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Abstract: Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially
harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To
demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats,
pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or
until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed
for Western blot or immunohistochemical analyses. Several antibodies that recognize different
methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific
markers in the newborn brains demonstrated that prenatal RST administration did not affect the
composition and cell type ratios as compared to the controls. Prenatal RST administration did,
however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3,
H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover,
significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2%
and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional
activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone
methylation marks on tissue sections indicated that most of the increase at these sites belonged
to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect
neuronal differentiation and development.

Keywords: epigenetics; H3K4me1; H3K4me3; histone methylation; immunohistochemistry; in utero;
prenatal; rosuvastatin; Western blot

1. Introduction

Statins (3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors)
are a class of lipid-lowering agents used in the treatment of high cholesterol levels [1]. Apart
from the inhibition of cholesterol synthesis, reduction of levels of low-density lipoproteins
and triglycerides, and stimulation of the expression of high-density lipoproteins, they also
strongly modulate the inflammatory cells surrounding atherosclerotic plaques [2,3]. Statins
may also have beneficial effects on the central nervous system (CNS) [4–6]. In vitro [7]
and animal studies [8,9] have demonstrated that statins can attenuate neuroinflammation.
Furthermore, statins have long been known to induce apoptosis in various cancer cell
lines [10,11], and are associated with antitumor properties [12,13].

Besides their beneficial properties, statins also have numerous adverse effects [14]. As
a result of their potentially harmful, but not well documented effects on the embryo, it is
recommended that statin treatment be discontinued three months before attempting to be-
come pregnant and that statins should not be used during pregnancy or breastfeeding [15]
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because of the potential risk of fetal abnormality [16]. Some malformations were reported
in fetuses after pregnant mothers were exposed to lipophilic statins (such as simvastatin,
lovastatin, atorvastatin, cerivastatin, and fluvastatin) as compared to hydrophilic statins
(pravastatin and rosuvastatin (RST)) [17,18]. For example, in a prospective, observational
cohort study, Taguchi et al. [19] found no evidence of major malformations, spontaneous
or therapeutic abortions, or stillbirths, but noted a younger gestational age at birth and
lower birth weights from patients using RST. Animal models provided some evidence for
the teratogenic effects of lipophilic statins on pregnancy outcomes, including decreased
fetal body weight and survival rate, and unusual neonatal development [20–22].

RST, one of the highest-selling prescription drugs on the market (Crestor; AstraZeneca
Pharmaceuticals, LP, Wilmington, DE, USA), exhibits the greatest inhibitory effect on
cholesterol biosynthesis [23], and among the statins, it alters the high-density lipoprotein
profile most favorably [24]. Only small amounts of RST have been shown to pass into
breast milk [25]. In in vitro studies, RST strongly inhibited the expression of certain pro-
inflammatory genes, while concomitantly vigorously stimulating several anti-inflammatory
genes [7]. Its beneficial effects on the expression of inflammasome-related genes in animal
models [26] or humans [27] have also been noted.

Histone modification is one of the main mechanisms of epigenetic modification reg-
ulating gene expression. This modification requires several different histone-modifying
enzymes, including “writers”, which attach modifications to histone tails, “erasers”, which
remove modifications, and “readers”, which recognize these modifications [28–31]. The
N-terminal tails of histones are subject to a number of highly site- and residue-specific
posttranslational modifications, including methylation, acetylation, phosphorylation, ubiq-
uitylation, and SUMOylation, that are implicated in influencing gene expression and
genome function, as they coordinate the recruitment of chromatin remodelers and the tran-
scriptional machinery for transcriptional regulation [32]. Of all the known modifications,
Lys (K) histone methylation has been regarded as a stable chromatin modification that,
together with DNA methylation, defines epigenetic programs [33]. Lys histone methylation
has been linked to transcription initiation and elongation and heterochromatin silencing,
among other mechanisms. Lys methylation marks, such as H3K4 and H3K36, are impli-
cated in the activation of transcription and are linked to open chromatin, while the H3K9,
H3K27, and the H4K20 Lys methylation sites are associated with transcriptional repression,
as is characteristic of condensed chromatin [33,34]. The complexity of the methylation pat-
terns of histone proteins and the methylation state at any given Lys residue (unmethylated,
mono- (me1), di- (me2), or trimethylated (me3)) further influence gene expression.

As recent studies have emphasized the importance of maternal effects on chromatin
structure and the interrelationship between the genome, epigenome, and environment [35,36],
our aim was to investigate whether RST elicited molecular epigenetic events such as histone
methylation in the brains of the newborn rats whose mothers had been treated chronically
with the drug.

2. Results
2.1. Histone Methylation Patterns of Absolute Controls and Vehicle-Treated Controls Did Not
Differ Significantly

When investigating epigenetic events in the newborn brain after the administration
of RST, we assumed that liver pâté, the vehicle used to deliver RST, would not elicit
changes in histone methylation patterns. To reveal such possible effects of the liver pâté,
we assayed H2AK118me1, H2BK5me1, H3, H3K4me1, H3K4me3, H3K9me3, H3K27me3,
H3K36me2, H4, H4K20me2, and H4K20me3 levels using Western blots from absolute
control and vehicle-treated control newborn rat brain samples. Our data showed that liver
pâté, as a nutritional supplement, had no significant effect on the methylation patterns
of these sites (Figure 1). As all vehicle-based controls had values between 93.2% ± 7.7%
and 106.4% ± 10.7% of the absolute controls, with no significant differences among them
across at least five separate experiments, we refer to vehicle-treated controls hereafter
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as merely “controls”, and further data presentation uses the vehicle-based controls as a
reference point.
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2.2. Prenatal RST Exposure Does Not Affect Cell Composition in the Newborn Brain 
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fluorescent staining for microglial and neuronal cell markers revealed that the ratios of 
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Quantitative Western blot analysis of cell-specific markers corroborated that prenatal ex-
posure to RST did not cause abnormalities in cell composition in newborn brains, as the 
ratios of these cells did not change significantly between the control and treated groups 

Figure 1. Quantitative Western blot analyses of histone methylation patterns in the brains of absolute
control and vehicle-treated newborn rats. Protein contents from the absolute and vehicle-treated
controls were determined and assayed on Western blots. Gel-loaded protein samples were separated
by gel electrophoresis, transferred to nitrocellulose membranes, and assayed for immunoreactivity
with antibodies that recognize core histones and histone methylations. Grayscale digital images
of the immunoblots were scanned and processed under identical settings to allow comparisons
between Western blots from different samples. Values indicate the means ± SEM from at least
5 separate experiments. Integrated optical density data were analyzed by ANOVA using SigmaPlot.
No statistically significant differences were observed between the absolute and vehicle-control
samples. Hence, we refer to vehicle-treated controls hereafter as simply “controls”, and further data
presentation uses the vehicle-based controls as the reference point.

2.2. Prenatal RST Exposure Does Not Affect Cell Composition in the Newborn Brain

RST exposure in utero did not cause structural abnormalities in the newborn brain at the
level of light microscopy as evidenced by H&E staining (Figure 2). Double immunofluorescent
staining for microglial and neuronal cell markers revealed that the ratios of these cells did not
change between the controls and the RST-treated groups (Figure 3). Quantitative Western
blot analysis of cell-specific markers corroborated that prenatal exposure to RST did not
cause abnormalities in cell composition in newborn brains, as the ratios of these cells
did not change significantly between the control and treated groups (Figure 4). These
observations were supported by Ki67 fluorescent immunohistochemistry, as proliferation
rates in both the control and prenatally RST-exposed rat brains were in the same range
(Figure 5). Analyses of the immunohistochemical data detected approximately the same
incidence of Ki67-immunopositive cells among the DAPI-labeled cell nuclei of both control
and prenatally RST-treated rats. Of a total of 4268 cells analyzed from the controls and
3557 cells analyzed from RST-treated newborns, 554 (12.9%) and 448 (12.5%) cells were
Ki67-positive, respectively.
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2.3. In Utero RST Exposure Alters Histone Methylation Patterns in the Newborn Brain

Several antibodies that recognize different methylation sites for the H2A, H2B, H3,
and H4 histones were used in the Western blotting experiments (Table S2). We found
that prenatal RST treatment induced a general, nonsignificant increase in H2AK118me1,
H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels,
to 101.0%–111.7% of the control levels (Figure 6). However, the levels of H3 histone
mono- and tri-methylation at Lys 4 (H3K4me1 and H3K4me3) were elevated significantly
(134.3% ± 19.2% and 127.8% ± 8.5%, respectively) compared to the control values. These
modifications are known to play roles in transcription activation.
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Figure 2. Histological architecture of the newborn rat brain. No differences were observed in paraffin-
embedded, H&E-stained tissue sections of control (A) and rosuvastatin (RST)-treated newborn
(B) brains by light microscopy. Scale bar: 1 mm.
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Figure 3. Double immunofluorescent staining for Iba1 and NeuN. Microglia were labeled with the anti-Iba1 antibody/Alexa
Fluor 568 goat anti-rabbit IgG complex (red), whereas neurons were detected with the anti-NeuN antibody/Alexa Fluor
488 goat anti-mouse IgG complex (green). Cell nuclei were labeled with DAPI (blue). Representative pictures with
lower (20×) magnification show that prenatal exposure to RST did not cause abnormalities in the cytoarchitecture by
light microscopy. The ratio of microglia (B,F) to neurons (C,G) is similar between the control (A–D) and RST-treated
(E–H) newborn brains. Scale bar: 100 µm.
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membranes, and assayed for reactivity toward the Iba1 (microglia marker), beta III tubulin (neuron-
specific marker), EAAT1 (astrocyte marker), CNPase (oligodendrocyte marker), and GAPDH pro-
teins. Error bars indicate integrated optical density values (means ± SEM from at least 5 separate 
experiments) normalized to the values of the internal standard GAPDH. Representative Western 
blot pictures are shown below the graphs. No statistically significant differences were found be-
tween the control and the RST-treated groups. 

Figure 4. Quantitative Western blot analyses of the main cell types from control and RST-treated
newborn rat brains. Controls (red column) and RST-treated (black column) samples were analyzed
quantitatively on Western blots for microglial, neuronal, astrocyte, and oligodendrocyte markers.
Protein samples (15–30 µg) were separated by gel electrophoresis, transferred to nitrocellulose mem-
branes, and assayed for reactivity toward the Iba1 (microglia marker), beta III tubulin (neuron-specific
marker), EAAT1 (astrocyte marker), CNPase (oligodendrocyte marker), and GAPDH proteins. Error
bars indicate integrated optical density values (means ± SEM from at least 5 separate experiments)
normalized to the values of the internal standard GAPDH. Representative Western blot pictures are
shown below the graphs. No statistically significant differences were found between the control and
the RST-treated groups.
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Figure 5. Ki67 immunohistochemistry of the hippocampus in control and prenatally RST-exposed newborn rats. The
expression of the Ki67 protein in the tissue areas was quantified by the percentage of Ki67-positive nuclei (red) over the total
number of nuclei (positive and negative nuclei). Immunohistochemical data analysis detected highly similar incidences for
Ki67-immunopositive cells (B,E) among the DAPI dye-labeled cell nuclei (blue; A,D) for both the controls (12.9%) and the
prenatally RST-treated rats (12.5%). Merged pictures (C,F) are shown. Scale bar: 50 µm.
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H3K4me3) increased significantly (134.3% and 127.8% of vehicle-treated controls, respectively). (B) 
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Figure 6. Quantitative Western blot analyses of histone methylation patterns in newborn rat brains.
(A) Protein contents from the vehicle-treated controls and RST-treated newborns were determined
and assayed by Western blot. Gel-loaded protein samples were separated by gel electrophoresis,
transferred to nitrocellulose membranes, and assayed for immunoreactivity using antibodies that
recognize different histone methylations. Grayscale digital images of the immunoblots were scanned
and processed at identical settings to allow comparisons between Western blots from different sam-
ples. Integrated optical density values were calculated as the percentage of the vehicle-treated control
values that had been normalized to the internal standard GAPDH. Prenatal RST exposure induced a
general increase in the Lys-methylated sites of several histone proteins. Quantitative analysis showed
that H3 histone mono- and tri-methylation at Lys 4 (H3K4me1 and H3K4me3) increased significantly
(134.3% and 127.8% of vehicle-treated controls, respectively). (B) Representative Western blot images
of immunoreactivity toward antibodies specific to the methylation sites and states, together with the
GAPDH immunoreactive bands that served as the internal standards. Data were analyzed with the
Mann–Whitney rank–sum test. Values are presented as the means ± SEM from at least 5 separate
experiments, where p < 0.05 is considered significant. (* p < 0.05).

2.4. The Increase in H3K4me1 and H3K4me3 Is Localized Mainly to Neuronal Cell Nuclei

Cell-specific markers were used to localize the increases in H3K4me1- and -me3-
immunopositivity in the cerebral tissue sections. Most of the immunoreactivity was localized
to NeuN-positive neuronal cell nuclei, which constitute the vast majority of the parenchyma,
and typically displayed the large nuclei of neuronal morphology (Figures 7 and 8). Interest-
ingly, besides neurons, few Iba1-positive microglia (Figures 9 and 10) and GFAP-positive
astrocytes (Figure 11) exhibited increased H3K4me1and H3K4me3 immunopositive signals,
although the numbers of these cells in the neonatal brain were negligible. These glial cells
displayed smaller nuclei with more compact chromatin, and they were smaller than the
neurons in the newborn rat brain. Hardly any CNPase-positive oligodendrocytes were
detected (data not shown), as myelogenesis occurs predominantly postnatally.
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DAPI-labeled cell nuclei are shown in blue (A,E,I,M). Immunoreactivity of the neuron-specific marker NeuN (B,F,J,N; 
shown here in green) and the histone methylation markers H3K4me1 and H3K4me3 (C,G,K,O, respectively; shown here 
in red) were colocalized in merged images (D,H,L,P). These immunohistochemical data corroborated the results of the 
Western blot analyses, as the immunofluorescent signals of the methylation marks were more intense in the sections from 
the RST-exposed newborns (G,O) as compared to the controls (C,K). Scale bar: 75 µm. 

Figure 7. Colocalization of H3K4 methylation patterns and NeuN immunoreactivity in neurons of the newborn brain.
DAPI-labeled cell nuclei are shown in blue (A,E,I,M). Immunoreactivity of the neuron-specific marker NeuN (B,F,J,N;
shown here in green) and the histone methylation markers H3K4me1 and H3K4me3 (C,G,K,O, respectively; shown here
in red) were colocalized in merged images (D,H,L,P). These immunohistochemical data corroborated the results of the
Western blot analyses, as the immunofluorescent signals of the methylation marks were more intense in the sections from
the RST-exposed newborns (G,O) as compared to the controls (C,K). Scale bar: 75 µm.
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Figure 8. Laser confocal microscopy images of H3K4me1 and H3K4me3 immunoreactivities in neuronal nuclei. Paraffin
sections of brains from the control (A–D,I–L) and RST-treated newborn rats (E–H,M–P) were immunostained for NeuN (shown
here in green) and H3K4me1 or H3K4me3 (shown here in red), then visualized by confocal microscopy. Cell nuclei were labeled
with DAPI (blue). Note the overwhelmingly neuronal localization of the histone methylation marks. Some NeuN-negative
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Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 9. Colocalization of H3K4 methylation patterns and Iba1 immunoreactivity in the microglial cells of the newborn 
brain. In a newborn rat brain, the majority of the cells are neurons. At birth, microglia are unevenly distributed and located 
in specific “hotspots” such as the ventricular zone. Due to their overwhelmingly neuronal localization, H3K4me1 and 
H3K4me3 immunoreactivities (shown here in red) were more intense in the sections cut from the RST-treated newborns 
(E–H,M–P) as compared to the controls (A–D,I–L). A few H3K4 methylated cell nuclei belonged to Iba1-positive microglia 
(shown here in green). DAPI-labeled nuclei are shown in blue (A,E,I,M). Scale: 75 µm. 

 
Figure 10. Laser confocal microscopy images of H3K4me1 and H3K4me3 immunoreactivities in microglial nuclei. New-
born brain sections from the control (A–D) and RST-treated rats (E–H) were immunostained for Iba1 (green), and 
H3K4me1 or H3K4me3 (red), then visualized by confocal microscopy. DAPI-labeled cell nuclei are blue. Note in the 
merged pictures the very few microglia that colocalize with the histone methylation marks. Scale bar: 20 µm. 

Figure 9. Colocalization of H3K4 methylation patterns and Iba1 immunoreactivity in the microglial cells of the newborn
brain. In a newborn rat brain, the majority of the cells are neurons. At birth, microglia are unevenly distributed and located
in specific “hotspots” such as the ventricular zone. Due to their overwhelmingly neuronal localization, H3K4me1 and
H3K4me3 immunoreactivities (shown here in red) were more intense in the sections cut from the RST-treated newborns
(E–H,M–P) as compared to the controls (A–D,I–L). A few H3K4 methylated cell nuclei belonged to Iba1-positive microglia
(shown here in green). DAPI-labeled nuclei are shown in blue (A,E,I,M). Scale: 75 µm.



Int. J. Mol. Sci. 2021, 22, 3412 9 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 9. Colocalization of H3K4 methylation patterns and Iba1 immunoreactivity in the microglial cells of the newborn 
brain. In a newborn rat brain, the majority of the cells are neurons. At birth, microglia are unevenly distributed and located 
in specific “hotspots” such as the ventricular zone. Due to their overwhelmingly neuronal localization, H3K4me1 and 
H3K4me3 immunoreactivities (shown here in red) were more intense in the sections cut from the RST-treated newborns 
(E–H,M–P) as compared to the controls (A–D,I–L). A few H3K4 methylated cell nuclei belonged to Iba1-positive microglia 
(shown here in green). DAPI-labeled nuclei are shown in blue (A,E,I,M). Scale: 75 µm. 

 
Figure 10. Laser confocal microscopy images of H3K4me1 and H3K4me3 immunoreactivities in microglial nuclei. New-
born brain sections from the control (A–D) and RST-treated rats (E–H) were immunostained for Iba1 (green), and 
H3K4me1 or H3K4me3 (red), then visualized by confocal microscopy. DAPI-labeled cell nuclei are blue. Note in the 
merged pictures the very few microglia that colocalize with the histone methylation marks. Scale bar: 20 µm. 

Figure 10. Laser confocal microscopy images of H3K4me1 and H3K4me3 immunoreactivities in microglial nuclei. Newborn
brain sections from the control (A–D) and RST-treated rats (E–H) were immunostained for Iba1 (green), and H3K4me1 or
H3K4me3 (red), then visualized by confocal microscopy. DAPI-labeled cell nuclei are blue. Note in the merged pictures the
very few microglia that colocalize with the histone methylation marks. Scale bar: 20 µm.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 11. Double immunofluorescence staining for H3K4me1 and H3K4me3 in GFAP-positive astrocytes. In the neonatal 
rat brains, GFAP-positive cells were few, and unevenly distributed (green; B,F,J,N). DAPI-labeled cell nuclei are blue 
(A,E,I,M), and H3K4me1 (C,G) and H3K4me3 (K,O) marks are shown here in red. Merged pictures show (D,H,L,P) that 
few GFAP-positive astrocytes exhibited H3K4me1 and H3K4me3 marks. Scale bar: 50 µm. 

3. Discussion 
Although the beneficial effects of statins are well documented [1], there are some cir-

cumstances, including pregnancy, in which their use requires caution. For example, 
HMG-CoA reductase activity is required for normal placental development in mammals. 
The inhibition of this enzyme by statins may disrupt membrane synthesis, cellular prolif-
eration and growth, and metabolism and protein glycosylation, which are crucial for the 
normal development of the placenta [17]. Limited data exist on the effect of statins in preg-
nancy, and there is no specific pattern of congenital anomalies associated with statin use 
[18]. Exposure to lipophilic statins is hypothesized to be of greater risk to the fetus than 
hydrophilic statins, because of their greater ability to reach the fetus in larger concentra-
tions as a result of placental transport [17]. Studies have occasionally reported beneficial 
effects from statin use; for example, Elahi et al. [37] demonstrated that statin treatment in 
hypercholesterolemic pregnant mice reduced certain cardiovascular risk factors in their 
offspring. Statins also proved beneficial in preventing preeclampsia, thus ameliorating the 
risks of structural abnormalities to the fetus [18,38]. However, the use of statins in human 
pregnancy is currently not recommended, because of the potential teratogenic effects ob-
served in animal experiments on one hand, and as a precaution owing to the lack of data 
supporting an indication for their use in pregnancy on the other. Indeed, animal models 
(rats, mice, rabbits) provide sporadic evidence for the teratogenicity of statins on preg-
nancy outcomes [21,22,39]. 

Figure 11. Double immunofluorescence staining for H3K4me1 and H3K4me3 in GFAP-positive astrocytes. In the neonatal
rat brains, GFAP-positive cells were few, and unevenly distributed (green; B,F,J,N). DAPI-labeled cell nuclei are blue
(A,E,I,M), and H3K4me1 (C,G) and H3K4me3 (K,O) marks are shown here in red. Merged pictures show (D,H,L,P) that
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3. Discussion

Although the beneficial effects of statins are well documented [1], there are some
circumstances, including pregnancy, in which their use requires caution. For example,
HMG-CoA reductase activity is required for normal placental development in mammals.
The inhibition of this enzyme by statins may disrupt membrane synthesis, cellular pro-
liferation and growth, and metabolism and protein glycosylation, which are crucial for
the normal development of the placenta [17]. Limited data exist on the effect of statins in
pregnancy, and there is no specific pattern of congenital anomalies associated with statin
use [18]. Exposure to lipophilic statins is hypothesized to be of greater risk to the fetus than
hydrophilic statins, because of their greater ability to reach the fetus in larger concentra-
tions as a result of placental transport [17]. Studies have occasionally reported beneficial
effects from statin use; for example, Elahi et al. [37] demonstrated that statin treatment in
hypercholesterolemic pregnant mice reduced certain cardiovascular risk factors in their
offspring. Statins also proved beneficial in preventing preeclampsia, thus ameliorating
the risks of structural abnormalities to the fetus [18,38]. However, the use of statins in
human pregnancy is currently not recommended, because of the potential teratogenic
effects observed in animal experiments on one hand, and as a precaution owing to the lack
of data supporting an indication for their use in pregnancy on the other. Indeed, animal
models (rats, mice, rabbits) provide sporadic evidence for the teratogenicity of statins on
pregnancy outcomes [21,22,39].

The nervous system comprises several different cell types that are defined by morphol-
ogy, function, anatomical location, and specific patterns of gene expression. The establish-
ment of these complex and highly regulated cell fates requires the spatial and temporal
coordination of gene transcription in the proper order, number, and location. In the devel-
oping brain, neurons are generated first, followed by the supporting glia. Lineage studies
indicate that the developing brain contains multipotent progenitor cells capable of generat-
ing both neurons and glia, and that cell fate restriction may be a consequence of a series of
gene expression events and extracellular signals acting on multipotent progenitors [40].

On postnatal day 1, the newborn rat brain is a tissue populated mostly by neurons
that are complemented gradually with non-neuronal cells. Bandeira et al. [41] reported
that > 90% of the cells are neurons at this stage, and only about 6% of the cells had non-
neuronal phenotypes. They also showed that the neuronal population initially present at
birth was further reduced by apoptosis and that the number of non-neuronal, mostly glial,
cells increased. Neurons and glial cells then worked together to achieve proper neuronal
development and normal brain function. Microglia, the resident immune cells of the CNS,
infiltrate the embryonic brain early and develop side by side with the neurons. At this
early stage, when the first wave of synaptogenesis occurs, microglia are the only major
non-neuronal cell type present in the CNS [42]. The generation of astrocytes and oligoden-
drocytes occurs in a temporally distinct, yet overlapping, pattern. In rats, neurogenesis
peaks at embryonic day 14, astrocytogenesis at postnatal day 2 (they are produced largely
during the final stage of neurogenesis), and oligodendrocytogenesis at postnatal day 14,
although oligodendrocyte precursors appear somewhat earlier [43].

Mammalian embryonic development and subsequent fetal development involve pre-
cise molecular interactions between intrinsic factors such as genetics and epigenetics, and
extrinsic maternal factors, such as environmental perturbations, drugs, or even maternal
nutrition, as nutritional components that could influence the epigenetic landscape in the
fetus and thus developmental processes [44]. Euchromatin allows transcription factors to
interact with gene promoters and activate lineage-specific genes, while heterochromatin
remains inaccessible to transcriptional activation [32]. During embryonal development, the
histone methylation landscape of brain cells is sensitive to a wide range of environmental
cues. Diet is now recognized as a major environmental factor that may contribute to
controlling the physiological and pathophysiological aspects of homeostasis, metabolism,
and gene expression [45,46]. It was therefore important to rule out any interference of liver
pâté, as the vehicle for RST, on epigenetic mechanisms. We ruled out potential impacts
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of this diet supplement on the histone methylation patterns, as they did not significantly
change their levels between the absolute and vehicle-treated control newborn rat brains.
We did not find any signs of RST histotoxicity or changes in the cellular compositions of
newborn brains through light microscopy. It is important to note that most of the histone
methylation marks we detected in this study were localized to neurons, and to a much
smaller extent, to microglia. Astrocytes and oligodendrocytes develop and populate the
newborn brain at later time points.

The dysregulation of chromatin decreases viability and normal cell functions and
leads to various neurodevelopmental and psychiatric diseases [47]. H3K4 methylation
has been observed in genes that are important for the regulation of cell differentiation,
proliferation, and apoptosis [48]; for example, homeobox genes, known for their role in
embryonic development, are regulated by H3K4 methylation [49]. H3K4me3 is almost
always associated with RNA polymerase II occupancy of the promoters at the sites of
active gene expression [50]. H3K4me1 and H3K4me3 marks are commonly located in
euchromatin, are broadly associated with transcriptional regulation and the epigenetic
tagging of promoters and enhancer sequences, and are known to allow the DNA to adopt
a more “open” conformation and recruit chromatin-modifying factors [51]. The proper
regulation of H3K4 methylation is pivotal for healthy brain development, as mutations
associated with the loss and gain of H3K4 methylation could potentially result in intellec-
tual disability, autism, microcephaly, seizure disorders, and other neurological diseases
in early childhood [47]. It is possible that this epigenetic mark is involved more broadly
in the pathophysiology of some neurodevelopmental disorders, as multiple regulators of
H3K4 methylation are associated with neurodevelopmental diseases [52,53]. There can be
little doubt that the H3K4 methylation landscape of brain cells is sensitive to a wide range
of environmental perturbations [47]; indeed, the H3K4me3 mark undergoes global and
gene-specific alterations in the hippocampus of fear-conditioned animals. Gupta et al. [54]
found that H3K4me3 was upregulated in the rat hippocampus 1 h after contextual fear
conditioning and that this increase was reversible. Furthermore, the activation of the
maternal immune system by the viral mimic polyriboinosinic¬–polyribocytidilic acid,
which leads to behavioral deficits in the adult offspring, could result in robust but tran-
sient changes in H3K4 methylation at the genes encoding cytokines and other signaling
molecules in the fetal brain [55]. Prenatal exposure to the alkylating and antimitotic agent
methylazoxymethanol, which leads to several anatomical and behavioral abnormalities in
adulthood similar to those observed in patients with schizophrenia, resulted in decreased
H3K4 methylation in the adult prefrontal cortex [56].

In this study, we focused on methylations of the Lys (K) residues of the four core
histones. These epigenetic modifications, particularly in the case of the histone H3, are
involved in a wide range of biological processes, including the activation and repression of
transcription; nevertheless, one methyl mark by itself might still have a limited biological
message. As mentioned above, H3K4me is a mark that, on a genome-wide scale, is associ-
ated broadly with transcriptional activation and the epigenetic tagging of promoters and
enhancers [51]. Hence, H3K4me1/3 sites correlate positively with gene expression similarly
to H3K36 methylation. The methylation of histone H3 lysine 36 (H3K36) plays an important
role in the partitioning of chromatin into distinctive domains, as well as in the regulation
of a wide range of biological processes [57,58]. H3K36me2 regulates the distribution of
H3K27me3 [57], a hallmark of heterochromatin. A study on the epigenetic silencing of
inflammation-related genes demonstrated that repressive histone marks (e.g., H3K27me3)
correlated with a silencing of their expression [59]. Similar to H3K27, the methylation of
H3K9 was shown to be involved in heterochromatin formation and transcriptional silenc-
ing [60]. H3K9me3 is a typical mark of constitutive heterochromatin, while H3K27me3 is
usually enriched in facultative heterochromatin [61]. H3K9me3 modification is associated
with changes in gene transcription by alterations to the chromatin structure. Another
hallmark of heterochromatin is a strong enrichment of H4K20me2/3; in fact, H3K9me3 is
required for the induction of H4K20me2/3 [61]. Hence, the H4K20 histone methyl mark
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is associated with gene repression [34]. Besides H3 and H4, there are only a few known
methylation marks in H2A and H2B; for example, Barski et al. [51] reported that H2BK5me1
is an activation mark associated with the active promoters downstream of transcription
start sites. Interestingly, no data are available on the Lys methylation of H2A, particularly
of H2AK118.

In this study, we provided evidence that, in newborn rat brains, prenatal exposure
to RST alters the methylation landscape in general, and the H3K4me1 and H3K4me3
histone modifications in particular. We observed that RST significantly elevated the levels
of H3K4me1 and H3K4me3 compared to the controls. Furthermore, we did not find any
histological structural alteration in newborn brains that could be related to RST treatment.
It remains to be determined in future studies whether the changes observed in the H3K4
methylation patterns are: (1) linked to specific loci or are genome-wide, (2) reflect an
adaptive or maladaptive response to RST, or (3) are the outcomes of secondary or tertiary
processes in response to RST treatment. The identification of the genomic sequences
involved in the control of the embryonic development of offspring whose mothers had
been treated with RST remains a formidable challenge. Interestingly, statins, in general,
did not directly inhibit the activity of the major epigenetic modifying enzymes, such as,
“writers” or “readers” [62]. Since 50% of all pregnancies are unplanned [63], the possibility
exists that a pregnant woman may be taking a statin at least for a while. The epigenetic
changes elicited by rosuvastatin are not good or bad unless definitely proven either way.
Although there are no such data available yet on humans, our data could provide a warning.
Prenatal statin therapies, therefore, require caution and warrant further investigation until
a more detailed picture of their effects on the epigenetic spectrum emerges.

4. Materials and Methods
4.1. Animal Handling and Treatment

Pregnant Sprague–Dawley rats (190–210 g) were kept under standard housing condi-
tions and fed ad libitum with regular laboratory chow. Pregnant rats were divided into
three groups: in addition to absolute controls (no supplements at all), the vehicle-treated
control animals received a small amount (650 mg) of liver pâté in pellet form once a day,
whereas treated rats were given daily oral doses of RST (0.25 mg/kg body weight) mixed
into pellets of liver pâté. Both groups received this liver pâté supplement (with or without
RST) for 10 days, beginning on the 11th day of pregnancy (or until delivery). Feeding
with the liver pâté was done individually, using forceps. Five breeding runs (4–6 pregnant
rats each) provided the litters (6–12 pups from each mother) from which the independent
experiments were performed. On postnatal day 1, the cerebral hemispheres of the absolute
control, vehicle-treated control, and RST-treated rats were removed and either homoge-
nized for Western blot analysis or embedded in paraffin for hematoxylin and eosin (H&E)
staining and fluorescent immunohistochemistry/confocal microscopy.

4.2. Antibodies

The antibodies used in this study are listed in Tables S1 and S2. Several antibodies
specific for the Lys methylation sites and the states of the H2A, H2B, H3, and H4 histone
proteins were selected for the Western blot analyses and the fluorescent immunohisto-
chemistry. The antibodies for cell-specific markers were used to detect neurons, astrocytes,
oligodendrocytes, and microglial cells, as well as to check for possible changes in their
ratios. The anti-Ki67 antibody was used to visualize the proliferating cells [64,65].

4.3. Histology

Rat brains were dissected quickly, fixed in 0.05 M phosphate-buffered saline (PBS)
containing 4% formaldehyde, and then embedded in paraffin for H&E staining and im-
munohistochemistry. Paraffin-embedded sections were cut (6 µm thickness) on a microtome
(Leica RM2235; Leica Mikrosysteme Vertrieb GmbH, Wetzlar, Germany), mounted on glass
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slides coated with (3-aminopropyl)triethoxysilane (Menzel, Darmstadt, Germany), and
subsequently used for H&E staining and immunohistochemistry.

4.4. Fluorescent and Confocal Immunohistochemistry

The paraffin-embedded tissue sections were deparaffinized, rehydrated, and placed
in a jar filled with 0.01 M citrate buffer (pH 6.0) containing 0.05% Tween-20, and then
heated at 95 ◦C for 20 min. The sections were washed 3 × 10 min in 0.05 M PBS containing
0.05% Tween-20 and blocked in a 0.05 M PBS solution containing 0.05% Tween-20 and
5% normal goat serum (NGS) for 1 h at room temperature (RT). The sections were then
incubated with primary antibodies in a 0.05 M PBS solution containing 0.05% Tween 20
and 5% NGS overnight at 4 ◦C. After washing (4 × 10 min in 0.05 M PBS containing
0.05% Tween-20), the primary antibodies were labeled with either Alexa 488- or Alexa
568–conjugated secondary antibodies (final dilution 1:1000; Invitrogen, Carlsbad, CA, USA)
in a blocking solution for 3 h at RT. After 4× 10 min washes in 0.05 M PBS containing 0.05%
Tween-20, the cell nuclei were stained using a 2-[4-(aminoiminomethyl)phenyl]-1H-indole-
6-carboximidamide hydrochloride (DAPI) solution (Thermo Fisher Scientific, Waltham,
MA, USA). Digital images were captured on a Leica DMLB epifluorescence microscope
using a Leica DFC7000 T CCD camera (Leica Microsystems CMS GmbH, Wetzlar, Germany)
and the LAS X Application Suite X (Leica).

Select immuno-labeled sections were also examined with a confocal laser scanning
microscope (Olympus Fluoview FV1000, Olympus Life Science Europa GmbH, Hamburg,
Germany). Images (512 × 512 pixels) were captured along the Z-axis, with a distance of
0.5 µm between consecutive optical slices using the following microscope configuration:
objective lens, UPLSAPO 60×; numerical aperture, 1.35; sampling speed, 4 µs/pixel; optical
zoom, 2×; and scanning mode, sequential unidirectional. The excitation wavelengths were
as follows: 405 nm (DAPI), 488 nm (Alexa Fluor 488), and 543 nm (Alexa Fluor 568). Z-stack
images were prepared using 10–12 consecutive optical slices.

4.5. Western Blot Analyses

Brains from newborn rats were dissected, homogenized in 50 mM Tris-HCl (pH 7.5
at 4 ◦C) containing 150 mM NaCl, 2 µg/mL leupeptin, 1 µg/mL pepstatin, 2 mM phenyl-
methylsulfonyl fluoride, and 2 mM EDTA, and centrifuged at 14,000× g for 10 min. The
supernatant was aliquoted, and the pellet was rehomogenized in 50 mM Tris-HCl (pH 7.5
at 4 ◦C) containing 150 mM NaCl, 0.1% Nonidet-P40, 0.1% cholic acid, 2 µg/mL leupeptin,
1 µg/mL pepstatin, 2 mM phenylmethylsulfonyl fluoride, and 2 mM EDTA. The sam-
ples were incubated on ice for 30 min and then aliquoted. The protein concentrations of
these suspensions and the abovementioned supernatants were determined by the Lowry
method [66]. For Western blot analyses, 15–30 µg of protein was separated on an SDS
polyacrylamide gel (4–12% stacking gel/resolving gel), transferred onto a Hybond-ECL
nitrocellulose membrane (Amersham Biosciences, Little Chalfont, Buckinghamshire, Eng-
land), blocked for 1 h in 5% nonfat dry milk in Tris-buffered saline (TBS) containing 0.1%
Tween-20, and incubated overnight with the appropriate primary antibodies as well as
with those of the internal control (mouse anti-GAPDH monoclonal antibody). After five
rinses in 0.1% TBS–Tween-20, the membranes were incubated for 1 h with the appropriate
horseradish peroxidase-conjugated goat anti-rabbit or rat anti-mouse secondary antibodies
and washed three times, as described above. The enhanced chemiluminescence method
(ECL Plus Western blotting detection reagents; Amersham Biosciences) was used to reveal
the immunoreactive bands, according to the manufacturer’s protocol. The exposure time
and film development were optimized for each antibody.

4.6. Imaging and Statistical Analyses

Grayscale digital images of the immunoblots were acquired by scanning the autora-
diographic films with a desktop scanner (Epson Perfection V750 PRO; Seiko Epson Corp.,
Suwa, Japan). The images were scanned and processed at identical settings to allow com-
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parisons of the Western blots obtained from different samples. The bands were analyzed
by densitometry via ImageJ (version 1.47; developed at the U.S. National Institutes of
Health (Bethedsa, MD, USA) by W. Rasband, available at https://imagej.net/Downloads;
accessed on 10 July 2013) [67]. The immunoreactive densities of equally loaded lanes were
quantified, the samples were normalized to the densities of internal controls (GAPDH),
and, for epigenetic studies, presented as % of the absolute controls or as % of controls.

All statistical comparisons were made using SigmaPlot software (v. 12.3, Systat
Software, Inc., Chicago, IL, USA), and data were analyzed with one-way analysis of
variance (ANOVA) or the Mann–Whitney rank–sum test. For the Western blots, values
were presented as means± standard errors of means (SEMs) from at least five immunoblots,
each representing an independent newborn. A p-value of < 0.05 was considered significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/7/3412/s1, Table S1: Primary and secondary antibodies used in immunohistochemistry, Table
S2: Primary and secondary antibodies used in Western blots.

Author Contributions: K.G. conceived and designed the experiments. K.D., M.S., N.L., I.B. and Z.H.
performed and analyzed the experiments. I.B., Z.H. and K.G. contributed reagents, materials and/or
analysis tools. K.D. and K.G. wrote the manuscript. K.G. edited the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the Ministry of National Resources (GINOP
2.3.2-15-2016-00030 and 2.3.2-15-2016-00034) through the European Union Cohesion Fund. At the
time of the experiments, K.D. and N.L. were PhD students, partly supported by the Theoretical
Medicine Doctoral School, Faculty of Medicine, University of Szeged. The funders had no role in the
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed. Experimental procedures were carried out
in strict compliance with the European Communities Council Directive (86/609/EEC) and followed
Hungarian and local legislation requirements (XXVIII/1998 and 243/1998) and university guidelines
regarding the care and use of laboratory animals. The experimental protocols were approved by the
Institutional Animal Welfare Committee of the University of Szeged (II./1131/2018; date of approval:
30 May 2018).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank Edina Ratkai for her excellent technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

ANOVA analysis of variance
CNS central nervous system
CNPase 2′,3′-cyclic nucleotide 3′-phosphodiesterase
DAPI 2-[4-(aminoiminomethyl)phenyl]-1H-indole-6-carboximidamide hydrochloride

EAAT1
excitatory amino acid transporter 1 (also known as glutamate aspartate transporter 1
(GLAST-1))

GAPDH glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12)
GFAP glial fibrillary acidic protein
H histone
HGM-CoA 3-hydroxy-3-methylglutaryl coenzyme A
H&E hematoxylin and eosin
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Iba1 ionized calcium-binding adaptor molecule 1
IgG immunoglobulin G
Ki67 proliferation marker antigen identified by the monoclonal antibody Ki67
NeuN anti-neuronal nuclei protein (hexaribonucleotide-binding protein-3)
PBS phosphate-buffered saline
RST rosuvastatin
RT room temperature
SDS sodium dodecyl sulfate
SEM standard error of the mean
TBS Tris-buffered saline
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56. Maćkowiak, M.; Bator, E.; Latusz, J.; Mordalska, P.; Wędzony, K. Prenatal MAM administration affects histone H3 methylation in
postnatal life in the rat medial prefrontal cortex. Eur. Neuropsychopharmacol. 2014, 24, 271–289. [CrossRef]

57. Jie, L.; Ahn, J.H.; Wang, G.G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell. Mol. Life Sci.
2019, 76, 2899–2916. [CrossRef]

58. Sun, Z.; Zhang, Y.; Jia, J.; Fang, Y.; Tang, Y.; Wu, H.; Fang, D. H3K36me3, message from chromatin to DNA damage repair. Cell.
Biosci. 2020, 10, 9. [CrossRef]

59. Maleszewska, M.; Steranka, A.; Smiech, M.; Kaza, B.; Pilanc, P.; Dabrowski, M.; Kaminska, B. Sequential changes in histone
modifications shape transcriptional responses underlying microglia polarization by glioma. Glia 2021, 69, 109–123. [CrossRef]

60. Bannister, A.J.; Zegerman, P.; Partridge, J.F.; Miska, E.A.; Thomas, J.O.; Allshire, R.C.; Kouzarides, T. Selective recognition of
methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410, 120–124. [CrossRef]

61. Saksouk, N.; Simboeck, E.; Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics
Chromatin 2015, 8, 3. [CrossRef] [PubMed]

62. Bridgeman, S.; Northrop, W.; Ellison, G.; Sabapathy, T.; Melton, P.E.; Newsholme, P.; Mamotte, C.D.S. Statins do not directly
inhibit the activity of major epigenetic modifying enzymes. Cancers 2019, 11, 516. [CrossRef]

63. Koren, G.; Pastuszak, A.; Ito, S. Drugs in pregnancy. N. Engl. J. Med. 1998, 338, 1128–1137. [CrossRef] [PubMed]
64. Cuylen, S.; Blaukopf, C.; Politi, A.Z.; Müller-Reichert, T.; Neumann, B.; Poser, I.; Ellenberg, J.; Hyman, A.A.; Gerlich, D.W. Ki-67

acts as a biological surfactant to disperse mitotic chromosomes. Nature 2016, 535, 308–312. [CrossRef]
65. Szabo, M.; Gulya, K. Development of the microglial phenotype in culture. Neuroscience 2013, 241, 280–295. [CrossRef] [PubMed]
66. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem.

1951, 193, 265–275. [CrossRef] [PubMed]
67. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

[CrossRef]

http://doi.org/10.1016/j.cell.2007.05.009
http://doi.org/10.1016/j.ajhg.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22795537
http://doi.org/10.1038/nature10423
http://www.ncbi.nlm.nih.gov/pubmed/21937992
http://doi.org/10.1523/JNEUROSCI.3732-09.2010
http://doi.org/10.1016/j.schres.2012.06.037
http://www.ncbi.nlm.nih.gov/pubmed/22804924
http://doi.org/10.1016/j.euroneuro.2013.05.013
http://doi.org/10.1007/s00018-019-03144-y
http://doi.org/10.1186/s13578-020-0374-z
http://doi.org/10.1002/glia.23887
http://doi.org/10.1038/35065138
http://doi.org/10.1186/1756-8935-8-3
http://www.ncbi.nlm.nih.gov/pubmed/25788984
http://doi.org/10.3390/cancers11040516
http://doi.org/10.1056/NEJM199804163381607
http://www.ncbi.nlm.nih.gov/pubmed/9545362
http://doi.org/10.1038/nature18610
http://doi.org/10.1016/j.neuroscience.2013.03.033
http://www.ncbi.nlm.nih.gov/pubmed/23535251
http://doi.org/10.1016/S0021-9258(19)52451-6
http://www.ncbi.nlm.nih.gov/pubmed/14907713
http://doi.org/10.1038/nmeth.2089

	Introduction 
	Results 
	Histone Methylation Patterns of Absolute Controls and Vehicle-Treated Controls Did Not Differ Significantly 
	Prenatal RST Exposure Does Not Affect Cell Composition in the Newborn Brain 
	In Utero RST Exposure Alters Histone Methylation Patterns in the Newborn Brain 
	The Increase in H3K4me1 and H3K4me3 Is Localized Mainly to Neuronal Cell Nuclei 

	Discussion 
	Materials and Methods 
	Animal Handling and Treatment 
	Antibodies 
	Histology 
	Fluorescent and Confocal Immunohistochemistry 
	Western Blot Analyses 
	Imaging and Statistical Analyses 

	References

