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Abstract: Increasing scientific interest has occurred concerning the utilization of natural fiber-
enhanced hybrid composites that incorporate one or more types of natural enhancement. Annual
natural fiber production is estimated to be 1,783,965 × 103 tons/year. Extensive studies have been
conducted in the domains of natural/synthetic as well as natural/natural hybrid composites. As
synthetic fibers have better rigidity and strength than natural fibers, natural/synthetic hybrid com-
posites have superior qualities via hybridization compared to natural composites in fibers. In general,
natural fiber compounds have lower characteristics, limiting the use of natural composites reinforced
by fiber. Significant effort was spent in enhancing the mechanical characteristics of this group of
materials to increase their strengths and applications, especially via the hybridization process, by
manipulating the characteristics of fiber-reinforced composite materials. Current studies concentrate
on enhancing the understanding of natural fiber-matrix adhesion, enhancing processing methods,
and natural fiber compatibility. The optimal and resilient conceptions have also been addressed
due to the inherently more significant variabilities. Moreover, much research has tackled natural
fiber reinforced hybrid composite costs. In addition, this review article aims to offer a review of
the variables that lead to the mechanical and structural failure of natural fiber reinforced polymer
composites, as well as an overview of the details and costings of the composites.

Keywords: natural fiber; hybrid composite; cellulose; costing; processing; fiber-matrix adhesion

1. Introduction

Composite materials are produced from a combination of two or more elements that
are easily distinguishable to enhance the characteristics of the individual element [1,2].

Polymers 2021, 13, 3514. https://doi.org/10.3390/polym13203514 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5297-5040
https://orcid.org/0000-0001-6622-2632
https://orcid.org/0000-0002-1069-7345
https://orcid.org/0000-0002-5110-0242
https://orcid.org/0000-0003-4475-8764
https://orcid.org/0000-0001-7845-3972
https://orcid.org/0000-0001-9446-8074
https://doi.org/10.3390/polym13203514
https://doi.org/10.3390/polym13203514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13203514
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13203514?type=check_update&version=4


Polymers 2021, 13, 3514 2 of 43

Newly invented materials may be favored for various reasons, e.g., they are stronger,
more lightweight, and less costly than existing materials [3–5]. In general, the individual
materials making up composites are known as constituents. Principally, most composites
comprise two constituent materials—reinforcement and matrix—however, in general, the
composites may contain not only two components, matrix and reinforcement, but also
other types of components: fillers, compatibilizers, coupling agents, pigments, lubricants,
surfactants, solvents, etc. Only the simplest textile-based composites, also called textolites,
contain two constituents, polymer matrix and reinforcement such as natural, synthetic or
hybrid fibers, or fabrics. The reinforcement is significantly stiffer and stronger than the
matrix, contributing to the composites’ superior characteristics [6,7]. The main functions of
the polymer matrix in textile-based composites are to bind reinforcements (fabric, fibers, or
nanofibers) and maintain the integrity of the composite.

Composites’ reinforcements can be fabrics elements, fibers, or nanofibers [8–10]. Fiber
is defined as one very long axis with two other axes that frequently are either circular or
near-circular. The fibers have a pronounced axial orientation. As is known, Young’s modu-
lus and tensile strength of fiber in the longitudinal direction (along the fiber axis) is usually
an order of magnitude higher than in the lateral direction of the fiber. Nanofibers have
an ideal form; however, they are smaller in diameter and length compared to fibers [11].
Figure 1 shows the type of reinforcements in composites.

Figure 1. Types of reinforcements in composites. Redrawn with permission from Saba and
Jawaid [12].

The matrix might be thermoset, thermoplastic, or biopolymer. Polyvinyl chloride
(PVC) is the most common thermoplastic matrix used in natural fiber composites. Be-
sides this, due to the limited compatibility of nonpolar hydrophobic polyethylene and
polypropylene with polar and hydrophilic natural cellulose fibers, these thermoplastics
typically are not employed as a matrix for natural cellulose fibers. Meanwhile, polyester,
epoxy, and phenolics are the most often used thermoset polymers [13,14].

Nowadays, the availability of bio-based polymer matrices on the market is compar-
atively meager; however, it has been speedily expanding, thanks to a huge number of
industrial investigations and continuous research into the advantages of these materials,
as well as their practicability in actual applications. The preliminary data on the essential
characteristics of composites attained from eco-based matrices were reported in [15,16].
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2. Natural Fiber (NF)

Fiber is the continuous filaments hair-like material of elongated piece that is similar
to a thread, while fibers is a group of fiber that can be coiled into rope, filaments, or
thread [17–19]. They are useful as of the composite materials’ element and were also
formed into sheets to produce felt or paper. Fibers are categorized into three groups:
(1) natural fiber and (2) man-made, and (3) synthetic fiber. Natural fibers are either
animal, plant or mineral-based that are extracted from nature without compromising the
environment. Commonly used animal-based natural fibers including feather, wool, silk,
hair, etc. Examples of plant-based natural fibers are banana, jute, hemp, bamboo, flax, sisal,
etc., which are broadly applied to manufacture natural fiber reinforced polymer (NFRP)
composites [20]. The classifications of natural fibers are shown in Figure 2, and the annual
natural fiber production is presented in Table 1.

Figure 2. Classifications of natural fibers. Redrawn with permission from Jawaid and Khalil [12].

Over the past few years, natural fibers have become eminent reinforcing fibers in
polymer-matrix composites (PMC). They offer rapidly increasing and abundant charac-
teristics, allowing them to be obtained at a small cost. Numerous attempts in terms of
studies have been performed worldwide to prove the eligibility of natural fiber-based
composites to substitute the synthetic as newly engineered fibers. Due to the growing need
for renewable, cost-effective, and environmentally friendly materials, the use of natural
fibers as composite materials’ reinforcement has proliferated over the years.

When compared to glass fiber composites, natural fiber composites are more advan-
tageous for being more lightweight, biodegradable in nature, ease of machinability, zero
toxicity, cheap cost, convenience, and non-abrasive nature [13,21,22]. Many natural fiber
composites are reputable and have been satisfactorily proven in research. The number of
natural fiber composites has been investigated previously in terms of their physical and
mechanical properties, such as arrowroot, hemp, sisal, coir, jute, kenaf, date, pine cone,
vakka and bamboo [23–27].
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Table 1. Annual natural fibers production. Extracted with permission from [28].

Natural Fiber Source World Production
(×103 Tons)

Abaca Leaf 70
Banana Stem 200
Bamboo Stem 10,000
Broom Stem Abundant

Coir Fruit 100
Cotton lint Seed 18,500
Elephant Stem Abundant

Flax Stem 810
Hemp Stem 215

Jute Stem 2500
Kenaf Stem 770

Linseed Fruit Abundant
Oil Palm Fruit Fruit Abundant

Ramie Stem 100
Rice Husk Grain Abundant

Roselle Stem 250
Sisal Leaf 380

Sun hemp Stem 70
Wood Stem 1,750,000

3. Recent Development of Natural Fiber Reinforced Hybrid Composites

It is known that natural fibers possess some limitations compared with those common
fibers such as glass and carbon, where it is having more inferior mechanical properties
and a higher water absorption [29]. Therefore, an introduction of hybrid biocomposites
consists of two or more fibers in one matrix is seen as a solution to enhance the natural
fiber-reinforced polymer composites’ properties. Zahra et al. [30] stated that hybridizing
one natural fiber with another natural fiber/synthetic fiber in one matrix will improve
it’s thermal and mechanical than the individual fiber composites [31]. This has shown
that hybrid composites are more reliable for various applications, besides being more
environmentally friendly.

The hybridization of natural fiber-based reinforced polymer composites can be done
through a combination of natural–natural fibers, natural–synthetic fibers, natural fiber with
carbonaceous materials, and natural fiber with metal [32]. Due to their varied properties
and considerations of interfacial adhesion, hybrid natural fiber composite materials are
facing difficulties in fabrication. Composites are manufactured in a variety of ways, such as
through basic mixing and open or closed molding. Many factors can affect the interactions
between the fiber and matrix, for example, and could be mild owing to the existing van
der Waals forces, hydrogen bonding, and weak electrostatic interactions. In addition, a
good interaction could also exist due to the chemical interactions between those materials.
Therefore, studies on hybrid natural fiber composites keep increasing in order to discover
the ability of hybrids to be a possible alternative, replacing various petroleum-based
products. Some examples of the studies of hybrid natural fiber composites are presented in
Table 2.



Polymers 2021, 13, 3514 5 of 43

Table 2. Natural fiber reinforced hybrid composites.

Natural Fiber Matrix Hybrids Process Ref.

Sugar palm fiber (SPF)

Sugar palm fiber Unsaturated polyester Woven glass Compression molding [28]
Sugar palm fiber Unsaturated polyester Glass fiber Hand lay-up [33]
Sugar palm fiber Thermoplastic polyurethane Glass fiber Melt compounding [34]

Sugar palm yarn fiber Epoxy Carbon fiber Hand lay-up [35]
Benzoyl treated sugar

palm fiber Epoxy Glass fiber Hand lay-up [36,37]

Sugar palm fiber Thermoplastic sugar palm
starch/agar Seaweed fiber Hydraulic thermo-press [38]

Sugar palm fiber Thermoplastic polyurethane Roselle fiber Hot press [39]
Sugar palm fiber Cornstarch Cornhusk Solution casting [40]

Sugar palm yarn fiber Unsaturated polyester Glass fiber Sheet molding [41]
Sugar palm fiber Cassava starch Cassava fiber Casting [42]
Sugar palm fiber Polypropylene Kenaf fiber Compression molding [43]
Sugar palm fiber Cornstarch Cornstalk fiber Solution casting [44]
Sugar palm fiber Epoxy Ramie fiber Compression molding [45]
Sugar palm fiber Vinyl ester Roselle fiber Hand lay-up [46]

Sugar palm fiber Polypropylene Glass fiber Film stacking and hot
compression [47]

Kenaf fiber (KF)

Kenaf fiber Epoxy Glass fiber Sheet molding [48]
Kenaf fiber unsaturated polyester (UPE) Glass fiber Sheet molding [49]
Kenaf fiber Epoxy Silica Hand lay-up [50,51]
Kenaf fiber Epoxy Bamboo fiber/nanoclay Hand lay-up [52]
Kenaf fiber Epoxy Oil palm/montmorillonite Hand lay-up [53]

Kenaf fiber Polypropylene-grafted maleic
anhydride (PP-g-MA) Graphene nanosheets Hot press [54]

Kenaf core Polypropylene Bleached nanocellulose Melt mixing compounding [55]
Kenaf fiber Epoxy Glass fiber Filament winding [56]
Kenaf fiber Epoxy Pet yarn Cold press [57]
Kenaf fiber Polyethylene terephthalate Glass fiber Compression molding [58]
Kenaf fiber Epoxy Kevlar Hand lay-up [59]
Kenaf fiber Polyester Banana fiber Hand lay-up [60]
Kenaf fiber Indian almond fiber Kenaf fiber Hand lay-up [61]
Kenaf fiber Epoxy Glass/waste tea leaf fiber Compression molding [62]
Kenaf fiber Epoxy Oil palm fiber Hand lay-up [63]

Woven kenaf fiber Polypropylene Glass fiber Hot press molding [64]
Kenaf fiber Polypropylene E-glass Hot compression molding [65]
Kenaf fiber Epoxy Bamboo fiber Hand lay-up [66]
Kenaf fiber Polypropylene Wood flour Injection molding [67]

Polylactic acid (PLA) Kenaf Fused Deposition Modeling
(FDM) [68]

Oil palm empty fruit bunches fiber (OPEFB)

Oil palm empty fruit
bunches fiber Epoxy MgO2 pet yarn Compression molding [69]

Oil palm empty fruit
bunches fiber Polyester resin MgO2 pet yarn Compression molding [69]

Oil palm empty fruit
bunches fiber Epoxy Woven kenaf fabric Hand lay-up [70]

Oil palm empty fruit
bunches fiber Polypropylene (PP) matrix Injection molding [71]

Oil palm empty fruit
bunches fiber Phenolic formaldehyde (PF) resin Sugarcane bagasse (SCB) fiber Hand lay-up [72]

Oil palm empty fruit
bunches fiber Resin Gamma-irradiated kevlar Hand lay-up [73]

Oil palm empty fruit
bunches fiber Recycled polypropylene (RPP) Glass fiber Extrusion and injection molding [74]

Oil palm fibers Polyester resin Chopped strand mat (CSM)
glass fibers Hybrid laminates [75]

Oil palm empty fruit
bunches fiber Polypropylene Glass fiber Hot pressing [76]
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Table 2. Cont.

Natural Fiber Matrix Hybrids Process Ref.

Pineapple leaf fibers (PALF)

Pineapple leaf fibers Carbon hybrid laminate Vacuum infusion [77]
Pineapple leaf fibers Polylactic acid (PLA) Alkali treated coir Compression molding [78]
Pineapple leaf fibers Vinyl ester Glass fiber Automated spray-up [79]
Pineapple leaf fibers Polyester Banana/glass fiber Hand lay-up [80]

Silane treated pineapple
leaf fiber Phenolic hybrid Kenaf fiber Hydraulic pressure hot press [81]

Pineapple leaf fibers Polyester Sisal fiber Injection molding [82]

Bamboo fiber (BF)

Long bamboo fiber Epoxy Compression molding [83]
Short bamboo fiber POlypropylene Glass fiber Injection molding [84]

Bamboo fiber Maleic anhydride grafted
polypropylene (MAPP) Glass fiber Injection molding [85]

Bamboo fiber Polypropylene Glass fiber Compression molding [86,87]
Bamboo fiber Epoxy Ceramic fillers Compression molding [88]
Bamboo fiber Epoxy polymer Jute fiber Hand lay-up [89]
Bamboo fiber Epoxy Flax fiber mat Hand lay-up [90]
Bamboo fiber Epoxy Sisal fiber Hand lay-up [91]
Bamboo fiber Epoxy Cotton yarn Compression molding [92]

Bamboo leaf fiber ash Aluminium metal matrix Rice husk ash Hand lay-up [93]
Bamboo fiber Epoxy Kenaf fiber Hand lay-up [66]

Jute fiber (JF)

Alkali treated jute fiber Vinyl ester resin Compression molding [94]
Jute fiber Epoxy Carbon fiber Hand lay-up [95]
Jute fiber Epoxy polymer Bamboo fiber Hand lay-up [89]

Woven jute Polyester Glass fabric Hand lay-up [96]
Woven jute Vinyl ester Ramie fiber Hand lay-up [97]
Jute fiber Epoxy resin Glass fiber Resin infusion [98]
Jute fiber Polyester Glass fiber Injection molding [99]
Jute fiber Hemp/Flax fiber Hand lay-up [100]
Jute fiber Polyester Cotton woven fabric Hand lay-up [101]
Jute fiber Polyester Woven fabric basalt fiber Compression molding [102]

Hemp fiber (HF)

Alkaline-treated hemp
fiber Polyester resin Carbon fiber Hand lay-up [103]

Hemp fiber mat Green epoxy Sisal fiber Hand lay-up method and hot
press [104]

Hemp fiber Unsaturated polyester Soybean oil/nanoclay Compression molding [105]
Hemp fiber Polylactic acid Sisal fiber Injection molding [106]
Hemp fiber HDPE Basalt fiber Injection molding [107]

Interwoven hemp fiber PET Vacuum infusion [108]

Flax fiber (FF)

Flax fiber Epoxy Hemp fiber Hand lay-up [100]
Flax fiber Epoxy Jute/hemp fiber Hand lay-up [100]
Flax fiber Vinyl ester Glass fiber Resin infusion [109]

Short flax fiber Polypropylene Injection molding [110]
Flax fiber Polypropylene Kenaf/hemp fiber Compression molding [111]
Flax fiber Polylactic acid Kenaf/hemp fiber Compression molding [111]
Flax fiber Epoxy Vacuum infusion [112]
Flax fiber Vinyl ester Basalt fiber Vacuum assisted resin infusion [113]
Flax fiber Epoxy resin Glass fiber Compression molding [114]
Flax fiber Vinyl ester Glass fiber Resin infusion [109]
Flax fiber Barium sulphate Woven aloevera Compression molding [115]

Ramie fiber (RF)

Ramie fiber Polylactic acid Poly(ε-caprolactone) Compression molding [116]
Ramie fiber PVA Glass fiber Compression molding [117]
Ramie fiber Vinyl ester Jute fiber Hand lay-up [97]

Ramie woven Epoxy Hand lay-up [118]
Ramie cloth Unsaturated polyester resin Resin casting [119]
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Table 2. Cont.

Natural Fiber Matrix Hybrids Process Ref.

Abaca/banana fiber (ABF)

Abaca/banana fiber Polypropylene
Mixer-injection, mixer

compression, and direct
compression moldings

[120]

Abaca fiber Cement Silica [121]
Enzyme modified abaca

fiber Polypropylene Injection molding [122]

Abaca fiber Polyethylene Banana fiber Rotational molding [123]
Banana fiber Low density polyethylene Compression molding [124]
Abaca fiber Polystyrene Compression molding [125]

Plain weave abaca fiber Polyester resin Hand lay-up [126]
Banana fiber Polyvinyl alcohol resin Hand lay-up [127]

Sisal fiber (SF)

Sisal fiber Phenolic resin Aramid fiber Compression molding [128]
Sisal fiber Bioepoxy Hemp fiber Hand lay-up [104]
Sisal fiber Polyester Bamboo fiber Hand lay-up [91]
Sisal fiber PLA Banana fiber Injection molding [129]
Sisal fiber Unsaturated polyester Carbon fibers Hand lay-up [130]

Sisal fiber Waste carbon Glass fiber Single extrusion and press
consolidation [131]

Sisal fiber Epoxy Jute fiber Hand lay-up [132]

3.1. Sugar Palm Fiber Reinforced Hybrid Composites

Arenga Pinnata (also known as sugar palm) is a versatile palm species with wide
applications in foods and beverages [133], timber commodities [134], biofibers [135–141],
biopolymers [142,143] and biocomposites [144–153]. Sugar palm fibers are recognized
for their great durability, as well as their resistance to seawater. Sugar palm fibers have
been used to produce ropes for ship cordages that have confirmed the good performance
in saltwater [154]. Via the hand-lay-up technique, Misri et al. [28] manufactured a small
boat using innovative material, a hybrid of sugar palm fiber and fiberglass-reinforced
unsaturated polyester. The mechanical properties of the hybrid boat were investigated via
the tensile and impact tests and were found the increased impact strength of 2.471 kJ/m2

and tensile modulus of 1840.6 MPa. Sanyang et al. [155] reported that the sugar palm
fiber demonstrated a lower density than the commercial E-glass fiber of 1.22–1.26 kg/m3

and 2.55 kg/m3, respectively. This consequently resulted in the weight reduction of the
manufactured boat by 50%. Recently, sugar palm fiber has been investigated as a hybrid
reinforcement [154,156–159]. Certain precautions must be considered in the development
of these novel natural fiber composites in terms of applicability. For instance, critical
assessment and characterization of these composites for practical use in more compre-
hensive applications. Figure 3 presents the schematic diagram of layout segmentation
and reinforcement layout of sugar palm/glass fiber designed by Nurazzi et al. [139] The
results revealed improvements in thermal stability, char residue, as well as decomposition
temperature as the glass fibers and sugar palm ratios, were raised to 50/50 for both 30 wt.%
and 40 wt.% of fiber loadings.

Afzaluddin et al. [160] investigated the influence of the different treatments with 2%
silane (TSSP), 6% alkaline (TNSP), and a combination of 6% alkaline–2% silane (TNSSP) on
the thermal and physical characteristics of sugar palm/glass/thermoplastic polyurethane
hybrid composites. The findings showed that the combined alkaline–silane-treated hy-
brid composites (TNSSP) displayed the minimum water absorption, thickness swelling,
and density as with other hybrid composites. Besides this, good thermal stability was
observed in the treated sugar palm fiber-based composites compared to the untreated
ones. It is suggested that treated sugar palm/glass/thermoplastic polyurethane hybrid
composites can fit automotive component applications. The results of this research are
aligned with other studies conducted on the treated sugar palm fiber-reinforced polymer
hybrid composites [33,35,36,161].
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Figure 3. Schematic diagram of layup segmentation and reinforcement layout [139]. Extracted with permission from
Elsevier.

3.2. Kenaf Fiber Reinforced Hybrid Composites

Kenaf (Hibiscus cannabinus L.) is among the most common natural fibers used as
polymer matrix composite (PMC) reinforcement. It is an annual herbaceous plant that can
be cultivated in a variety of climates and grows to more than 3 m in 3 months, even in
temperate climates [162]. Davoodi et al. [48] replaced an automobile bumper beam with
a hybrid kenaf/glass-reinforced epoxy composite to reduce environmental impact while
maintaining the requisite strength.

The development of kenaf-glass (KG) fiber reinforced unsaturated polyester (UPE)
hybrid composite was performed by Atiqah et al. [49] via the process of sheet molding
compound for structural applications. The ratio of 70:30 (by volume) of UPE and KG fibers
in a mat form is used using untreated and treated kenaf fiber. During the mercerisation
process, the kenaf fiber was alkaline treated for 3 h using a 6% sodium hydroxide (NaOH)
diluted solution. Figure 4 shows the sequence of kenaf and glass fibers and matrix in be-
tween a mild steel mold for the fabrication of a hybrid composite. The result demonstrated
that the highest tensile, flexural and impact strengths were attained from the treated kenaf
containing 15/15 v/v KG fibers reinforced UPE hybrid composite. Besides this, the main
fracture mode of composites observed under the scanning electron microscopy fractogra-
phy was fiber debonding, cracking, and pull-out. Better interfacial bonding between the
matrix was found in the kenaf treated 15/15 v/v KG reinforced hybrid composite than with
other combinations. The hybridization of natural fibers, particularly synthetic and kenaf
fibers, is an excellent method to improve the mechanical characteristics of the fabricated
hybrid composite, as reported in many works [51–59,163].

The fabrication of kenaf fiber reinforced polypropylene (PP) sheets into a sheet form
have been successfully carried out via thermoforming, where the optimum process is
the compression molding that employs a layered sifting of a micro-fine PP powder and
chopped kenaf fibers [164]. 30 and 40 wt.% fiber contents provide sufficient reinforcement
which improves the PP matrix’s strength. The strength of the molded kenaf–PP composites
was evidenced to possess better flexural and tensile strengths compared to the strength of
other molded natural fiber composites, e.g., coir, kenaf, and sisal reinforced thermoplastics.
The economic advantage of using kenaf composites over E-glass and other natural fibers
is the possibility to analyze the elastic modulus data. The fabricated kenaf maleated PP
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composites exhibited a greater modulus/cost and an advanced specific modulus compared
to coir, sisal, and E-glass. Therefore, they deliver a choice for substituting the currently used
materials with a lower-cost alternative with a higher strength that is also environmentally
friendly.

1 
 

 

Figure 4. The sequence of kenaf and glass fibers and matrix in between mold for hybridization
conducted by Atiqah et al. [48]. Extracted with permission from Elsevier.

The wood flour/kenaf fiber and PP hybrid composites were set to evaluate the hybrid
outcome on the properties of the composites [67]. The findings demonstrated that non-
hybrid composites (wood flour and kenaf fiber) revealed the lowest moduli compared
with the hybrid composites; in addition, moduli of the hybrid composites strictly adhered
with the relationship between the fiber reinforcement to wood filler. It was more likely to
estimate the elastic modulus of composites using the hybrid mixtures equation rather than
with the Halpin–Tsai equation. The influence of natural rubber toughening with polyester
resin as the matrix on kenaf fibers were also studied by Bonnia et al. [165].

3.3. Oil Palm Fiber Reinforced Hybrid Composites (OPRPC)

Oil palm, Elaeis guineensis consist of two Arecaceae or palm family species. Oil palm
empty fruit bunch fibers are among potential reinforcement fibers for polymer compos-
ites [166,167]. Agarwal et al. [167] examined the stress relaxation behavior in phenol-
formaldehyde resin reinforced with oil palm empty fruit bunch fibers and hybrid com-
posites composed of oil palm fibers and glass fibers. The examination of the influences of
fiber treatment, loading, strain level, and physical aging on the stress relaxation behavior
and the calculation of the rate of relaxation at different time intervals were performed to
describe the progressive alterations in the relaxation mechanisms [168].

Suriani et al. [69] introduced the oil palm empty fruit bunch (OPEFB) fiber and
Mg(OH)2 into epoxy resin to obtain a hybrid composite, as shown in Figure 5. Four
specimens were considered; (1) specimen A (blank, 0% fiber), (2) specimen B (20% fiber),
(3) specimen C (35% fiber), and (4) specimen D (50% fiber). The used reinforcing and
fire retarding additives were the PET yarn and magnesium hydroxide, respectively. The
burning test result exhibited better flammability in specimen B, with the lowest average
burning rate of 11.47 mm/min. Specimen A demonstrated the highest tensile strength of
10.79 N/mm2. An SEM morphological test revealed rising surface defects by the rupture
that resulted in the decline of the composites’ tensile properties. The authors summarized
that the tensile properties and flammability of OPEFB fiber-reinforced fire-retardant epoxy
composites weakened with the increments in the fiber volume content at the optimum
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20% loading of 11.47 mm/min and 4.29 kPa, respectively. Another study conducted by
Farah et al. [70] for the characterization of hybrid epoxy composites containing oil palm
empty fruit bunch/woven kenaf fabric reinforcement demonstrated that the increased oil
palm fiber content leads to an increase in the impact strength of the hybrid composite. It
is described by the other circumstance in which randomly oriented empty fiber bunches
(EFB) has a moderate interfacial interaction with epoxy that is vital to attaining a higher
impact strength. An investigation into the impact of oil extraction, compounding processes
and fiber loading [76], as well as matrix alteration on the mechanical characteristics of oil
palm empty fruit bunch filled PP composites was also conducted [71]. Moreover, oil palm
empty fruit bunch fiber/PP composites and oil palm-originated cellulose/PP composites
were compared [169].

The effect of chemical alteration of the composites containing oil palm/phenol formalde-
hyde was studied by comparing polyester and epoxy matrices. In addition, the dielectric
relaxation and the fiber orientation effect on the dynamic electrical properties of palm tree
fiber-reinforced polyester composites were studied [69,170–172].

Figure 5. Extraction of OPEBF, and fabrication of OPEBF/polyester yarn, magnesium hydroxide reinforced epoxy resin
hybrid composite. Extracted from [69] with permission.

3.4. Pineapple Leaf Fiber Reinforced Hybrid Composites (PARPC)

Pineapple—Ananas comosus—is a tropical plant native to Brazil, with long leaves
containing fibers that have a high cellulose content. They are cheap and easily available.
In addition, pineapple leaves possess the possibility to be used as a reinforcing agent in
polymers. At present, pineapple leaf fibers are the by-products of pineapple farming,
making these inexpensive fibers accessible for industrial use, especially for the reinforce-
ment of polycarbonate to manufacture composites [173,174]. The composite fabricated
from silane-treated pineapple leaf fibers revealed the most excellent impact and tensile
strengths. Thermogravimetric analysis data demonstrated that the composites’ thermal
stability was poorer than neat polycarbonate resin, which also declined with the rising
content of pineapple leaf fiber. The Transient Plane Source (TPS) technique was employed
to study the thermal conductivity and diffusivity of phenol-formaldehyde composites
reinforced with pineapple leaf fibers [175]. The composites’ effective thermal diffusivity
and conductivity were found to decrease compared to pure phenol-formaldehyde due to
the increment in the fiber loading fraction.

Various efforts to improve pineapple leaf fiber’s quality have been carried out via
several surface alterations, e.g., alkali treatment, dewaxing, cyanoethylation, and graft-
ing acrylonitrile onto dewaxed fibers [176]. The mechanical characteristics were opti-
mum at 30 wt.% fiber loading. From all surface modifications, 10% acrylonitrile grafted
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fiber-reinforced polyester composite exhibited a maximum tensile strength of 48.36 MPa.
However, cyano-ethylated fiber composites demonstrated a better impact and flexural
strengths of 27% and 41% more, respectively, compared to unmodified composite. The
effect fiber content and surface treatment were also studied using natural rubber and PP as
the matrices [177,178].

Hashim et al. [77] conducted a study using a vacuum infusion technique on the
influence of stacking sequence and ply orientation on the mechanical characteristics of
pineapple leaf fiber (PALF)/Carbon hybrid laminate composites. The tensile and flexural
tests’ findings displayed that the laminate with inner carbon plies and ply orientation
[0◦, 90◦] resulted in the maximum tensile strength as well as modulus of 187.67 MPa and
5.23 GPa, respectively. Fracture properties of the composite laminates were investigated
using scanning electron microscopy and it was discovered that the failure was started at
the weakest fiber layer. This phenomenon might be due to the failure modes, including
delamination, debonding, matrix crack, fiber breaking, and fiber pull-out [179–186].

In a work conducted by Sathees Kumar et al. [82], the effects of fiber loading on the
mechanical characteristics of reinforced polyester reinforced with sisal and pineapple leaf
(PALF) fibers using an injection molding technique were studied, as shown in Figure 6.
Figure 6 showed that equal weight % share of PALF and sisal enhanced the overall me-
chanical attributes, e.g., ductile strength (207 MPa), bending strength (90.3 MPa), impact
(29 J/m2), and hardness (83.7). The mechanical test results revealed a regular trend of an
increase in flexural, tensile, impact, and hardness with the addition of PALF fibers, and
this was supported by various works [80,81,187,188]. Besides that, they concluded that this
type of composite material could be valuable for multiple industries, including automotive
and construction fields.

Figure 6. The fabrication process of pineapple leaf (PALF) and sisal fiber reinforced polyester
composites using injection molding technique. Extracted from ref. [82] with permission.
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3.5. Bamboo Fiber Reinforced Hybrid Composites (BRPC)

Bamboo (Bambusa Shreb.) is a perennial plant that is able to reach a height of 40 m in
monsoon climates. Figure 7 displays the morphological structure of the bamboo fiber [189].
Bamboo is used in carpentry, construction, plaiting, and weaving. Curtains are made from
bamboo fiber and absorb various wavelengths of ultraviolet radiation, resulting in less
harmful radiation to the human body.

Figure 7. (a) Bamboo culm, (b) bamboo culm cross-section, (c) vascular bundle, (d) polylamellar cells, (e) microstructure
fibers, and (f) bamboo’s model of polylamellae structure. Extracted with permission from Ref. [189].

Osorio et al. [83] developed a novel mechanical extraction process of long bamboo
fibers (Guadua angustifolia) for use as a reinforcing agent in structural composites. The
effectiveness of the new reinforcement was evaluated by fabricating the composites con-
taining unidirectional bamboo fiber/epoxy (BFC) with alkali-treated and untreated fibers.
Two orientations of fiber (transverse and longitudinal) were employed in the flexural tests.
When untreated fibers were utilized, the composite’s longitudinal flexural strength was
greater, whereas treatment increased the longitudinal flexural stiffness. For untreated
bamboo in epoxy, the transverse strength rose with the decreasing alkali concentrations,
while its three-point bending strength was already extremely high at approximately 33 MPa.
They concluded that bamboo fiber offers a natural and renewable alternative to glass fiber
and is helpful as traditional natural fiber reinforcement in a variety of applications where
glass fiber and conventional natural fibers are already in use.

When preparing bamboo fiber-reinforced composites, characteristics of material and
method affect the produced bamboo hybrid composite’s quality [190]. A novel composite
material fabricated from a right reinforcement material and the matrix combination is
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able to fulfill a specific application’s requirements [191]. The benefits offered by compos-
ite materials include their excellent strength, their lightweight, and their moldability. In
contrast, polymeric fiber composites have a high raw material cost. Numerous methods
of fabrication have been developed to manufacture bamboo-reinforced plastics as well
as hybrid composites, e.g., cold and hot presses, and injection molding. These proce-
dures have been used on various bamboo-reinforced polymeric materials to make hybrid
composites [84–87,192].

Bamboo fiber, aliphatic polyester, and polyolefin blends are particularly appealing.
Blending bamboo fiber with polypropylene (PP) and polylactic acid (PLA) will lead to en-
hanced chemical, mechanical and thermal characteristics. The materials that result may be
turned into products with more convenience and at a lower cost. The development of novel
composites using a polypropylene (PP)/polylactic acid (PLA) matrix and filler bamboo
fiber (BF) results in modifications in the raw thermoplastic’s processability, morphology,
and rheological characteristics [193]. Maleic anhydride grafted polypropylene (MAH-g-PP)
was used at the filler–matrix interface to increase PP, PLA, and BF interface strength and
to improve PLA dispersion and composite toughness. The addition of MAH-g-PP to
composites resulted in positive morphological and rheological alterations, which were
linked to enhanced PLA dispersion and increased bamboo fiber–matrix interactions.

Glass and bamboo fibers were used to create hybrid composites made of isophthalate
polyester and vinyl ester resin. The optimized glass fiber reinforced composites were
submitted to dynamical mechanical analysis to evaluate the dynamic characteristics as a
function of temperature and frequency with 25, 50, and 75% of glass fibers substituted by
bamboo fibers. The storage modulus E′ was spotted to drop as the wt.% of bamboo fibers
increased. The loss modulus was observed to reduce with loading; however, the damping
property increased significantly. Fiber–matrix bonding was visible in scanning electron
micrographs of composite flexural fracture surfaces.

3.6. Jute Fiber Reinforced Hybrid Composites (JRPC)

Jute is obtained from Corchorus genus plants that have about 100 species. At present,
jute dominates the highest production volume among bast fibers and is globally available
as one of the cheapest natural fibers. Jute is best grown in India, Bangladesh, and China.
Figure 8 shows that jute plants are being cultivated for fiber production. Sarkar and Ray [94]
studied the alkali-treated jute fiber reinforced with vinyl ester resin using the compression
molding technique, as shown in Figure 9. The mechanical, dynamic, thermal, and impact
fatigue behavior were compared with the untreated jute fiber–vinyl ester composites. Better
fiber dispersion resulted from an extended alkali treatment that eliminated hemicelluloses,
hence improving the crystallinity. All properties of mechanical, dynamic, thermal and
impact were excellent due to the longer treatment period, concentration, and conditions
during the alkali treatment [94].

Jute fiber reinforced hybrid composites have a number of advantages, e.g., a low
specific gravity, increased tensile and compressive strength and modulus, and improved
fatigue strength [194]. In work conducted by Prasath et al. [102], polyester-based polymer
composites were developed by a compression molding technique with different stacking
sequences of basalt and jute fabrics into the general-purpose polyester matrix. The result
showed that a combination of pure basalt fiber maintained higher values during flexural
and tensile tests. However, in the impact test, basalt fiber was somewhat lesser than jute
fiber-reinforced composites [102].
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Figure 8. Jute plant. Reproduced with permission from Ramesh et al. [195].

Figure 9. Fabrication procedure of jute fiber reinforced polymer composites [196]. Reproduced with
permission.

Ramana and Ramprasad [95] conducted a study on a new hybrid composite developed
from jute and carbon fiber reinforced epoxy composite and discussed its superiority or
inferiority compared to jute-epoxy and carbon-epoxy composites so that the extent of the
utility of the newly developed composite could be established. The hand layup technique
was utilized for the composite preparation, and the total fiber content considered was 45%.
The newly developed composites, for instance, jute and carbon-epoxy hybrid composites,
can replace carbon-epoxy composites without much loss of tensile and flexural strengths
as well as a flexural modulus and with improved ductility and impact strength [95].

Mohanty et al. [197] studied the surface modification influence on the biodegradability
and mechanical properties of jute/Biopol and jute/PA (Poly Amide) composites. More than
50%, 30%, and 90% in tensile, bending, and impact strengths were found and compared to
the values obtained for pure Biopol sheets. In addition, greater than 50% weight loss was
observed after 150 days of compost burial of the jute/Biopol composites. The hybridization
effects on tensile characteristics of jute–cotton woven fabric reinforced polyester composites
were investigated as functions of fiber orientation, content, and texture of roving. Tensile
characteristics along the alignment direction of jute roving (transverse to cotton roving
alignment) rose continuously with fiber content until 50% before showing a tendency to
decline. The composites’ tensile strength value at 50% fiber content parallel to the jute
roving was approximately 220% greater than pure polyester resin [101].

The evaluations conducted on jute fiber reinforced PP composites include a ma-
trix modification effect, gamma radiation influence, interfacial adhesion effect on creep
and dynamic mechanical behaviors, silane coupling agent influence, and natural rub-
ber effect [198–201]. The jute/plastic composites properties were studied, comprising
crystallinity, thermal stability, transesterification, modification, durability, weathering,
eco-design of automotive components, fiber orientation on frictional and wear behaviors,
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and alkylation [198,202–207]. Jute fiber reinforced composites used polyester resin ma-
trix, and examinations were carried out on the water absorption and dielectric behavior
relationship [208], properties of elasticity, fracture criteria and notched strength [96], char-
acterization of impact damage [209], thermal behavior and weathering [210], and silane
treatment effect [211].

3.7. Hemp Fiber Reinforced Hybrid Composites (HRPC)

Hemp is another renowned bast fiber crop, an annual plant in the Cannabis family that
cultivates in temperate climates. As a European Union subsidy for non-food agriculture,
many current initiatives are progressing for its development in Europe. PP composites
with hemp fibers were functionalized by the reactions of melt grafting using glycidyl
methacrylate (GMA) and were manufactured via batch mixing [212]. The fibers and PP
matrix modifications and various compatibilizer additions were conducted to enhance
the interactions of the fiber–matrix. In comparison with the unaltered composite, chem-
ical bonding between the fiber and the polymer (PP/Hemp) resulted in improved fiber
distribution in the PP matrix as well as higher interfacial adhesion in the modified com-
posite. Matrix and fiber modifications highly influenced the phase behavior and thermal
stability of the composites. The alterations in the crystallization behavior and spherulitic
morphology of PP in the composites were analyzed due to the hemp fibers’ nucleating
effect. Additionally, with increasing modified hemp content, a significant rise in the PP
isothermal crystallization rate (120–138 ◦C) was observed. All composites demonstrated
a higher tensile modulus (about 2.9 GPa) and lower elongation at break when compared
to plain PP. Still, compatibilization with modified PP (10 phr) boosted the stiffness of the
composites due to better fiber–matrix interfacial adhesion.

Ramesh et al. [103] fabricated hybrid composites using carbon, alkaline-treated, and
untreated hemp fibers and investigated their properties. The hybrid composites possessed
maximum tensile, flexural, impact, and shear strengths of 61.4 MPa, 122.4 MPa, 4.2 J/mm2,
and 25.5 MPa, respectively. In addition, from the composites’ mechanical properties,
the alkaline-treated composites exhibited better performance [103]. Thiagamani [104]
fabricated hybrid bio-composites using the green epoxy matrix, reinforced with sisal (S)
and hemp (H) fiber mats via the cost-effective hand lay-up method and hot press employing
different stacking sequences, as presented in Figure 10. As the stacking sequence was
changed, the tensile strength varied slightly, where the intercalated arrangement (HSHS)
hybrid composite demonstrated a maximum tensile modulus compared with the other
hybrid counterparts. Hybrid composites (SHHS and HSSH) possessed a compressive
strength that was 40% more than the other layering configurations, and the HHHH sample
had the maximum ILSS of 4.08 MPa [104].

Li and co-workers [213–215] investigated the effects of chelators, white rot fungi,
and enzyme treatments towards hemp fiber separation from bundles and enhanced the
hemp fibers’ interfacial interaction with the PP matrix. The findings indicated that treated
fiber composites had a greater interfacial shear strength than untreated fiber composites,
a conclusion that was corroborated by a large body of literature [92,174,216–219]. This
demonstrates that the white rot fungal treatment increased the interfacial attachment of
hemp fiber to PP. Composites made of chelator concentrate treated hemp fibers exhibited
the maximum tensile strength, measuring 42 MPa, a 19% improvement above composites
made of untreated hemp fiber. Additionally, hemp fiber reinforced PP composites showed
fascinating recyclability [220]. The findings demonstrated that despite the high number
of reprocessing cycles, the mechanical properties of hemp fiber/PP composites were well
maintained. Newtonian viscosity reduced as the number of cycles increased, indicating
a decline in chain scissions and molecular weight caused by reprocessing. Another pos-
sible explanation for the decrease in viscosity was the shortening of the fibers during
reprocessing.
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Figure 10. Different layering arrangements of sisal and hemp fiber mats [104]. Reproduced with
permission.

In addition, several investigations on the hemp-based composites have also been
conducted in terms of their effect on the falling weight impact properties [221], composites’
properties and performances for curved pipes [222], impact load performance of resin
transfer molded composites [223], composites’ micromechanics [224], the influence of
soybean oil and nano clay hybrid blends [105], as well as the practicality of untreated hemp
as the biocomposites’ fiber source [225]. Kunanopparat et al. [226] investigated the viability
of using wheat gluten as a hemp fiber-reinforced composite matrix, focusing on the effect
of thermal treatment and plasticization on mechanical properties.

3.8. Flax Fiber Reinforced Hybrid Composites (FRPC)

Flax is among the world’s oldest fiber crops, containing bast fiber that is cultivated in
temperate regions. Flax bast fiber is often utilized for applications in the higher value-added
textile industries. Recently, flax has been broadly used in composites. The dynamic and
static mechanical characteristics of nonwoven-based flax fiber reinforced PP composites
were investigated while taking into account the effect of zein coupling agent, a zein
protein [227]. It was discovered that composites containing zein protein as a coupling
agent have improved mechanical properties. The composites’ storage modulus increased
with the addition of a zein coupling agent due to the increased interfacial adhesion. The
diameter and position of flax fibers in the stems are used to evaluate their tensile mechanical
properties. The substantial dispersion of these attributes is a result of the fiber’s longitudinal
axis size variation. The increased mechanical qualities of the fibers originating from
the stem’s center are related to their cell walls’ chemical composition. The mechanical
characteristics of unidirectional flax fiber/epoxy matrix composites were investigated in
terms of their fiber content. The composites’ properties were poorer than predicted from
the characteristics of a single fiber.

Chaudhary et al. [100] developed and characterized the composites made from natural
fibers (hemp/epoxy, jute/epoxy, flax/epoxy) and their hybrid composites (hemp/flax/epoxy,
jute/hemp/epoxy, and jute/hemp/flax/epoxy). Among hemp/epoxy, jute/epoxy, and
flax/epoxy, a higher hardness (98 Shore-D) and tensile strength (46.2 MPa) was shown
by flax/epoxy composite. In contrast, better impact and flexural strengths were ex-
hibited by jute/epoxy (7.68 kJ/m2) and hemp/epoxy (85.59 MPa) composites, respec-
tively. In general, hybrid composites exhibited better mechanical performance. For exam-
ple, jute/hemp/flax/epoxy hybrid composite demonstrated the highest tensile modulus
strength and sn impact strength of 1.88 GPa, 58.59 MPa, and 10.19, kJ/m2, respectively.
In contrast, the flexural strength of jute/hemp/epoxy hybrid composite was maximum,
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86.6 MPa [100]. A similar trend has been shown by Fiore et al. [228], fabricating jute-basalt
reinforced hybrid composites via the hand-lay-up method, as presented in Figure 11, for
structural applications.

Figure 11. Jute-basalt reinforced hybrid composites including (a) jute fibre, (b) intercalate and
(c) sandwich laminates [228]. Reproduced with permission, Elsevier.

Paturel and Dhakal [109] studied the moisture absorption influence on flax and
flax/glass hybrid laminates to investigate their low-velocity impact behavior. Three differ-
ent composite laminates, (1) flax fiber reinforced vinyl ester, (2) flax fiber hybridized glass
fiber, and (3) glass fiber reinforced vinyl ester, were manufactured via the resin infusion
method. Moisture immersion tests were conducted by immersing various specimens in
seawater baths at room temperature and 70 ◦C at various periods of time. The low ve-
locity falling weight impact test was conducted at a 25 J incident energy level, and the
impact damage behavior was analyzed using scanning electron microscopy (SEM) and
X-ray microcomputed tomography (micro CT) under both aging circumstances. With glass
fiber hybridization, the percentage of moisture taken in by flax vinyl ester specimens was
lowered. The maximum weight growth percentages for flax fiber, flax/glass hybrid, and
glass fiber reinforced composites immersed in water at room temperature for 696 h were
3.97%, 1.93%, and 0.431%, respectively. When compared to a flax/vinyl ester composite
without hybridization, the hybrid composite demonstrated increased load and energy,
demonstrating that the hybrid system is a viable technique for improving the structural
performance of natural fiber composites. At room temperature, the composites’ moisture
absorption behavior was found to follow Fickian behavior [109].

Numerous studies on the composites of flax fiber/polypropylene have been conducted.
However, these researches concentrated on various variables, natural fiber thermoplastic
mat (NMT) and glass fiber thermoplastic mat (GMT) comparison [229], the effect of glass
fiber hybridization and fiber/matrix modification [230], the influence of fiber treatment on
crystallization and thermal properties [110], surface treatment influence on the interface
by thermoplastic starch, glycerol triacetate, boiled flax yarn, and -methacryl oxypropyl
trimethoxy-silane [231], matrices comparison (PP and PLA) on the properties of com-
posites [111], material and processing parameters effects [232], and processing methods
influence [233]. Buttlar [234] reported the viability of flax fiber composite applications in
the bus and automotive industries.

The bio-technical fiber modification effects are ascribed with: (i) toughness and frac-
ture behavior, (ii) alkaline fiber treatment influence on unidirectional composites, and (iii)
processing parameter influence on the successive flax fiber’s decortication steps (retting,
scotching, and hackling) towards the flax fiber reinforced epoxy composites [112,235–237].
Thermal degradation and fire resistance of flax fiber composites reinforced with polyester
resin were studied, as well as the influence of chemical treatments on surface properties
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and adhesion, and also the influence of chemical treatments on the water absorption and
mechanical characteristics [238,239]. Three soybean oil-based resins, methacrylic anhydride
modified soybean oil, methacrylated soybean oil, and acetic anhydride modified soybean
oil, were also used as matrices for the flax fiber-reinforced biocomposites.

3.9. Ramie Fiber Reinforced Hybrid Composites (RRPC)

Ramie is a plant from the Urticaceae (Boehmeria spp.) family that comprises approxi-
mately 100 species. The exploitation of ramie is for use as textile fiber with two limiting
factors: production regions as well as a need for more considerable pre-treatment than
other commercial bast fibers [240–243]. Ramie fiber/sugar palm fiber reinforced epoxy
hybrid composites were manufactured using a combination of melt mixing and injection
molding techniques as shown in Figure 12 [45]. Numerous ramie fiber/PP composites
were manufactured by changing the fiber length, content, and pretreatment technique.
Increments in fiber length and content were associated with significant increases in tensile,
flexural, and compression strengths. Nonetheless, they negatively affected the elongation
behavior and impact strength of composites. The preparation of thermoplastic biodegrad-
able composites containing ramie fibers and a PLA/PCL matrix was carried out via in situ
polymerization [116]. The influences of fiber content and length on the impact and tensile
strengths of this biodegradable composite reinforced with natural fibers were studied along
with the effect of a silane coupling agent towards improving interfacial adhesion. Tensile
and impact strengths were found to be highest with the use of a silane coupling agent,
ramie fiber length of 5–6 mm, and 45 wt.% fiber content.

Figure 12. Various hybrid composite stacking sequences: (a) SSSSS, (b) RRRRR, (c) SRSRS, and
(d) RSRSR [45]. Extracted from Ref. [45] with permission.

When compared to other natural fibers, the use of ramie fibers as reinforcement
in hybrid composites is favored due to their superior mechanical qualities. Romanzini
et al. [117] investigated the changes in chemical composition and thermal stability of ramie
fibers post washing with distilled water. Apart from this, research on glass and washed
ramie fiber composites was carried out, with an emphasis on the effects of using different
fiber lengths (25, 35, 45, and 55 mm) and the fiber compositions, while the fiber loading
was set at 21 vol.%. They reported that composites could be potentially produced from
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washed ramie fibers. The composite containing fiber length of 45 mm exhibited higher
flexural strength despite the insignificant difference observed in lower volume fractions
of glass fiber of 0:100 and 25:75. Better impact and flexural properties were also obtained
from the increased glass fiber’s relative volume fraction up to a limit of 75% [117].

The major problem with employing natural fibers is that they are incompatible with a
polymer matrix, which reduces the mechanical performance [244–247]. Tezara et al. [97]
investigated the influence of stacking sequences, alkali treatment, and orientations of fiber
on the mechanical characteristics of hybrid jute (J) and ramie (R) reinforced vinyl ester (VE)
composites. First, woven fibers were made using three- and four-layer stacking sequences
with a 0◦ orientation. A higher tensile strength value of 298.90 MPa was observed from
the RJJR stacking sequence fabricated from different fiber orientations, e.g., 0◦, 30◦, 45◦,
and 90◦. This was done to study the influence of fiber orientation on the flexural and
tensile characteristics. 0◦ fiber orientation possessed significantly flexural and tensile
strengths compared with other orientations of 28.90 MPa and 66.81 MPa, correspondingly.
Enhancement of mechanical properties was also conducted via 5 wt.% and 10 wt.% alkali
treatments, resulting in a maximum flexural strength (34.50%) increment in 0◦ RJJR with
5 wt.% compared with the untreated RJJR. They concluded that the fiber orientation and a
lower alkali treatment concentration (5 wt.%) combination had significantly improved the
mechanical characteristics of fiber hybrid composites.

Hand lay-up method employing epoxy as a matrix is used to manufacture bulletproof
panels, where the prototype is more lightweight and economical compared to the conven-
tional ones made of steel-based materials, Kevlar/aramid composite, and ceramic plates
used in military antiballistic equipment [118]. The findings from bullet testing revealed the
panels’ ability to resist high-impact projectile (level II) penetration and resulted in minimal
fractures. However, level IV ballistic testing demonstrated the failure of all prototype
panels to resist the projectile’s high-impact velocity. From the tests, ramie fiber has enough
breaking strength and toughness to pass level II bullet testing. Among the matrices used to
reinforce ramie fiber are included polyester [119], epoxy–bioresin [248], soy protein [249],
epoxy [250] and PP [251].

3.10. Abaca/Banana Fiber Reinforced Hybrid Composites (ARPC)

The banana plant produces abaca/banana fiber, the strongest commercially available
cellulose fiber, which is strong and seawater-resistant. Abaca is a native of the Philippines,
where it is currently grown, as well as in Ecuador, and was then the most chosen rope fiber
in marine applications.

Bledzki et al. [120] studied the mechanical characteristics of abaca fiber reinforced PP
composites with varying fiber lengths (5, 25, and 40 mm) and compounding procedures
(mixer-injection, mixer compression, and direct compression moldings). When the length
of the fibers was increased from 5 to 40 mm, the tensile and flexural characteristics were in-
creased slightly, but not significantly. The mixer-injection molding technique outperformed
the other two compounding procedures in mechanical performance (tensile strength was
roughly 90% greater). The comparison of the composites of abaca fiber PP with the com-
posites of jute and flax fiber PP revealed that the best falling weight impact properties and
notched Charpy (Figure 13) were possessed by abaca fiber composites. Figure 14 shows
the higher odor concentration of abaca fiber composites compared to flax and jute fiber
composites.

The effects of fiber loading, frequency, and temperature on the polarity of banana
fiber reinforced polyester composites were studied in a dynamic mechanical analysis [252].
The composites’ storage modulus at 40% fiber loading was the greatest, showing that the
inclusion of abaca fiber in the polyester matrix resulted in reinforcing effects at higher
temperatures. Enhanced fiber and matrix interactions were confirmed by the increased
dynamic modulus and low damping values. Abaca fibers were reinforced with the ma-
trices of cement [121], polyurethane [253], aliphatic polyester resin [254], PP [122,255],
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urea-formaldehyde [256], PE [123,124], polyester [125,126], and polyvinyl alcohol [127] to
evaluate the properties of the produced composites.

Figure 13. Notch Charpy strength of abaca/jute/flax fiber–PP composites comparison with and
without MAH–PP. Reprinted with permission, Elsevier.

Figure 14. Comparison of odor emission concentration abaca/jute/flax fiber–PP composites.
Reprinted with permission, Elsevier.

3.11. Sisal Fiber Reinforced Hybrid Composites (SRPC)

Sisal is a type of agave (Agave sisalana) mostly grown in Brazil and East Africa. Between
1998 and 2010, global demand for sisal fibers and products was predicted to fall by 2.3%
each year. Synthetic replacements and harvesting systems adoption that use less or no
twine continued to undercut the conventional market for fibers. Sisal fiber will be used to
make a wide range of non-structural and structural industrial goods using various polymer
matrices.

The composites’ mechanical properties are heavily impacted by the bonding between
the fiber and matrix, as reported by Senthilkumar et al. [257] and Ilyas et al. [258]. Good
interfacial bonding induces transfer of the applied stress by the reinforced polymer com-
posites to fibers. The hydrophilicity and hydrophobicity of the fibers and resin, respectively,
usually result in poor bonding of the plant-based fibers that could be overcome via mechani-
cal interlocking, chemical, inter-diffusion and electrostatic bondings, chemical pretreatment,
as well as coupling agent [259]. Compression molding (CM), resin transfer molding (RTM),
and injection molding are among the common techniques of natural fiber composite fabri-
cation [260–262]. These methods differ from each other in terms of processing temperature,
pressure, and speed. Sreekumar [263] studied the mechanical properties of the fabricated
sisal fiber polyester composites via resin transfer and compression moldings. The RTM



Polymers 2021, 13, 3514 21 of 43

composites demonstrated a higher Young’s modulus, tensile and tensile flexural strengths,
and flexural modulus. CM composites, on the other hand, possessed more water absorption
and voids due to the weaker adhesion of fiber-matrix compared to RTM composites.

Getu et al. [91] reported that composite materials possessed a low density with a
high strength to weight ratio, stiffness to weight, strength ratios, and fatigue strength
to weight ratio than conventional engineering materials, allowing them to be used in
wide structural constructions applications. Lightweight natural fibers produce lightweight
composite materials that in automotive applications improve fuel economy by minimizing
harmful emissions. As shown in Figure 15, Getu et al. [91] prepared and characterized the
performance of sisal and bamboo reinforced polyester hybrid composite (BSFRHC) with
various sisal and unidirectional (UD) bamboo fiber orientations. Following that, BSFRHC
was developed with a total fiber volume percentage of 20% via hand lay-up method using
3:1 bamboo to sisal fibers ratio prior to compressive, tensile, flexural and impact tests. It
was concluded that varying fiber orientation resulted in variation in tensile strength; a
higher tensile strength was found in the composite of bamboo/sisal fiber with 0◦ fiber
orientation. The 0◦ fiber orientation composite demonstrated a higher compressive strength
than the 90◦ fiber orientation composite and the bidirectional (0◦/90◦) fiber orientation
composite. Higher tensile and flexural strengths were observed in the unidirectional
90◦ fiber orientation, whereas almost similar tensile strengths were obtained from the
unidirectional 90◦ and bidirectional (0◦/90◦), and bidirectional (0◦/90◦) possesses higher
flexural strength compared to unidirectional 90◦ fiber orientation. ANSYS Software was
used to carry out the impact analysis of BSFRHC based vehicle internal door panel and the
potential for the applications of interior automotive parts was revealed from the composites
of sisal and bamboo fibers in unidirectional 0◦.

Figure 15. Fabrication of composite with varied orientations of sisal fiber [91]. Reprinted with
permission, Elsevier.

Asaithambi et al. [129] conducted a study on the effect of Benzoyl Peroxide (BP) fiber
surface treatment towards the mechanical characteristics of banana/sisal fiber (BSF) rein-
forced PLA composites [129]. BSF underwent BP treatment for the purpose of improving
fiber and matrix adhesion. Twin-screw extrusion of BSF (30 wt.%) reinforced PLA (70 wt.%)
hybrid composites was performed, followed by injection molding. The findings revealed
that treated BSF possessed better bonding and wettability, resulting in the PLA matrix’s
restricted motion. When comparing the composites of BSF-reinforced PLA with untreated
BSF reinforced PLA and virgin PLA, the mechanical characteristics, e.g., flexural and tensile
moduli, were improved.

Noorunnisa Khanam et al. [130] investigated the fluctuation of mechanical character-
istics, e.g., flexural and tensile properties of the hybrid composites comprising randomly
oriented unsaturated polyester-based sisal/carbon fibers varying fiber weight ratios by
the hand lay-up approach. These hybrid composites were tested for chemical resistance to
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different solvents, acids, and alkalis. The influence of treating sisal fibers with NaOH on
the tensile, flexural, and chemical resistance characteristics of these sisal/carbon hybrid
composites was also investigated. The flexural and tensile characteristics of the hybrid
composites were improved with the rising loading of carbon fiber, where the tensile and
flexural characteristics of these hybrid composites were found to be superior to those of the
matrix. Alkali treatment resulted in significant improvements in the tensile and flexural
characteristics of the sisal/carbon hybrid composites. All compounds, excluding carbon
tetrachloride, were resistant to these untreated and alkali-treated hybrid composites in
chemical resistance tests.

Incorporation of zinc borate and magnesium hydroxide into sisal/PP composites
as flame retardants was performed to improve the composites’ thermal stability as well
as to reduce the composites’ burning rate [264]. The same study reported no synergistic
effect from incorporating magnesium hydroxide and zinc borate into sisal/PP composites.
Furthermore, at high shear rates, the sisal/PP composites showed substantial changes in
shear viscosity, showing that the flame retardants utilized in this investigation did not
affect the composites’ processability. The sisal/PP composites that had flame retardants
added to them had tensile and flexural properties comparable to those of the sisal/PP
composites without flame retardants.

Environmental impacts of degradation behavior [265], coupling agent influence on
abrasive wear qualities, and the ageing effect [266] on mechanical characteristics have all
been examined with sisal/PP composites. All plant fiber composites were developed by
Zhang et al. [267] by transforming wood flour using a proper benzylation procedure and
compounding of both discontinuous and continuous sisal fibers to create composites from
renewable resources. The developed sisal/plasticized wood flour composites were found
to be fully biodegradable from the degradation tests. The process of decomposition was
accelerated by taking into account both lignin and cellulose in the composites. When it
comes to practical applications, composites’ hydrophobicity and flame resistance are vital;
therefore, molecular modification and/or integration of inorganic additives are appropriate
approaches as long as the composite’s biodegradability is not compromised.

Many studies were performed on the composites of sisal fiber reinforced polyester
concerning their characteristics of moisture absorption [268], as well as treatment of fiber
with admicellar [269]. A few investigations were conducted on the composites of sisal
fiber-reinforced phenolic resin, e.g., chemical alteration of such with lignins [270], hydroxyl-
terminated polybutadiene rubber modification [271], cure cycles effect [272], employing
glyoxal from natural resources [272], and alkali treatment effect [273]. Nevertheless, epoxy
resin was employed as a matrix for sisal fiber-reinforced composites, and the effects of fiber
orientation on electrical characteristics [274] and reinforcing degree [275] were investigated.
A different matrix (cement) was also used in the sisal fiber-reinforced composites to study
their cracking micro-mechanisms [276] and the influence of accelerated carbonation on
cementitious roofing [277].

Towo et al. [278] prepared composites using treated sisal fibers with epoxy and
polyester resin matrices. Dynamic thermal analysis and fatigue evaluation tests were
conducted on the produced composites and revealed better mechanical characteristics
in alkali-treated fiber bundle composites than untreated fiber bundle composites. The
polyester resin matrices were most affected by alkali treatment, where improvements in
the composites’ fatigue lives were found for the alkali-treated sisal fiber bundles. The
superiority of alkali-treated fiber composites was analyzed and was associated with low
cycle fatigue. Epoxy matrix composites possessed a longer fatigue life than polyester matrix
composites. The chemical treatment had significantly and positively impacted the fatigue
life of polyester matrix composites; however, it demonstrated a lesser effect on epoxy
matrix composites. Studies on sisal fibers were also conducted with other matrices, e.g.,
rubber [279], phenol-formaldehyde [256], cellulose acetate [280], bio polyurethane [281],
and polyethylene [282] in terms of their morphological, mechanical, cure, and chemical
properties.
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4. Mechanical Properties of NF Reinforcement Hybrid Composites

Researchers have been focusing their research interests on composites of natural
fibers, e.g., biocomposites made of natural or synthetic resins reinforced by natural fibers.
Natural fibers have numerous advantages, including their low density, which results in
comparatively lightweight composites having excellent specific properties [244,283,284].
Additionally, these fibers offer significant cost savings and ease of processing, as well as
being a highly renewable resource, thereby reducing reliance on domestic and foreign
petroleum oil. Researchers have reviewed recent advances in natural fiber (e.g., flax,
hemp, jute, kenaf, straw, bamboo, and coir) applications in composites [8,285,286]. Nilza
et al. [287] designed and manufactured composites from three Jamaican natural cellulosic
fiber: sugar cane bagasse, banana trunk, and coconut husk coir. The prepared samples
were tested for carbon and ash contents, moisture content, water absorption, elemental and
chemical analyses, and tensile strength.

4.1. Tensile Properties

Natural fiber-reinforced composites possess similar mechanical characteristics to
synthetic fibers, as reported by Van De Velde and Kiekens [288] for hemp, flax, sisal,
and jute fibers, in terms of strength and modulus compared to glass fiber. Srinivasan
et al. [289] researched the ultimate tensile strength of the composites of glass fiber and
banana/flax reinforced polymer (GFRP). A higher ultimate tensile strength (39 N/mm2)
was observed in the flax banana-GFRP hybrid composite compared to the banana-GFRP
and flax-GFRP composites with 30 N/mm2 and 32 N/mm2, respectively. Paul et al.
revealed the mechanical characteristics of the composites of kenaf reinforced polypropylene
showing improvements in ultimate tensile stress and tensile modulus with a rising fraction
of fiber weight [23]. Table 3 displays the tensile properties comparison of different natural
fibers with synthetic fibers.

Table 3. Tensile properties of natural and inorganic fibers.

Fibers Density
(kg/m3) Diameter (µm) Tensile

Strength (MPa)
Tensile Modulus

(GPa) % Elongation Ref.

Sugar Palm 1290 99–311 190.29 3.69 19.6 [157]
Jute 1460 - 393–800 10–30 1.5–1.8 [290]
Sisal 1450 50–300 227–400 9–20 2–14 [290]

Kenaf 1400 81 250 4.3 - [290]
Flax 1500 - 345–1500 27.6–80 1.2–2.3 [291]

Hemp 1480 - 550–900 70 1.6 [291]
Banana 1350 80–250 529–759 8.20 1–3.5 [292]

Coir 1150 100–460 108–252 4–6 15–40 [292]
Bamboo 910 - 503 35.91 1.4 [292]
Cotton 1600 - 287–597 5.5–12.6 3–10 [293]
E-glass 2550 <17 3400 73 3.4 [294]
S-glass 2500 - 4580 85 4.6 [294]

Carbon (Std. PAN-based) 1400 - 4000 230–240 1.4–1.8 [294]

4.2. Flexural Properties

The potential of composite materials’ use in structural applications is determined via
a few parameters. Major strength is the flexural properties that include flexural strength,
modulus, and load as well as deflection at the break. Flexural strength is related to
the fiber content/fiber length, as reported in a few studies. Satyanarayana et al. [293]
demonstrated that improvements in toughness and ductility of bamboo-mesh reinforced
cement composites as well as significant enhancements in the tensile, flexural, and impact
strengths. Banana and glass fibers were fabricated at different fiber lengths and loadings
in the phenol-formaldehyde composites, and the mechanical properties were compared.
From the composites of flexural property analysis, the optimum length of fiber needed
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for banana and glass fibers was different from the phenol-formaldehyde resole matrix
reinforcement [295]. Aziz et al. observed the influence of random and long kenaf and
hemp fibers alkalization and alignment on the formed composite fabricated via a com-
bination of the fibers with polyester resin hot-pressed [296]. Long and alkalized fiber
composites exhibited higher flexural strength and modulus compared with the as-received
fiber composites. The decline in the flexural properties was due to water absorption that
damaged and degraded fiber-matrix interfacial bonding; however, the maximum strain
was simultaneously increased [297–299].

Shibata and team reported that the densified structure of kenaf fibers contributes to
their composites’ higher flexural strength compared to the porous bagasse fibers [300].
Other researchers studied the effect of hybridizing the composites of jute/glass-reinforced
epoxy on their mechanical properties. The E-glass fabric layers added to the composites’
outer layers revealed improvements in the properties of bending, tensile, and impact of the
jute-reinforced composites [98]. A summary of specific moduli of natural and glass fibers
is presented in Figure 16.

Figure 16. Comparison of values and ranges of potential specific modulus between natural and glass
fibers [299]. Extracted with permission from Elsevier.

4.3. Impact Properties

Pothan et al. [301] examined the composites prepared from short banana fiber re-
inforced polyester, with the aim of studying the influence of fiber lengths and content
on the composites’ impact strength. A 40 mm fiber length yielded the highest impact
strength, while 40% incorporation of untreated fibers resulted in a 34% improvement of
impact strength. Another study on the impact behavior of 35% jute/vinyl ester composites
reinforced with alkali-treated and untreated fibers revealed hemicellulose removal, improv-
ing the crystallinity and, consequently, better fiber distribution [302]. Sanjay et al. [303]
compared different compositions of laminates to investigate the impact behavior of the
composites’ banana/E-glass fabrics reinforced polyester hybrid and found 6 J impact
strength in the hybrid laminate, which was the highest value attained.

4.4. Hardness Properties

Zampaloni et al. [304] discussed the excellent potential of the current materials substi-
tute by the Kenaf–maleated polypropylene composites that demonstrated more efficient
modulus/cost as well as better specific strength and modulus at a cheaper cost compared
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to the materials reinforced with E-glass, coir, and sisal (Figure 17). The hardness of various
laminates fabricated from hybrid composites of banana/E-glass fabrics reinforced polyester
utilizing different stacking sequences was measured by Sanjay et al. [303] Laminate L1, or
the composite of pure glass fiber, possessed the hardness of 26.72 HV, while laminate L2
(composites of pure banana fiber) exhibited the poorest hardness of 12.36 HV.

Figure 17. Kenaf–PP/MAPP composite hybrid composites tested for hardness properties [304].
Extracted with permission.

5. Current Application on NF Reinforcement Hybrid Composites

Due to its low manufacturing cost, max strength ratio, and simple manufacturing
process, hybrid natural fiber composites have already been widely extensively utilized
in numerous textile and engineering applications. Furthermore, natural fiber composites
demonstrated a good combination of mechanical qualities for aerospace and automotive
applications, including its enhanced impact strength, tensile, bending and compressive
behavior, as well as improved fatigue properties. Bio-based hybrid composites are a rapidly
increasing product in the industrial sectors as a means of reducing environmental effects in
today’s society.

5.1. Automotive

The automotive industry demands composite materials in order to comply with
new regulations and to remain competitive. At present, plant fibers are used in the
exterior and interior components in semi- or non-structural applications, fulfilling the
performance standards, e.g., elongation, ultimate breaking force, impact strength, flexural
properties, flammability, fogging characteristics, acoustic absorption, odor, dimensional
stability, aptness for processing dwell time and temperature, crash resistance, and water
absorption. A few renowned automakers, e.g., Volkswagen-Audi, Daimler-Chrysler, and
Opel-GM, have already begun incorporating natural fiber composites into their passenger
car parts, including rear parcel shelf, door trim panels, and seat squabs [305,306]. Table 4
shows the present use of natural fiber in the automobile sector by the big automobile
companies.

The prospects for a lightweight design from plant fiber composites are demonstrated,
for instance, in Mercedes E-Class’s panels and even external underbody panels and Volk-
swagen’s door structures (phenol-formaldehyde/flax composite) [307]. Given the unique
qualities of natural fiber composites, an approximately 15% weight reduction in compo-
nents is feasible compared to glass fiber reinforced composites.
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Table 4. Lists of natural fibers reinforced hybrid composites currently being used in the automotive industry. Extracted
from Ref. [308] with permission.

Automobile Model Natural Fiber Utilized Applications

Audi A2 Flax, sisal fibers and polyurethane Door trim panels
BMW 7 Series Sisal fiber Door trim panels

Chevrolet Impala Flax fiber and polypropylene Rear shelf compartment
Ford Focus and Fiesta Kenaf fiber and sun Interior door panels

Honda Pilot Wood fiber Floor area parts

Mercedes Benz A, C, E and S-class Flax, hemp, sisal, cotton, abaca and jute fibers Underbody panels, seat back rests, engine and
transmission cover and rear panel shelves

Toyota Prius and Raum Corn biopolymer, starch and kenaf fiber Instrument panels, sun visors, ceiling surface
skins and spare tire cover

5.2. Aerospace

During the early stages of the aircraft industry’s development, aircraft structures were
invented using wire, wood (natural composite), and fabric compositions. Aluminum alloys
have been the dominating material in the aerospace industry since the 1930s. The newest
components of civil aircraft are made of natural fibers that are also used as a substructure
in conjunction with fibers containing composites and other synthetic fibers, e.g., glass,
carbon, and Kevlar. The design of V22 Osprey tiltrotor’s wings is extremely rigid and risky,
and is most likely to be constructed using fiber composites with low-density materials. In
defense aircraft, a fascinating advancement called “stealth” has emerged, which requires
the designer to achieve the smallest possible radar cross-section (RCS) by reducing the
potentials of early detection via defending radar sets. Constant radius changes are required
to create the airframe’s essential compound curvatures, which are much easier to build
using composites compared to metal and radar-absorbent material (RAM).

5.3. Oil and Gas

Hybrid natural fiber-reinforced composites of natural fiber-reinforced composites
have been found to have less critical environmental impacts than glass fiber reinforced
composites in some applications [309]. Natural fibers have been used with glass fiber
for underground pipes; this application is faster and offers adequate strength. However,
certain issues, e.g., water absorption and strength, have yet to be studied [310].

5.4. Maritime

According to Moreau et al. [311], fiber-reinforced plastic (FRP) structures in boat
construction uses primarily thermosetting resins (e.g., vinyl ester, epoxy, polyester, etc.)
Only lately have thermoplastic resins (polypropylene, polyamide, PBT, PET, etc.) started
being applied in fittings or boat-building. In recent times, the resin structure has evolved
in 2 forms: both low styrene content and emission are commercially available despite the
evolution of bio-based resins; however, conventional resins are still relevant in the nautical
area [174].

The environmental benefits of adhesives and bio-based resins are found in their
elimination of toxins in common, their emphasis on human health and the environment,
their reduction of hazardous as well as toxic materials and waste, recycling capabilities,
and the decline of polluting air emissions. Natural fibers are also gaining popularity in
the composites sector. However, their application in structural components is limited due
to their generally poor physical characteristics, whereas at present, they are applied in
filling functions. Glass fibers provide for 89% of the fiber’s capacity used in composites
on a global scale. In contrast, natural fibers account for just 10%. Simultaneously, several
R&D studies of natural fiber uses are underway, resulting in more industrial uses in the
foreseeable future.

Glass fibers were accessible during World War II, shortly after polyester resins were
created, as a result of the accidental discovery of a manufacturing method involving blown
air on a molten glass stream. Soon after, glass-reinforced plastic became popular, and
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in the early 1950s, GRP boats became accessible. Fiberglass boats are significantly more
appealing due to their strength, including their high vibration damping ability, lightweight,
low construction costs, high impact resistance, ease of fabrication, maintenance, and repair.

Fiberglass boat construction has evolved over the years to include a variety of means
with the sole objective of an improvement in boat construction skills and techniques to
fulfill the aims of fiberglass boat building, e.g., to produce lightweight products, corrosion
and impact resistance, vibration damping, low cost, and ease of construction. Now, hybrid
natural fiber (NF) composites are broadly utilized in a variety of technical applications that
comprise marine applications, particularly in boat construction.

5.5. Textiles

Pineapple leaves (PAL) have been utilized as threads and fabrics in a variety of nations
for centuries. Excellent pina fibers are derived from pineapple leaves in the Philippines
and are used to create textiles for table linens, dresses, mats, bags, and other apparel items.
Applications of PAL in the textile industry are established in Indonesia, while in Malaysia,
the efforts in PAL employment in Malaysia are still in their infancy. The PAL dresses,
however, are recognized to be expensive, which is understandable because of the tedious
procedures involved.

6. Estimated Costing for NF as Reinforcement in Hybrid Composites

Excellent specific properties and cheap natural fiber composites are the primary
factors of their attractiveness for wide applications, as reported by Sanjay et al. [303] and
Ho et al. [292] The price lists of NF, synthetic fibers, and matrices in the US and Malaysia
currencies, USD and MYR, respectively, are tabulated in Table 5. Table 6 tabulated the
estimated cost for hybrid NF/synthetic fibers and matrices for numerous applications.

Table 5. Estimated cost of natural, synthetic fiber and matrices in US Dollar (USD) and Malaysia
Ringgit (MYR). Extracted from Ref. [292] with permission.

No. Types of Natural Fiber
Cost (Money per Tons)

USD MYR

1. Bamboo 500 2092.80
2. Banana 890 3725.18
3. Flax 3150 13,184.64
4. Hemp 1550 6487.68
5. Jute 950 3976.32
6. Kenaf 400 1674.24
7. Pineapple 455 1904.45
8. Sisal 650 2720.64
9. Sugar palm 4000 16,742.40

No. Types of Synthetic Fiber
Cost (Money per Tons)

USD MYR

1. Carbon 12,500 52,320.00
2. Kevlar (aramid) 20,000 83,712.00
3. Fiber Glass 980 4101.89
4. Glass 1500 6278.40

No. Types of Matrices
Cost (Money per Tons)

USD MYR

1. Epoxy 2650 11,091.84
2. Polyester 550 2302.08
3. Vinyl ester 1550 6487.68
4. Polyurethane 2750 11,510.40

Currency United States Dollar (USD) to Malaysian Ringgit (MYR) on date 8 June 2021.
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Table 6. Estimated costing for NF as reinforcement in hybrid composites (in US Dollar/USD and
Malaysia Ringgit/MYR) [303].

No.
Reinforced Composite Estimated Cost

(Money per Tons)

Natural
Fiber

Synthetic
Fiber Matrices USD MYR

1. Bamboo Carbon Epoxy 15,650 65,504.64
2. Bamboo Carbon Polyester 15,700 65,713.92
3. Bamboo Carbon Vinyl ester 16,700 69,899.52
4. Bamboo Carbon Polyurethane 17,900 74,922.24
5. Bamboo Kevlar Epoxy 25,300 105,895.68
6. Bamboo Kevlar Polyester 21,050 88,106.88
7. Bamboo Kevlar Vinyl ester 22,100 92,501.76
8. Bamboo Kevlar Polyurethane 23,250 97,315.20
9. Bamboo Fiber Glass Epoxy 4130 17,286.53

10. Bamboo Fiber Glass Polyester 2030 8511.59
11. Bamboo Fiber Glass Vinyl ester 3030 12,704.49
12. Bamboo Fiber Glass Polyurethane 4230 17,735.97
13. Bamboo Glass Epoxy 4650 19,496.99
14. Bamboo Glass Polyester 2550 10,691.90
15. Bamboo Glass Vinyl ester 3550 14,884.80
16. Bamboo Glass Polyurethane 4750 19,916.27
17. Banana Carbon Epoxy 16,040 67,254.12
18. Banana Carbon Polyester 13,940 58,449.03
19. Banana Carbon Vinyl ester 14,940 62,641.93
20. Banana Carbon Polyurethane 16,140 67,673.41
21. Banana Kevlar Epoxy 23,540 98,700.87
22. Banana Kevlar Polyester 21,440 89,895.78
23. Banana Kevlar Vinyl ester 22,440 94,088.68
24. Banana Kevlar Polyurethane 23,640 99,120.16
25. Banana Fiber Glass Epoxy 4520 18,951.91
26. Banana Fiber Glass Polyester 2420 10,146.82
27. Banana Fiber Glass Vinyl ester 3420 14,339.72
28. Banana Fiber Glass Polyurethane 4620 19,371.20
29. Banana Glass Epoxy 5040 21,132.22
30. Banana Glass Polyester 2940 12,327.13
31. Banana Glass Vinyl ester 3940 16,520.03
32. Banana Glass Polyurethane 5140 21,551.51
33. Flax Carbon Epoxy 18,300 76,730.07
34. Flax Carbon Polyester 16,200 67,924.98
35. Flax Carbon Vinyl ester 17,200 72,117.88
36. Flax Carbon Polyurethane 18,400 77,149.36
37. Flax Kevlar Epoxy 25,800 108,176.82
38. Flax Kevlar Polyester 23,700 99,371.73
39. Flax Kevlar Vinyl ester 24,700 103,564.63
40. Flax Kevlar Polyurethane 25,900 108,596.11
41. Flax Fiber Glass Epoxy 6780 28,427.86
42. Flax Fiber Glass Polyester 4680 19,622.77
43. Flax Fiber Glass Vinyl ester 5680 23,815.67
44. Flax Fiber Glass Polyurethane 6880 28,847.15
45. Flax Glass Epoxy 7300 30,608.17
46. Flax Glass Polyester 5200 21,803.08
47. Flax Glass Vinyl ester 6200 25,995.98
48. Flax Glass Polyurethane 7400 31,027.46
49. Hemp Carbon Epoxy 16,700 70,021.43
50. Hemp Carbon Polyester 14,600 61,216.34
51. Hemp Carbon Vinyl ester 15,600 65,409.24
52. Hemp Carbon Polyurethane 16,800 70,440.72
53. Hemp Kevlar Epoxy 24,200 101,468.18
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Table 6. Cont.

No.
Reinforced Composite Estimated Cost

(Money per Tons)

Natural
Fiber

Synthetic
Fiber Matrices USD MYR

54. Hemp Kevlar Polyester 24,750 107,967.18
55. Hemp Kevlar Vinyl ester 26,300 110,273.27
56. Hemp Kevlar Polyurethane 29,050 121,803.74
57. Hemp Fiber Glass Epoxy 5180 21,719.22
58. Hemp Fiber Glass Polyester 3080 12,914.13
59. Hemp Fiber Glass Vinyl ester 4080 17,107.03
60. Hemp Fiber Glass Polyurethane 5280 22,138.51
61. Hemp Glass Epoxy 5700 23,899.53
62. Hemp Glass Polyester 3600 15,094.44
63. Hemp Glass Vinyl ester 4600 19,287.34
64. Hemp Glass Polyurethane 5800 24,318.82
65. Jute Carbon Epoxy 16,100 67,505.69
66. Jute Carbon Polyester 14,000 58,700.60
67. Jute Carbon Vinyl ester 15,000 62,893.50
68. Jute Carbon Polyurethane 16,200 67,924.98
69. Jute Kevlar Epoxy 23,600 98,952.44
70. Jute Kevlar Polyester 21,500 90,147.35
71. Jute Kevlar Vinyl ester 22,500 94,340.25
72. Jute Kevlar Polyurethane 23,700 99,371.73
73. Jute Fiber Glass Epoxy 4580 19,203.48
74. Jute Fiber Glass Polyester 2480 10,398.39
75. Jute Fiber Glass Vinyl ester 3480 14,591.29
76. Jute Fiber Glass Polyurethane 4680 19,622.77
77. Jute Glass Epoxy 5100 21,383.79
78. Jute Glass Polyester 3000 12,578.70
79. Jute Glass Vinyl ester 4000 16,771.60
80. Jute Glass Polyurethane 5200 21,803.08
81. Kenaf Carbon Epoxy 15,550 65,199.60
82. Kenaf Carbon Polyester 13,450 56,394.50
83. Kenaf Carbon Vinyl ester 14,450 60,587.40
84. Kenaf Carbon Polyurethane 15,650 65,618.88
85. Kenaf Kevlar Epoxy 23,050 96,646.35
86. Kenaf Kevlar Polyester 20,950 87,841.25
87. Kenaf Kevlar Vinyl ester 21,950 92,034.15
88. Kenaf Kevlar Polyurethane 23,150 97,065.63
89. Kenaf Fiber Glass Epoxy 4030 16,897.39
90. Kenaf Fiber Glass Polyester 1930 8092.30
91. Kenaf Fiber Glass Vinyl ester 2930 12,285.20
92. Kenaf Fiber Glass Polyurethane 4130 17,316.68
93. Kenaf Glass Epoxy 4550 19,077.69
94. Kenaf Glass Polyester 2450 10,272.60
95. Kenaf Glass Vinyl ester 3450 14,465.50
96. Kenaf Glass Polyurethane 4650 19,496.99
97. Pineapple Carbon Epoxy 15,605 65,430.20
98. Pineapple Carbon Polyester 13,505 56,625.11
99. Pineapple Carbon Vinyl ester 14,505 60,818.01
100. Pineapple Carbon Polyurethane 15,705 65,849.49
101. Pineapple Kevlar Epoxy 23,105 96,876.95
102. Pineapple Kevlar Polyester 21,005 88,071.86
103. Pineapple Kevlar Vinyl ester 22,005 92,264.76
104. Pineapple Kevlar Polyurethane 23,205 97,296.24
105. Pineapple Fiber Glass Epoxy 4085 17,128.00
106. Pineapple Fiber Glass Polyester 1985 8322.91
107. Pineapple Fiber Glass Vinyl ester 2985 12,515.81
108. Pineapple Fiber Glass Polyurethane 4185 17,547.29
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Table 6. Cont.

No.
Reinforced Composite Estimated Cost

(Money per Tons)

Natural
Fiber

Synthetic
Fiber Matrices USD MYR

109. Pineapple Glass Epoxy 4605 19,308.30
110. Pineapple Glass Polyester 2505 10,503.21
111. Pineapple Glass Vinyl ester 3505 14,696.11
112. Pineapple Glass Polyurethane 4705 19,727.59
113. Sisal Carbon Epoxy 15,800 66,247.82
114. Sisal Carbon Polyester 13,700 57,442.73
115. Sisal Carbon Vinyl ester 14,700 61,635.63
116. Sisal Carbon Polyurethane 15,900 66,667.11
117. Sisal Kevlar Epoxy 23,300 97,694.57
118. Sisal Kevlar Polyester 21,200 88,889.48
119. Sisal Kevlar Vinyl ester 22,200 93,082.38
120. Sisal Kevlar Polyurethane 23,400 98,113.86
121. Sisal Fiber Glass Epoxy 4280 17,945.61
122. Sisal Fiber Glass Polyester 2180 9140.52
123. Sisal Fiber Glass Vinyl ester 3180 13,333.42
124. Sisal Fiber Glass Polyurethane 4380 18,364.90
125. Sisal Glass Epoxy 4800 20,125.92
126. Sisal Glass Polyester 2700 11,320.83
127. Sisal Glass Vinyl ester 3700 15,513.73
128. Sisal Glass Polyurethane 4900 20,545.21
129. Sugar palm Carbon Epoxy 19,150 80,294.04
130. Sugar palm Carbon Polyester 17,050 71,488.94
131. Sugar palm Carbon Vinyl ester 18,050 75,681.85
132. Sugar palm Carbon Polyurethane 19,250 80,713.32
133. Sugar palm Kevlar Epoxy 26,650 111,740.78
134. Sugar palm Kevlar Polyester 24,550 102,935.69
135. Sugar palm Kevlar Vinyl ester 25,550 107,128.60
136. Sugar palm Kevlar Polyurethane 26,750 112,160.07
137. Sugar palm Fiber Glass Epoxy 7630 31,991.83
138. Sugar palm Fiber Glass Polyester 5530 23,186.74
139. Sugar palm Fiber Glass Vinyl ester 6530 27,379.64
140. Sugar palm Fiber Glass Polyurethane 7730 32,411.12
141. Sugar palm Glass Epoxy 8150 34,172.14
142. Sugar palm Glass Polyester 6050 25,367.04
143. Sugar palm Glass Vinyl ester 7050 29,559.94
144. Sugar palm Glass Polyurethane 8250 34,591.42

Currency United States Dollar (USD) to Malaysian Ringgit (MYR) on date 8 June 2021.

7. Conclusions and Future Directions

Currently, the production of many bio-based plastics has been demonstrated at the
demo and pilot scale, and some had been hugely commercialized. Some of the products
are partly bio-based (i.e., polyamides, polyols bio-based polyethylene (PE), polypropylene
(PP), or polyethylene terephthalate (PET)), and some of them are entirely new plastics (i.e.,
thermoplastic starch (TPS), polyhydroxybutyrate (PHB), polyhydroxyalkanoates (PHAs),
or poly (lactic acid) (PLA). Partly bio-based plastics often require petrochemical monomers
that cannot be resembled by bio-based substitutions, at least not at a reasonable price.
Today’s bio-based plastics are sophisticated materials that could technically be a substitute
for around 90% of the plastics we use today.

Natural fiber reinforced hybrid composites are superior to petroleum-based compos-
ites because they have a higher strength-to-weight ratio, a low manufacturing cost due to
their facile processes, and are environmentally beneficial. As a result, natural fiber compos-
ites have numerous advantages in commercial, industrial and engineering applications.
Natural fibers, on the other hand, have lower strength than synthetic composites, but
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when combined with synthetic or biosynthetic composites, they offer high strength with a
lower environmental impact. This study outlines the properties of natural fiber, composite
hybridization, estimated costing, and natural fiber applications in various industries. This
gives a comprehensive idea of how natural fibers are processed and commercialized. The
characteristics of natural fibers such as sisal, jute, abaca, sugar palm, kenaf and hemp, were
studied. In addition, the numerous applications of the hybrid composites in various sectors
were described.
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