
1Scientific Reports |          (2019) 9:6463  | https://doi.org/10.1038/s41598-019-42871-x

www.nature.com/scientificreports

Particle velocity controls phase 
transitions in contagion dynamics
Jorge P. Rodríguez   1, Fakhteh Ghanbarnejad2,3 & Víctor M. Eguíluz   1

Interactions often require the proximity between particles. The movement of particles, thus, drives 
the change of the neighbors which are located in their proximity, leading to a sequence of interactions. 
In pathogenic contagion, infections occur through proximal interactions, but at the same time, the 
movement facilitates the co-location of different strains. We analyze how the particle velocity impacts 
on the phase transitions on the contagion process of both a single infection and two cooperative 
infections. First, we identify an optimal velocity (close to half of the interaction range normalized by 
the recovery time) associated with the largest epidemic threshold, such that decreasing the velocity 
below the optimal value leads to larger outbreaks. Second, in the cooperative case, the system displays 
a continuous transition for low velocities, which becomes discontinuous for velocities of the order 
of three times the optimal velocity. Finally, we describe these characteristic regimes and explain the 
mechanisms driving the dynamics.

Spreading processes, such as contagion or rumor transmission, have been modeled using agent-based 
approaches1,2. These dynamics reach a higher level of complexity when, apart from the diffusive nature of the 
process, the particles move. For example, some oviparous fauna release sperm and eggs in aquatic environments; 
thus, the fertilization events happen via mobility-driven encounters of these cells3. Mobility impacts biological 
contagion, such as the dispersal of fungi spores in plant fields4, or the appearance of microcolonies through the 
attachment to the particles being carried inside the xylem for plants5 or the veins for animals6. Pathogens do not 
spread only inside a single individual body, rather amongst different individuals too, such that proximity allows 
the contagion from one organism to another; this has led to a diversity of studies of epidemiology in systems 
of mobile fauna introducing, for example, the appearance of large outbreaks when a pathogen switches from 
spreading in one species to another7, or the particularities of waterborne infections in marine environments, such 
as fishing or death-based transmission8,9. Indeed, aquaculture represents a key industry for nutritional and finan-
cial security in developing countries, and can be strongly affected by infections spreading among the confined 
but mobile fishes10,11. Additionally, the coupling between movement and spreading dynamics is also relevant in 
socio-technological systems, where malware is transmitted through the connection of multiple devices to WiFi 
and Bluetooth networks, spreading further because as time evolves the devices are connected to different net-
works due to the mobility of their users12. Hence, mobility drives the appearance of temporal connections, which 
modify the statistical properties of the spreading processes13,14.

Hosts’ movement facilitated the spread of infections that, throughout the human history, have affected large 
populations15–17. In fact, several infections that emerged in geographically distant locations may converge to the 
same environment due to their hosts’ mobility, facilitating the interaction between different pathogens18,19, either 
cooperating or competing20–22. These interactions modify the infection rates, such that the infection rate of a 
disease depends on the history of other infections of the host. This implies that the primary infection rate, which 
is the infection rate for a host that has never been infected with any disease, is different from the secondary one, 
which represents the infection rate for agents that have been previously infected with one disease; and these will 
be different from the tertiary, quaternary, and higher order infection rates. For example, competition between 
two different infections can lead to cross-immunity, that is, the particles are immunized against other infections 
after a primary infection23,24 (i.e., the secondary infection rates are zero). In contrast, cooperation represents the 
weakening of the individuals after a primary infection, increasing the secondary infection rates25–29.

Spreading dynamics coupled with particle movement has been typically modelled with metapopulation 
approaches, which consider the geographical locations as patches of particles connected through fluxes (which 
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define an adjacency matrix). For example, a recent work showed the presence of a region in parameter space 
where the mobility has a detrimental effect on the outbreak size30. However, metapopulation approaches are 
limited for representing the temporal aspects of the connecting fluxes and the structured interaction inside each 
patch. Hence, agent-based approaches, where the particles interact with their proximal neighbors, are useful not 
only for determining the microscopic mechanisms leading to large outbreaks, but also which movement patterns 
hinder the spreading process. Our approach is based on a temporal network given by proximal interactions, 
determined by the distance between mobile particles, in the spirit of temporal contact networks, which consist 
on empirical measurements of who interacts with whom and when. For example, contact tracing has been used 
for analyzing the structure of the social structure underlying the spread of sexually transmitted diseases31. In fact, 
correlations and the circadian activity patterns lead to discontinuous transitions in the spreading of two cooper-
ative infections32. For single infection dynamics on empirical contact networks, the ratio between the time scales 
of network dynamics and epidemic dynamics influences the epidemic threshold, such that when the network 
dynamics is faster, the epidemic threshold is smaller33.

In a scenario where particles move, we study the contagion dynamics of either a single or two coopera-
tive infections arguing about the role of particle velocity as a control parameter. First, we introduce the model 
describing the contagion process and the particle movement. Second, we analyze the behavior of a single infection 
spreading among a population of mobile particles. Finally, we extend our analysis to the dynamics of two coop-
erative infections.

Model
As initial condition, we distribute N particles randomly in a two-dimensional space of size L × L with periodic 
boundary conditions. Each particle i is assigned a direction of movement ξ π∈ [0, 2 )i  randomly from a uniform 
distribution. This direction of movement does not change with time. The movement is uniform rectilinear with 
velocity v, such that the time evolution of the coordinates of particle i, xi(t) and yi(t), is given by
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ξ

+ = +

+ = +

x t x t v L
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where the motion direction is represented by the angles ξi and v is the traveled distance per unit of time. The 
Susceptible-Infected-Recovered (SIR) model describes the dynamics34 between three states: an infected particle 
transmits the infection with probability p to each particle located at a distance smaller than d, and recovers after 
one time step. The time scale of the dynamics is set by the time it takes one infected particle to recover, which we 
define as a time unit. For two cooperative infections,  and , the dynamics is similar to the SIR model25, with 
primary infections from an infected neighbor happening with probability p, while secondary infections occur 
with probability q.

For a single infection, the initially infected population does not transmit the infection for probabilities below 
a critical value, <p pc. However, for >p pc, the infection affects a finite fraction of the system35. For two cooper-
ative infections, the case =q p represents two independent contagion processes, while for >q p both infections 
have a cooperative interaction. Particularly, focusing on an infected particle EGO, each neighbor particle i 
updates its state according to the following rules (Fig. 1): a) if i is in state S, it will be primarily infected with prob-
ability p; b) if i is infected or recovered with/from the same infection as EGO, nothing will happen; c) if i is 
infected/recovered with/from the other infection, it will be secondarily infected with probability q. In our simu-
lations, we initially assign the state AB (I for single infection) to a randomly chosen particle and the state S to the 
rest. At each time step, first, the state of all the particles is updated (Fig. 1); and then, their positions are updated 
synchronously according to Eq. 1.

At each time step, the set of interactions is described as a random geometric graph36, because the initial posi-
tions and the movement directions are uniformly distributed. In that topology, the expected number of neighbors is

Figure 1.  Scheme of the model. (a) Contagion of infection  from EGO to its neighbors (particles at a distance 
smaller than d). Labels on the links indicate the infection probabilities. (b) Dynamics of primary and secondary 
infections, happening with probabilities p and q, respectively.
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We identify two referential spatial scales in random geometric graphs. First, random geometric graphs with 
periodic boundary conditions display a percolation transition37 in 2D at 〈 〉 ≈ .k 4 52c . Thus, fixing =N 212 and 

=L 1280 (same particle density as in ref.38), we obtain = ≈
π

〈 〉
−

d L 24c
k

N( 1)
c . Second, the system is fully con-

nected for ≥ = ≈d d 905L
max 2

.
The temporal network describing the contacts in our system displays temporal correlations. In fact, temporal 

correlations are related to the probability that, if there is a contact between particles at time t, this contact remains 
at time +t 1. Considering the particle velocity as a control parameter, the temporal correlations have two limits. 
One limit is the static case, where the particles do not move, such that the set of contacts does not change in time 
(see Supplementary Fig. S1), and there will be finite outbreaks only if >d dc (necessary but not sufficient condi-
tion). In the other limit, particles move so fast such that the set of contacts between two consecutive updates are 
uncorrelated, and can be represented by generating a random location for each particle at every update. Thus, the 
probability to observe the same interaction or new interactions in two consecutive time steps can be used to link 
the velocity (one of our control parameters) to empirical temporal networks, such as those specifying human 
contacts measured through radio frequency identification devices39,40.

Recapitulating, our model has three control parameters (d, v, p). We will keep one of these parameters con-
stant for studying the behavior of the order parameter, which will be the density of (doubly) recovered particles ρ 
(ρab) in the final absorbing configuration for single (two cooperative) infection(s).

Results
Single infection.  We start studying the case of maximum infection probability ( =p 1) in the d v( , ) space. 
For a given particle velocity v, there is a threshold interaction range d* (v) such that the infection spreads to a 
finite fraction of the population for > ⁎d d  (Fig. 2a). For very high particle velocities, this threshold approaches 
an asymptotic value dmin (circle in Fig. 2a) while, as the velocity is decreased, d* increases, reaching a maximum 
for ≈ .v d0 5  and then decreasing to = =⁎d v d( 0) c (triangle in Fig. 2a). Thus, we identify four different regimes 
when, for a fixed d, the particle velocity is varied: i) <d dmin: the infection does not spread, independently of the 
velocity; ii) < <d d dcmin : there is a threshold velocity vc, such that for >v vc the infection affects a finite fraction 
of the population; iii) d dc: the infection spreads in the static case ( =v 0), but the low velocities are detrimental 
for the contagion process, implying that increasing v leads to smaller ρ. In this regime, for a given d, there are two 
critical velocities, −vc  and +vc , such that there are no macroscopic outbreaks for < <− +v v vc c ; iv) d dc: the out-
break reaches all the system, independently of v.

In fact, there are two cases that help us understand the limit cases of d*:

•	 In the static limit ( =v 0), particles do not move. Hence, the infection spreads along a random geometric 
graph and, considering =p 1, it affects a finite fraction of the population only for interaction ranges in the 
supercritical percolation regime, >d dc (triangle in Fig. 2a).

•	 The uncorrelated contact sequence limit ( → ∞v ) represents a sequence of spatial configurations in which the 
positions of the particles are randomly reassigned after each time step. This implies that, for a high enough 
number of particles and 〈 〉 k N , there are no common contacts in two consecutive time steps. For an infec-

Figure 2.  Single infection: fraction ρ of recovered particles in the final absorbing configuration for: (a) 
maximum infection probability ( =p 1) in the (d, v) space; (b) = ∼d d30 c, in the (p, v) space. Symbols depict 
the cases a, dmin (circle) and dc (triangle); b, 〈 〉 =p k 1 (square).
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tion probability p, the dynamics in this limit, known as annealed network, is described by the mean-field 
approximation for SIR dynamics35, where ρ p( ) follows the implicit equation ρ = − ρ− 〈 〉e1 p k . This equation 
shows the dependence of ρ on 〈 〉p k , and has a non-trivial solution for 〈 〉 >p k 1. Hence, the epidemic thresh-
old is =

〈 〉
pc k

1 . In fact, considering this limit for different interaction ranges, ρ p( ) has a universal behavior for 
all d when p is rescaled by 

〈 〉k
1  (see Supplementary Fig. S2). From the mean-field solution, and considering that 

p is a probability ( ≤p 1), we deduce that there is a unique solution (the trivial solution, ρ = 0) for 
〈 〉 < 〈 〉 =k k 1min . Thus, we estimate dmin substituting 〈 〉k min in Eq. 2, where we obtain = ≈

π−
d L 11

Nmin
1

( 1)
 

(circle in Fig. 2a).

Finite particle velocity: non-monotonic behavior.  Previously, we have described a set of interaction ranges 
( d dc) for which there is a non-monotonic behavior of the outbreak size with the velocity for =p 1 (Fig. 2a). 
Now, we want to study the behavior with velocity for ≤ ≤p0 1 and for a fixed interaction range =d d30 c. 
Considering the uncorrelated contact sequence limit as a point of reference, where our order parameter ρ 
depended only on 〈 〉p k , we normalise the infection probability with the average degree 〈 〉k   = ≈d( 30) 7, such that 
the case =d 30 in Fig. 2a ( =p 1) corresponds to the case 〈 〉 =p k 7 in Fig. 2b. We observe that, for a given veloc-
ity, there is an epidemic threshold pc(v), that is, there are macroscopic outbreaks for >p pc, and the epidemic 
threshold has also a non-monotonic behavior with v, approaching the limit 〈 〉 =p k 1c  as → ∞v  (Fig. 2b).

For simplicity, we explain the observed non-monotonic behavior for the case =p 1 (Fig. 2a). For =v 0, the 
infection spreads following an expanding front (see Supplementary Fig. S3); however, as the velocity is increased, 
the infected particles are further from those that infected them, such that for high velocities there is not a 
well-defined expanding front and the dynamics is described by a mean-field time evolution (global mixing). We 
quantify the presence or absence of an expanding front measuring the average connected component size 〈 〉C R of 
recovered particles at each time step (i.e., considering only the recovered particles and the contacts between 
them) as a function of the number of recovered particles R. If the dynamics is driven by an expanding front, 
〈 〉 ∼C RR , while if the spreading is driven by global mixing 〈 〉 ∼C RR

0 for low R, and for higher values of R there 
is a percolation transition at = +

π
R 1c

L
d

2

2  (Fig. 3a). Hence, as 〈 〉 ==C RR v, 0 , the contagion among the population 
is driven by an expanding front in the static case. Moreover, the spatial configurations for =v 0 and =p 1 are 
ordered, as SIR dynamics belongs to the universality class of directed percolation, implying that there are not any 
contacts between recovered and susceptible particles, and then the system is composed by coherent regions of 
recovered (the core of the expanding front), infected (the border of the front) and susceptible particles (those out 
of the front). Hence, the contagion process in the static case represents an expanding front with ordered 
contacts.

However, for low velocities, the contagion among the population is still described by an expanding front 
(Fig. 3a), but the movement of the particles leads to local mixing at the edge of the front. For example, there are 
contacts between recovered and susceptible particles, which did not occur in the static case. As the infection is 

Figure 3.  Single infection: mechanism for a non-monotonic outbreak size with particle velocity. (a) Average 
connected component size 〈 〉C R of the network composed by the recovered particles and the contacts between 
them, as a function of the number of recovered particles R. The black vertical line represents the critical value Rc 
for percolation in a random geometric graph. (b) Time evolution of the ratio between the number of IS links 
and the sum of IS and IR links. Inset: the three possible scenarios for a mobile system in 1D, with susceptible 
and infected particles depicted, respectively, in white and red colors. Velocity is changed from =v 0 (blue) to 

=v d (cyan) with ∆ = .v d0 2 , and from =v d to =v d5  (red) with ∆ = .v d0 4 , for =d d30 c and =p 1.
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transmitted through the contacts between infected and susceptible particles (IS links), we compare its abundance 
with the number of contacts between infected and recovered particles (IR links). After an initial transient, the 
number of IS and the number of IR links are balanced in the static case. However, when velocity is slightly 
increased, the IS links are less frequent (Fig. 3b). Considering that the average degree is fixed by Eq. 2, this change 
in the relative abundance implies that each infected particle will have a smaller amount of contacts with suscepti-
ble particles. Indeed, as d dc, this decrease represents a dynamical behavior similar to a lower 〈 〉k  (i.e., <d dc), 
such that the observed discontinuity may represent a dynamical percolation transition.

The decrease in the relative abundance of links between infected and susceptible particles (see Supplementary 
Fig. S4) is illustrated with a similar set-up in a 1D configuration. In this case, at the edge of an expanding front, 
there are three possibilities (Fig. 3b inset): i) the susceptible and the infected particles are approaching: the sus-
ceptible particle will get infected, but at next time step it will be surrounded by many recovered particles; ii) they 
are getting away: if initially they are separated by d0, at the next time step their distance will be = +d d v21 0  such 
that, if = .v d0 5 , >d d1  (optimal velocity); iii) they move in the same direction, leading to the same microscopic 
behavior as in the case of static particles. In conclusion, this non-monotonic behavior is explained through the 
cases i) and ii) that, for an expanding front, imply a detrimental effect of low velocities on the contagion.

Finally, for high velocities, the system approaches asymptotically the uncorrelated contact sequence limit. This 
means that an infected particle at time t is not in contact with the particle that infected it (at time t − 1), such that 
the dynamics cannot be described by an expanding front. As a consequence, the initial transient lasts longer (high 
abundance of IS links, Fig. 3b) and, as =p 1, most of the particles in the system are infected during this transient, 
leading to ρ ≈ 1 in the final absorbing configuration.

Two cooperative infections.  In this section, we consider the contagion of two cooperative infections 
which, unless otherwise stated, have a maximum cooperative interaction ( =q 1).

Focusing on the static particles case ( =v 0), there are no finite outbreaks for <d dc. For connected systems 
with short-range interactions ( d dc), the epidemic threshold pc is non-linear with 〈 〉−k 1 (see Supplementary 
Fig. S5). While for d dc the transition is continuous (see Supplementary Fig. S6), long-range interactions 
appear as d is increased, facilitating the presence of discontinuous transitions41, with the critical point shifting 
from 〈 〉 =p k 1c  to 〈 〉 = .p k 0 5c  (see Supplementary Fig. S5). However, in the case d dc, pc has a linear growth 
with the inverse average degree42 〈 〉−k 1, and the transition is continuous (see Supplementary Fig. S7), due to the 
immediate secondary infection of the particles after a primary infection (

q pc); hence, the dynamics is driven 
by primary infections, which lead to continuous transitions. However, if we decrease q for high d dc, pc grows, 
shifting from 0.5 to 1, and having a discontinuous transition (see Supplementary Figs S8 and S9).

In the uncorrelated contact sequence limit ( → ∞v ), we find a universal shape for all d, when p and q are 
normalized with 〈 〉−k 1 (Fig. 4). For non-interacting infections ( =q p), there is a continuous transition at 〈 〉 =p k 1. 
However, as 〈 〉q k  is increased, a discontinuous transition appears, with a characteristic gap that grows for higher 
values of q (see Supplementary Figs S10 and S11). This behavior is qualitatively similar to that already reported for 
Erdös-Rényi networks26, with the same pc for low 〈 〉q k , but leading to a change in the nature of the transition when 
q is varied. In fact, for =q 1, the behavior displayed by these annealed networks is understood taking into account 
the results on mean-field (see Supplementary Fig. S11)25. Specifically, for < <d d dcmin , the system displays a 

Figure 4.  Cooperative contagion with interactions defined by uncorrelated contact sequences. The system has a 
phase transition at 〈 〉 =p k 1c , which becomes discontinuous as the secondary infection probability q is 
increased. Symbols denote different values of q: =q p (squares), 〈 〉 =q k 2 (diamonds) and 〈 〉 =q k 3 (circles). 
Colors represent different interaction radii d, changing gradually from =d 20 (blue) to =d 100 (red) with 
∆ =d 5.
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continuous transition at 〈 〉 =p k 1c ; in fact, =q 1 is not higher enough than pc for observing a discontinuous tran-
sition. As d is increased ( d dc), a discontinuous transition appears (see Supplementary Fig. S12) and 〈 〉p kc  shifts 
towards lower values. Finally, for d dc, 〈 〉 ≈ .p k 0 5c , exhibiting a continuous transition, in agreement with the 
results found for the static case with d dc, as the random redistribution of the particles, with 〈 〉 ∼k N , does not 
imply large changes on the topology.

Finite particle velocity.  We vary v to describe how the differences between the limits of static particles and the 
uncorrelated contact sequence arise. We focus on the interaction range =d d30 c with =q 1, which has a 
discontinuous transition for → ∞v  (see Supplementary Fig. S12), while the static case leads to a continuous 
transition (see Supplementary Fig. S6), and corresponds to the regime associated with the non-monotonic behav-
ior of ρ with v for a single infection (Fig. 2b).

There is a continuous transition for low velocities, with pc following a non-monotonic behavior with v 
(Fig. 5a,b). However, in the region associated with global mixing effects, the transition point pc does not vary too 
much, but the lines of constant ρab are shifting to lower values of p as v is increased, leading to the appearance of a 
discontinuous transition with a gap which grows with the velocity (Fig. 5a,c).

The appearance of a discontinuous transition is explained taking into account previously reported mecha-
nisms for this dynamics26. The gap in ρab at pc represents the occurrence or not of avalanches of secondary infec-
tions in our system. The avalanches occur when the two infections  and   meet after following different 
relatively long paths in the network. As =q 1, when this meeting event occurs, an avalanche of secondary conta-
gion events spreads over the paths that the infections followed independently previously. The requirements for 
this phenomenon are that the contact sequence describing the interactions has loops, such that this will not 
happen in static trees, and that the infections do not meet after short paths, implying that network has a low level 
of local clustering. Specifically, in static networks, this dynamics leads to continuous transitions in 
low-dimensional lattices (1D and 2D), and to discontinuous transitions for higher dimensions (4D lattices and 
Erdös-Rényi networks)26,41.

In our system, the mobility allows that the infections spread to a higher (and located further) fraction of particles 
and also decreases the effect of the local clustering, as the movement hinders the meeting events after a short path. 
Then, the two infections follow different and long paths before meeting: when =p pc, if the two infections meet, there 
will be a high fraction of doubly recovered particles ρab in the final absorbing configuration; otherwise, the fraction of 
singly recovered particles will belong to a continuously growing branch, but the fraction of doubly recovered particles 
will tend to zero. Hence, there will be a discontinuous transition with two branches, with the probability of being in the 
upper branch representing the probability of the two infections meeting after a long path of independent contagion 
events.

Discussion
The dynamics of a single infection illustrated how the epidemic threshold can be controlled with the particle 
velocity, leading to a non-monotonic behavior with the particle velocity. For low velocities and d dc, the 
dynamics lead to higher epidemic thresholds than in the static case. Specifically, we have described the mecha-
nism leading to a dynamical fragmentation, which has already been reported in the context of disease spreading 
in temporal networks32, but also in other dynamics such as the coevolving voter model43; in contrast to the later, 
where the evolution of the topology depends on the dynamical configuration, our approach leads to a dynamical 
fragmentation even when the particles’ movement is independent of their states. In the infinite velocity limit, we 
found a scaling relationship between the epidemic threshold and the topological parameters (for 〈 〉 =p k 1c , 

Figure 5.  Cooperative contagion on mobile particles with velocity v for =d d30 c and =q 1. (a) The 
fraction ρab of doubly recovered particles in the final absorbing configuration has a first order phase transition 
for high velocities v. The dashed red line indicates the discontinuous transition point, while the square symbol 
represents 〈 〉 =p k 1. The nature of the transition is confirmed by the time evolution of the number of infected 
particles, which is (b) continuous for = .v d0 9  and (c) discontinuous for =v d5 . The plotted curves correspond 
to 〈 〉 = .p k 0 7 (brown), 1.6 (dark violet), with ∆ 〈 〉 = .p k( ) 0 1.
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=
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N d( 1)

2

2 ). These results suggest that blood or sap velocity inside different species may have evolved in order 
to minimize the risk of the microcolonizations by pathogens in their environment.

For the case of two cooperative infections, not only the epidemic threshold but also the order of the phase 
transition varied with the particle velocity. Previous work studying this dynamics reported that the nature of the 
phase transitions was influenced both by the topology and the level of cooperation26,41. Specifically, intermediate 
levels of cooperation in mean-field approximations were leading to abrupt transitions25. However, although a 
qualitatively similar behavior was observed for two-dimensional lattices with long-range interactions, the phase 
transitions were continuous with short-range interactions. We analyzed the interplay between this dynamics and 
the mobility focusing on the case d dc. While in the case of low velocities there was a continuous transition, the 
global mixing effects dominated for higher velocities, making the system evolve towards discontinuous transi-
tions. This behavior may arise from the dynamical fragmentation of the short-term loops due to the high particle 
velocity: in contrast to the static case, where the short loops are relatively abundant, the dynamical short-term 
loops do not appear in the high-velocity regime. This leads to the nucleation, which happens only when the pop-
ulation of singly recovered (a, b) has grown enough such that the proximal interaction between one infected A (B) 
and one recovered b (a) is more likely, leading to a cascade of secondary infection events.

We anticipate that the mechanism leading to a non-monotonic behavior with the particle velocity, arising due 
to the differences between front dynamics and global mixing, may appear for different dynamics on systems of 
mobile particles, such as synchronization or evolutionary game theory38,44–46. For example, the non-monotonic 
behavior of the synchronization with the velocity of the particles is shown for low connectivity, but it disap-
pears when the number of interacting neighbors is increased47,48. Additionally, future research will explore other 
movement approaches, such as the Vicsek model49, which leads to collective motion through the coupling of the 
movement direction between proximal particles, heterogeneity in the particle velocities, or the coupling between 
the particle velocity and its dynamical state.

Data Availability
 The codes used for generating the results are publicly available in https://github.com/jorgeprodriguezg/Parti-
cle-velocity-controls-phase-transitions-in-contagion-dynamics.
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