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ABSTRACT
Aims/Introduction: Painful diabetic peripheral neuropathy (pDPN) is associated with
small nerve fiber degeneration and regeneration. This study investigated whether the
presence of pDPN might influence nerve regeneration in patients with type 2 diabetes
undergoing intensive glycemic control.
Materials and Methods: This exploratory substudy of an open-label randomized con-
trolled trial undertook the Douleur Neuropathique en 4 questionnaire and assessment of
electrochemical skin conductance, vibration perception threshold and corneal nerve mor-
phology using corneal confocal microscopy in participants with and without pDPN treated
with exenatide and pioglitazone or basal–bolus insulin at baseline and 1-year follow up,
and 18 controls at baseline only.
Results: Participants with type 2 diabetes, with (n = 13) and without (n = 28) pDPN
had comparable corneal nerve fiber measures, electrochemical skin conductance and
vibration perception threshold at baseline, and pDPN was not associated with the severity
of DPN. There was a significant glycated hemoglobin reduction (P < 0.0001) and weight
gain (P < 0.005), irrespective of therapy. Participants with pDPN showed a significant
increase in corneal nerve fiber density (P < 0.05), length (P < 0.0001) and branch density
(P < 0.005), and a decrease in the Douleur Neuropathique en 4 score (P < 0.01), but no
change in electrochemical skin conductance or vibration perception threshold. Participants
without pDPN showed a significant increase in corneal nerve branch density (P < 0.01)
and no change in any other neuropathy measures. A change in the severity of painful
symptoms was not associated with corneal nerve regeneration and medication for pain.
Conclusions: This study showed that intensive glycemic control is associated with
greater corneal nerve regeneration and an improvement in the severity of pain in patients
with painful diabetic neuropathy.

INTRODUCTION
In patients with type 1 diabetes, 6.5 years of intensive glycemic
control reduced the incidence of diabetic peripheral neuropathy
(DPN) by 60%, prevented peroneal nerve conduction velocityReceived 26 December 2020; revised 24 February 2021; accepted 9 March 2021
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slowing1 and continued to benefit patients 8 years after comple-
tion of the DCCT2. However, in patients with type 2 diabetes,
the United Kingdom Prospective Diabetes Study (UKPDS)3

and Veterans Affairs Co-operative Study in Type 2 Diabetes
Mellitus (VA-CSDM) trial4 reported no impact on the inci-
dence of DPN, and the Action to Control Cardiovascular Risk
in Diabetes (ACCORD) trial showed no effect on vibration per-
ception over a period of 6 years5. Furthermore, multiple
phase III clinical trials failed to show an improvement in dia-
betic neuropathy, and there are currently no US Food and
Drug Administration approved therapies for DPN6. It is unclear
whether this failure is a consequence of inadequate translation
of experimental therapies, inadequate end-points or the enrol-
ment of patients with a widely varying severity of DPN7.
The prevalence of painful diabetic peripheral neuropathy

(pDPN) and DPN increases with age and duration of diabetes8.
Hyperglycemia, hyperlipidemia and hypertension are associated
with DPN9; whereas obesity, physical inactivity and smoking
cigarettes are associated with pDPN8,10. Neuropathic pain might
be present at any stage of DPN11, and has been linked to a com-
plex interplay between ongoing small nerve fiber degeneration
and regeneration12,13. Indeed, skin biopsy studies have shown
comparable intra-epidermal nerve fiber density in patients with
and without painful neuropathy14 and painful diabetic neuropa-
thy15,16. However, more detailed immunohistological studies have
shown an increase in regenerating intra-epidermal17,18 and der-
mal nerve fibers containing substance P and calcitonin gene-re-
lated peptide in patients with painful compared with painless
diabetic neuropathy19. Recently, B€onhof et al.20 showed compa-
rable intra-epidermal nerve fiber density, but increased growth-
associated protein-43 staining indicative of regenerating dermal
nerves in patients with painful diabetic neuropathy. We also uti-
lized corneal confocal microscopy (CCM) to show significantly
greater corneal sub-basal nerve plexus degeneration in patients
with painful compared with painless DPN15,21,22. These studies
suggest that patients with painful diabetic neuropathy might have
greater small fiber degeneration, but also an increased capacity
for nerve regeneration.
CCM has been used to identify early small fiber regeneration

in several clinical trials23. Indeed, early corneal nerve regenera-
tion occurred 6 months24 after pancreas and kidney transplan-
tation, and was followed by an improvement in nerve
conduction and neuropathic symptoms after 24 months24,25.
We also recently reported that exenatide and pioglitazone or
basal–bolus insulin effectively reduce glycated hemoglobin
(HbA1c)26 and induce corneal nerve regeneration27.
The present substudy of the Qatar study26 assessed whether

the presence of pDPN might influence nerve regeneration in
patients with type 2 diabetes undergoing intensive glycemic
control with exenatide and pioglitazone or insulin.

MATERIALS AND METHODS
This was an exploratory substudy of an open-label, randomized
controlled trial (clinicaltrials.gov ID: NCT02887625)26, that

examined the efficacy of exenatide and pioglitazone versus
basal–bolus insulin in patients with poorly controlled type 2
diabetes. This substudy has not been registered in a public clin-
ical trial database. Participants with type 2 diabetes were
enrolled from the National Diabetes Center in Hamad General
Hospital, Doha, Qatar, and studied at baseline and 1-year fol-
low up, and control participants without diabetes were enrolled
from Rumailah Hospital, Doha, Qatar, and studied at baseline
only from October 2016 to November 2018.
The present study received ethical approval from the Hamad

Medical Corporation IRB (IRB# 13-00076), and all participants
consented to participate in the study. The study followed the
tenets of the declaration of Helsinki.

Study cohort
Individuals aged 18–75 years with HbA1c >7.5% (>58 mmol/
mol) on near maximum dose of metformin (>1,500 mg/day)
and sulfonylurea (>4 mg glimepiride or >60 mg gliclazide);
with normal liver and kidney function, and electrocardiogram;
and stable bodyweight (–1 kg) in the past year were recruited.
The exclusion criteria are described in detail in our previous
report27, but included any cause of neuropathy apart from dia-
betes, corneal dystrophies, corneal surgery or trauma in the past
year, antidiabetic treatment other than metformin and sulfony-
lureas, diabetic proliferative retinopathy, and abnormally high
albumin excretion.

Interventions
Participants were randomized to receive exenatide and pioglita-
zone or glargine and aspart insulin treatment to achieve and
maintain an HbA1c <7.0% (<53 mmol/mol)27.

Demographic and metabolic measures
Age, sex, diabetes duration, bodyweight, body mass index
(BMI), blood pressure, HbA1c, total cholesterol, triglyceride,
high-density lipoprotein (HDL) and low-density lipoprotein
(LDL) were recorded from the electronic health record.

DPN assessment
pDPN was defined on a Douleur Neuropathique en 4 (DN4)
questionnaire score ≥4, as previously described28. The DN4
questionnaire has been validated for distinguishing neuropathic
pain from non-neuropathic pain29 in Arabic30 and for pDPN28.
It consists of 10 questions relating to symptoms and signs, and
each question is equally weighted. A score ≥4 has 80% sensitiv-
ity and 92% specificity for pDPN28. The questionnaire was
administered by the investigator in English or Arabic. Medica-
tions for pDPN were recorded.
CCM was carried out using the HRT-3-RCM device (Heidel-

berg Engineering GmbH, Heidelberg, Germany), as described
in our previously published protocol31. Corneal nerve fiber den-
sity (CNFD; fibers/mm2), length (CNFL) (mm/mm2) and
branch density (CNBD) (branches/mm2) were quantified man-
ually using CCMetrics32.
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Sudomotor function was measured by electrochemical skin
conductance (ESC) using Sudoscan (Impeto Medical SAS, Paris,
France), as described previously33. Sudoscan evaluates sympa-
thetic innervation based on sweat chloride concentrations gen-
erated by the sweat gland in response to the voltage applied33,
and is reported as ESC in microSiemens (µS).
Vibration perception threshold (VPT) was measured using a

Neurothesiometer (Horwell Scientific Laboratory Supplies, Lon-
don, UK) on the pulp of the large toe on both feet, and the
average value of three measurements was recorded as a VPT in
Volts (V) ranging from 0 to 50 V.

Statistical analysis
Continuous variables between controls, participants with type 2
diabetes, with and without pDPN were compared using one-
way ANOVA. Continuous variables were compared between the
two study groups (with and without pDPN) using the unpaired
t-test, whereas categorical variables were compared using the
v2-test. Within each group, changes between baseline and

1-year follow up were compared for the continuous variables
using the paired t-test. Linear regression was used to analyze
the association between the change in CCM measures with type
of treatment, change in DN4 score, bodyweight, diastolic blood
pressure, HbA1c, cholesterol, triglyceride and LDL. No adjust-
ment for multiple testing was carried out, as the study was
exploratory in nature. All analyses were carried out using IBM
SPSS (version 23; Armonk, NY, USA). A two-tailed P value of
≤0.05 was considered significant.

RESULTS
Difference between participants with and without pDPN and
healthy controls
A total of 41 participants with type 2 diabetes, with (n = 13) and
without (n = 28) pDPN, and 18 control participants were studied
(Table 1). The proportion of those treated with basal–bolus insu-
lin (P = 0.84) or a combination of exenatide and pioglitazone
(P = 0.84) were comparable between the two groups. Three out
of 13 participants with pDPN (23%) were taking medication to

Table 1 | Comparison of baseline characteristics between patients with type 2 diabetes with and without painful diabetic peripheral neuropathy
and healthy controls

Controls
(n = 18)

Patients without painful
diabetic neuropathy
(n = 28)

Patients with painful
diabetic neuropathy
(n = 13)

P-value

Age (years) 53.0 – 11.0 50.7 – 9.4 57.6 – 5.1 <0.01
Diabetes duration (years) 12.0 – 8.0 9.3 – 6.3 0.27
Male, n (%) 16/28 (69.6) 7/12 (30.4) 0.94
Basal-bolus insulin, n (%) 12/28(42.9) 6/13(46.2) 0.84
Exenatide plus pioglitazone, n (%) 16/28(57.1) 7/13(53.8)
Physical activity 11/27 (49.7) 1/12(8.3) <0.05
HbA1c (mmol/mol) 90.1 – 21.1 87.0 – 20.7 0.66
HbA1c (%) 10.4 – 1.9 10.1 – 1.9
Total cholesterol (mmol/L) 4.9 – 0.9 4.9 – 1.2 1.00
Triglyceride (mmol/L) 1.9 – 1.2 2.1 – 1.1 0.72
HDL (mmol/L) 1.2 – 0.5 1.1 – 0.3 0.28
LDL (mmol/L) 2.9 – 0.9 2.6 – 0.7 0.45
Systolic BP (mmHg) 129.1 – 15.9 127.5 – 25.4 0.83
Diastolic BP (mmHg) 78.1 – 11.4 77.6 – 14.2 0.91
Bodyweight (kg) 85.0 – 13.4 89.5 – 22.2 0.51
BMI (kg/m2) 29.9 – 4.7 33.7 – 7.6 0.12
DN4 score 0 – 0 1.1 – 1.0†† 5.5 – 1.4††† <0.0001
CNFD (fibers/mm2) 33.7 – 5.7 27.4 – 8.0‡ 26.0 – 8.7‡ 0.64
CNBD (branches/mm2) 110.4 – 45.0 67.3 – 32.1†† 54.0 – 27.6††† 0.20
CNFL (mm/mm2) 25.1 – 4.3 18.8 – 4.8††† 17.4 – 5.6††† 0.46
VPT (V) 7.2 – 4.1 7.8 – 4.4† 14.1 – 8.0† 0.07
ESC feet (µS) 66.9 – 18.4 66.6 – 17.4 64.2 – 24.1 0.79

Numeric variables and frequency distribution for categorical variables are summarized as the mean – standard deviation or n (%), and were com-
pared between patients with and without painful diabetic peripheral neuropathy using the unpaired t-test and v2-test, respectively. Variables
between controls and patients with type 2 diabetes with and without painful diabetic peripheral neuropathy were compared using one-way ANOVA,
and significant differences between them are denoted as ‡P ≤ 0.05, †P ≤ 0.01, ††P ≤ 0.001, †††P ≤ 0.0001. BMI, body mass index; BP, blood pressure;
DN4, Douleur Neuropathique en 4; CNBD corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; ESC,
electrochemical skin conductance; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VPT, vibration percep-
tion threshold. Bold values are indicates statistically significant.
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relieve pain. Participants with type 2 diabetes were age-matched
with control participants. Participants with pDPN were older
(P < 0.01), had a higher DN4 score (P < 0.0001) and a lower
percentage undertook physical activity (P < 0.05) compared with
participants without pDPN. Sex (P = 0.94), duration of diabetes
(P = 0.27), HbA1c (P = 0.66), total cholesterol (P = 1.00),
triglyceride (P = 0.72), HDL (P = 0.28), LDL (P = 0.45), systolic
blood pressure (P = 0.83), diastolic blood pressure (P = 0.91),
bodyweight (P = 0.51) and BMI (P = 0.12) were comparable
between participants with and without pDPN.
Participants with type 2 diabetes had a significantly higher

DN4 score (P ≤ 0.001) and VPT (P ≤ 0.01), and lower corneal
nerve fiber measures (P ≤ 0.05), but comparable ESC compared
with healthy controls. Corneal nerve fiber measures, ESC and
VPT were comparable between participants with and without
pDPN.

Difference in clinical characteristics and neuropathy measures
between baseline and 1-year follow up
Between baseline and 1-year follow up, participants with pDPN
showed a significant decrease in HbA1c (P < 0.0001), increase
in bodyweight (P < 0.01), but no change in total cholesterol
(P = 0.06), triglyceride (P = 0.26), HDL (P = 0.72), LDL
(P = 0.19), systolic blood pressure (P = 0.16), diastolic blood
pressure (P = 0.39) and BMI (P = 0.18; Table 2; Figures 1 and
2). There was a significant decrease in the DN4 score

(P < 0.01), and an increase in CNFD (P < 0.05), CNBD
(P < 0.01) and CNFL (P < 0.0001), but no change in ESC
(P = 0.96) and VPT (P = 0.32).
Participants without pDPN had a significant decrease in

HbA1c (P < 0.0001), increase in bodyweight (P < 0.0001),
decrease in total cholesterol (P < 0.01), triglyceride (P < 0.01),
LDL (P < 0.05) and diastolic blood pressure (P < 0.0001), but
no change in HDL (P = 0.30), systolic blood pressure
(P = 0.12) and BMI (P = 0.19). There was a significant
increase in CNBD (P < 0.01), but no change in CNFD
(P = 0.91), CNFL (P = 0.13), DN4 score (P = 0.66), ESC
(P = 0.54) and VPT (P = 0.77).

Difference in change in clinical and neuropathy measures
between those with and without pDPN
Participants with pDPN showed a comparable change in HbA1c
(P = 0.14), total cholesterol (P = 0.79), triglyceride (P = 0.72),
HDL (P = 0.59), LDL (P = 0.87), diastolic blood pressure
(P = 0.30), body weight (P = 0.28) and BMI (P = 0.24) com-
pared with those without pDPN (Table 3; Figure 1). Systolic
blood pressure increased in participants with pDPN, whereas it
decreased in participants without pDPN (P < 0.05). Participants
with pDPN had a significantly greater increase in CNBD
(P < 0.05) and CNFL (P = 0.001) compared with those without
pDPN. Both groups showed a comparable change in the DN4
score (P = 0.40), ESC (P = 0.77) and VPT (P = 0.53).

Table 2 | Baseline and 1-year follow-up clinical and neuropathy measures of patients with type 2 diabetes with and without painful diabetic
neuropathy

Patients without painful diabetic
neuropathy (n = 28)

P-value Patients with painful diabetic
neuropathy
(n = 13)

P-value

Baseline 1-year follow up Baseline 1-year follow up

HbA1c (mmol/mol) 90.1 – 21.1 53.5 – 11.7↓ <0.0001 87.0 – 20.7 60.1 – 20.2↓ <0.0001
HbA1c (%) 10.4 – 1.9 7.0 – 1.1↓ <0.0001 10.1 – 1.9 7.7 – 1.8↓ <0.0001
Total cholesterol (mmol/L) 4.9 – 0.9 4.3 – 0.9↓ <0.01 4.9 – 1.2 4.2 – 0.7 0.06
Triglyceride (mmol/L) 1.9 – 1.2 1.5 – 1.1↓ <0.01 2.1 – 1.1 1.8 – 1.0 0.26
HDL (mmol/L) 1.2 – 0.5 1.2 – 0.3 0.30 1.1 – 0.3 1.1 – 0.2 0.72
LDL (mmol/L) 2.8 – 0.9 2.5 – 1.0↓ <0.05 2.6 – 0.7 2.3 – 0.5 0.19
Systolic BP (mmHg) 129.1 – 15.9 124.2 – 16.4 0.12 127.5 – 25.4 135.2 – 15.3 0.16
Diastolic BP (mmHg) 78.1 – 11.4 70.6 – 9.8↓ <0.0001 77.6 – 14.2 74.4 – 11.6 0.39
Bodyweight (kg) 85.0 – 13.4 88.9 – 15.4↑ <0.0001 89.5 – 22.2 95.6 – 24.8↑ <0.01
BMI (kg/m2) 29.9 – 4.7 30.2 – 4.7 0.19 33.7 – 7.6 34.4 – 8.5 0.18
DN4 score 1.1 – 1.0 1.0 – 1.1 0.66 5.5 – 1.4 4.23 – 1.9↓ <0.01
CNFD (fibers/mm2) 27.4 – 8.0 27.6 – 6.5 0.91 26.0 – 8.7 31.5 – 8.2↑ <0.05
CNBD (branches/mm2) 67.3 – 32.1 81.8 – 37.8↑ <0.01 54.0 – 27.6 102.2 – 58.9↑ <0.01
CNFL (mm/mm2) 18.8 – 4.8 20.0 – 4.7 0.13 17.4 – 5.6 23.5 – 5.8↑ <0.0001
VPT (V) 7.8 – 4.4 7.6 – 3.9 0.77 14.1 – 8.0 13.0 – 7.1 0.32
ESC feet (µS) 66.6 – 17.4 64.7 – 16.4 0.54 64.2 – 24.1 64.0 – 23.3 0.96

Numeric variables are summarized as the mean – standard deviation. Variables were compared using the paired t-test. BMI, body mass index; BP,
blood pressure; DN4, Douleur Neuropathique en 4; CNBD corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber
length; ESC, electrochemical skin conductance; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VPT, vibra-
tion perception threshold. Bold values are indicates statistically significant.
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Association of change in CCM measures and painful
symptoms with clinical characteristics
The change in CCM measures was not associated with the type
of treatment (P = 0.47) and decrease in HbA1c (P = 0.61).
However, it was negatively associated with bodyweight gain,
with every 2-kg increase in bodyweight, CNFD decreased by
1 fiber/mm (95% confidence interval -1.0–0.0), but this associa-
tion just missed statistical significance (P = 0.0501).
The change in DN4 score had no association with medica-

tions for neuropathic pain at baseline (P = 0.21), decrease in
HbA1c (P = 0.81) or gain in bodyweight (P = 0.67).
There was no association between the change in DN4 score

and change in CNFD (P = 0.93), CNBD (P = 0.25) or CNFL
(P = 0.28).

DISCUSSION
The present study shows that treatment of patients with type 2
diabetes and poor glycemic control with exenatide and pioglita-
zone or basal–bolus insulin markedly improves glycemic con-
trol, and is associated with an improvement in painful diabetic
neuropathy and corneal nerve regeneration.
Painful symptoms in DPN have been associated with active

nerve degeneration and regeneration12. Indeed, although there

are no differences in intra-epidermal nerve fiber density
between those with and without pDPN34,35, there was a signifi-
cantly lower CNFL in patients with pDPN compared with
those with painless DPN15,21; and in another study, CNFD was
significantly lower in patients with pDPN22. Quantitative sen-
sory testing has also shown increased thermal thresholds in
patients with pDPN compared with those with painless
DPN36,37. More recently, we showed lower intra-epidermal
nerve fiber density and corneal nerve fibers in a large group of
patients with painful compared with painless diabetic neuropa-
thy38. In this study, CCM measures, sudomotor function and
vibration perception threshold were comparable between
patients with and without pDPN, although the number of
patients with painful diabetic neuropathy was much smaller
than in previous studies15,21,22,38.
A large improvement in HbA1c (>2–3%) has been reported

to be associated with treatment-induced neuropathic pain and
autonomic neuropathy39. However, the present study showed
that despite a mean reduction in HbA1c of 3.4% among those
without pDPN, and 2.5% among those with pDPN, there was
no increase in the DN4 score, consistent with our previous
findings27. Furthermore, of the 27 patients without pDPN, only
one developed pDPN after 1 year of intensive glycemic control.
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Figure 1 | Comparison of percentage change in clinical and neuropathy measures over a 1-year period between patients with and without painful
diabetic neuropathy. Chol, total cholesterol; DBP, diastolic blood pressure; DN4, Douleur Neuropathique en 4; ESC, electrochemical skin
conductance; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; Trig,
triglyceride; VPT, vibration perception threshold.
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There is a need for better neuropathy phenotyping to enable
trial enrichment of participants who are more likely to respond
to therapies, whether to reduce the severity of pain with thera-
pies targeting pain or nerve regeneration in clinical trials of dis-
ease-modifying therapies for DPN. Thus, there has been a
resurgence of interest in identifying biomarkers of specific pain
mechanisms that might allow more effective targeted use of
existing therapies35. Quantitative sensory testing has been used
in a phenotype-stratified randomized, double-blind, placebo-
controlled study to show that oxcarbazepine had a significantly
greater effect in patients with an irritable nociceptor pheno-
type40. Similarly, the conditioned pain modulation test has been
used to identify altered descending spinal pathways to predict
greater efficacy of duloxetine41. We also showed altered rate-de-
pendent depression of the H-reflex, indicative of abnormal
descending inhibitory pathways in patients with pDPN22. How-
ever, a deep phenotyping approach to identify outcomes of dis-
ease-modifying therapies has not been undertaken to date.
Indeed, despite multiple trials of disease-modifying therapies,
there are currently no US Food and Drug Administration-ap-
proved therapies for DPN6. Several studies showed that subclin-
ical small nerve fiber injury precedes large fiber damage in
DPN42,43. Furthermore, early small fiber repair has been shown
in several small clinical intervention trials23,44, and after pan-
creas and kidney transplantation, normalization of glycemia

was associated with corneal nerve regeneration after 6 months,
followed by an improvement in neuropathic symptoms and
nerve conduction after 24 months24,25. More recently, we
showed that both exenatide and pioglitazone or basal–bolus
insulin effectively reduce HbA1c and induce corneal nerve
regeneration, independent of changes in HbA1c, bodyweight
and lipids27. Preclinical studies have reported that glucagon-like
peptide-1 receptor agonists have a neuroprotective effect45 and
suppresses pain hypersensitivity in diabetes46, and although ear-
lier clinical trials showed no benefit47,48, we recently showed
corneal nerve regeneration with exenatide27. Thiazolidinediones
have been reported to alleviate neuropathic pain by attenuating
proinflammatory cytokine expression49, and preclinical studies
show a prevention of nerve conduction slowing50,51. Indeed, the
Bypass Angioplasty Revascularization Investigation 2 Diabetes
(BARI 2D) trial reported that rosiglitazone significantly reduced
the 4-year cumulative incidence of clinical DPN compared with
insulin52. Insulin treatment has also been shown to have a neu-
rotrophic effect and reduce tactile allodynia53, and intensive
insulin treatment might prevent nerve conduction slowing54

and loss of ankle reflexes55.
We acknowledge this is a small exploratory study with

potential confounders in relation to the small cohort size and
effect of different treatments. Nevertheless, we showed that
patients with pDPN have optimal nerve regeneration in

100 µm
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(e) (f) (g) (h)
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100 µm 100 µm
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Figure 2 | Corneal confocal microscopy images of the sub-basal nerve plexus showing corneal nerve morphology in a patient with type 2
diabetes without painful diabetic peripheral neuropathy at (a) baseline and (c) 1-year follow up with (b,d) the nerves traced, and a patient with
type 2 diabetes and painful diabetic peripheral neuropathy (e) at baseline and (g) 1-year follow up with (f,h) the nerves traced. The main nerve
fibers are highlighted in red and the branches in blue. The origin of the branches is shown as green dots.
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response to improved glycemic control. We also showed that
nerve regeneration might be limited due to weight gain, and, of
course, recently we showed that weight loss with bariatric sur-
gery is associated with corneal nerve regeneration56. Disease-
modifying treatments are also more likely to be of benefit in
early or mild neuropathy where there is predominantly small
fiber damage57,58. These findings highlight the complex patho-
genesis and risk factors determining outcomes in clinical trials
of diabetic neuropathy and argues strongly for pre-trial enrich-
ment of participants.
We conclude that pDPN is associated with greater corneal

nerve regeneration and improvement in painful neuropathic
symptoms in patients with type 2 diabetes after intensive glyce-
mic control. The underlying mechanism is not clear and merits
further study.
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