), as a consequence of a result about geometric

docking (Petitjean, 2004). Theorem 4.1 can also be viewed as a consequence of this result of Petitjean (2004).

AVAILABILITY OF PCI

Free binaries and documentation of PCI are available through a software repository located at http://

petitjeanmichel.free.fr/itoweb.petitjean.freeware.html.
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Zadnik Stirn, L., Žerovnik, J., Povh, J., Drobne, S., and Lisec, A., eds. Proceedings of SOR’13, the 12th International

Symposium on Operational Research in Slovenia. Slovenian Society INFORMATIKA (SDI), Section for Operations

Research (SOR), Ljubljana, Slovenia.

Todeschini, R., and Consonni, V. 2008. Handbook of Molecular Descriptors. Wiley, New York.

Address correspondence to:

Dr. Michel Petitjean

MTi, INSERM UMR-S 973
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