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Abstract

A key player in Alzheimer’s disease is the peptide amyloid-beta (Aβ), whose aggregation

into small soluble oligomers, protofilaments, and fibrils finally leads to plaque deposits in

human brains. The aggregation behavior of Aβ is strongly modulated by the nature and com-

position of the peptide’s environment and by its primary sequence properties. The N-termi-

nal residues of Aβ play an important role, because they are known to change the peptide’s

aggregation propensity. Since these residues are for the first time completely resolved at

the molecular level in a three-fold symmetric fibril structure derived from a patient, we chose

that system as template for a systematic investigation of the influence of the N-terminus

upon structural stability. Using atomistic molecular dynamics simulations, we examined sev-

eral fibrillar systems comprising three, six, twelve and an infinite number of layers, both with

and without the first eight residues. First, we found that three layers are not sufficient to sta-

bilize the respective Aβ topology. Second, we observed a clear stabilizing effect of the N-ter-

minal residues upon the overall fibril fold: truncated Aβ systems were less stable than their

full-length counterparts. The N-terminal residues Arg5, Asp7, and Ser8 were found to form

important interfilament contacts stabilizing the overall fibril structure of three-fold symmetry.

Finally, similar structural rearrangements of the truncated Aβ species in different simulations

prompted us to suggest a potential mechanism involved in the formation of amyloid fibrils

with three-fold symmetry.

Introduction

Alzheimer’s Disease (AD) has become the most prevalent neurodegenerative disorder in devel-

oped countries [1, 2]. Hallmark of AD is the aggregation of amyloid-β (Aβ) monomers to

oligomers, fibrils and finally plaques as explained by the Aβ cascade hypothesis [3–5]. From

extensive experimental work it is known, that Aβ peptide’s aggregation behavior is influenced

by many external and internal factors like pH-value, temperature, ionic strength, peptide

length, or point mutations [6–12].

A particular role for the aggregation behavior plays the N-terminus of Aβ (residues 1–8).

Evidence for the importance of the N-terminal region in Aβ aggregation arises from the fact

that familial mutations occur in the N-terminus, e.g. the English (His6Arg) and the Tottori
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(Asp7His) mutant, which show accelerated fibril formation [13, 14]. Phosphorylation of Ser8

significantly changes the fibril topology [15], whereas a Ser8Cys mutation favors the formation

of soluble dimers by oxidative crosslinking [16, 17]. Metal ions like Zn2+ bind to N-terminal

residues and accelerate amyloid formation [18–20]. On the other hand, effective antibodies

against the N-terminal region of Aβ inhibit fibrillogenesis [21]. A comparison of full-length

Aβ to its N-terminally truncated or pyroglutamate containing variants with regards to the

aggregation behavior also points towards the particular role of the N-terminus: truncated spe-

cies, which are found in brain deposits as well as in serum and cerebrospinal fluid[22–26], pos-

sess a distinct aggregation behavior with a possibly altered aggregation pathway [27]. Despite

this demonstrated importance of the N-terminus, most experimental investigations of fibrillar

Aβ structures revealed disordered N-termini in the fibril state [28–31]. Based on this observa-

tion, it was speculated that the N-terminus rather plays a role for the aggregation process itself

than for the stability of the mature fibril.

One rare example for a mature fibril with a structured N-terminus comes from a solid state

NMR structure of a wild-type Aβ40 fibril isolated from an AD patient (PDB code 2M4J; cf Fig

1)[32]. The structure shows a three-fold symmetry around the fibril axis with a central water

pore. The three filaments composing the fibril consist of Aβ monomers in an overall strand-

loop-strand conformation (cf Fig 1B), a motif common to known Aβ fibril structures with

two-fold or three-fold symmetry [28–30]. The presence of a structured N-terminus in this

fibril is particularly interesting, because a closely related three-fold symmetric fibril topology,

which was produced by in vitro seeding experiments, is disordered up to residue 10 [30].

The unusual three-fold symmetric geometry has gained much attention in the past and has

been studied by molecular dynamics (MD) simulations regarding various aspects. The struc-

ture of the in vitro fibril, which was published in 2008 [30], inspired molecular modeling of dif-

ferent fibrillar conformers and subsequent investigation by MD simulations [33, 34]. In these

studies, the disordered N-terminus was either omitted [33] or supplemented by molecular

modeling techniques [34].

After the fibril structure by Lu et al. became available in 2013 [32] it served as template for

some recent computational investigations. Alred et al. [35] compared the conformational sta-

bility of this fibril to that of a two-fold symmetric Aβ fibril. Other studies investigated the fibril

Fig 1. Overview of the three-fold symmetric fibril structure of Aβ1–40 (PDB-code 2M4J, Model 1, [32]). (A) Three fibril layers of

full-length Aβ40 in cartoon representation. The N-terminal and C-terminal β-sheets are shown in yellow arrows. (B) Single Aβ40 peptide

chain with sequence D1AEFRHDSGY10EVHHQKLVFF20AEDVGSNKGA30IIGLMVGGVV40 in sticks representation; residues are

colored according to their properties: basic–blue, acidic–red, polar–yellow, hydrophobic–grey. Hydrogen atoms are omitted for clarity.

https://doi.org/10.1371/journal.pone.0186347.g001
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growth mechanism by coarse grained MD simulations [36] or the strength of peptide interac-

tions by quantum chemical methods [37]. Thus, although three-fold symmetric Aβ fibrils with

structured N-terminus have already been studied by MD simulations, the structural role of the

N-terminus has not yet been investigated in detail.

In the present study, we examined the particular role of the N-terminal residues for the con-

formational stability of an Aβ(1–40) fibril with threefold symmetry (henceforth termed “tri-

ple-fibril”). For that purpose, we performed all-atom MD simulations in explicit water both

for the full-length and an N-terminally truncated fibril Aβ(9–40). In addition, the influence of

the number of fibrils layers upon overall stability was addressed. We observed that fibril stacks

of six or more layers remained stable for the full-length fibril, but underwent significant struc-

tural changes in the absence of the N-terminus. The type of rearrangements observed also

lead us to propose a potential mechanism involved in the formation of fibrils with three-fold

symmetry.

Methods

Preparation of starting structures

The initial simulation structures were based on the PDB entry 2M4J [32], containing three-lay-

ers of a patient-derived Aβ(1–40) fibril with three-fold symmetry. The middle layer of the first

structural model was used as a template to obtain regular oligomeric structures with three, six,

and twelve layers according to an established strategy [38–40]. The positions of the additional

layers were constructed by adding multiples of the mean displacement vector between two

adjacent layers of the PDB structure to the coordinates of the middle layer atoms. N-terminally

truncated systems were obtained by substituting the first eight residues of every Aβ chain with

an acetyl blocking group using SYBYL 7.3 [41]. Na+ counter ions were added to all systems for

electrical neutralization. The oligomer structures were solvated in a TIP3P [42] water box in

the form of a truncated octahedron with a minimum distance of 10 Å between the protein

atoms and the borders of the box.

For the infinite fibril systems, we followed a simulation setup applied previously for an Aβ
fibril with two-fold symmetry [40]. The twelve-layered Aβ oligomers were aligned with their

fibril axis to the z axis, electrically neutralized by the addition of counter ions, and solvated in a

cuboid water box with at least 10 Å distance between the protein and the borders. To obtain a

continuous Aβ fibril system, we took advantage of the periodic boundary conditions: the out-

ermost Aβ layers were positioned to interact with the Aβ image layers in the neighboring simu-

lation boxes leading to an infinite fibril stack. Therefore, the distance of the outermost Aβ
layers to the z edges of the simulation box was adjusted by shrinking the z dimension of the

box according to the following procedure: First, the distance between the top Aβ chain in the

original box and the bottom Aβ chain of the z image was measured in VMD [43]. Second, the

difference between this distance and the average distance of two subsequent Aβ layers along

the z axis in the template structure was determined. This difference was then subtracted from

the z dimension of the box specified in the Amber restart file. Finally, water molecules outside

the new box boundaries were deleted from restart file and topology file using a self-written

Perl script. This setup for an infinite system utilizing periodicity appears straightforward here,

since experimental studies demonstrated the absence of a twist in the present Aβ triple fibril

[32].

Molecular dynamics simulations and analysis

All simulations were performed using the Amber14 package [44] with the ff99SB force field

[45, 46]. To reduce steric tensions in the initial structures energy minimizations were
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performed. These occurred in three steps with 5,000 optimization cycles each: First, only water

molecules were relaxed keeping all other atoms restrained with a force of 10 kcal mol-1 Å-2. In

the second step, Na+ ions and hydrogen atoms were allowed to move in addition, and finally

an unrestrained minimization of the complete system was carried out. Afterwards, all systems

were heated up to 310 K and equilibrated in a three-step approach following a procedure

applied previously [47, 48]. Each production phase comprised 200 ns with a time step of 2 fs.

Amber default settings for an NPT ensemble and the SHAKE algorithm [49, 50] were applied

to constrain the hydrogen-containing bonds.

For all systems, two simulations with different initial velocity distributions were performed.

While the production runs used the GPU-accelerated version of Amber [51–53], minimization

and equilibration were carried out on CPUs to ensure numerical stability. An overview of all

systems used in this work is given in Table 1.

Analysis of the resulting trajectory was performed using the AmberTools suite [54]. In

order to determine the torsion angle ϕ between two filament axes, the vectors nl
!

between the

Cα atoms of Phe19 in the two outmost filament layers were computed, the respective torsion

angle between the ith and jth filament was calculated and averaged over all three filament pairs:

φ ¼
1

3

X3

i6¼j

across
nl
! o nJ

!

k nl
! k � k nJ

! k

Graphical representations of the molecular systems were created with VMD [43] and Chimera

[55], data plots were generated by gnuplot [56].

Results and discussion

Global structural properties of the individual systems

The present study aimed to assess the role of two structural features for the conformational sta-

bility of an Aβ40-fibril with three-fold symmetry. (i) The role of the N-terminus was assessed

by simulating the fibril in its physiological full-length (residues 1–40) and in an artificially N-

terminally truncated form (residues 9–40). (ii) The number of fibril layers required for the

maintenance of this topology was investigated by simulating stacks of 3, 6, and 12 layers as

well as an infinite stack both for the full-length (AL) and truncated (AT) form. Details of the

system setup and the nomenclature used are given in Table 1. The final structures obtained for

the simulation of each system are summarized in Fig 2.

The very small systems containing only three layers completely lost their initial three-fold

symmetry regardless of the presence of the N-terminal residues (cf Fig 2G and 2H). The

Table 1. Overview of the Aβ systems simulated. For all systems, two simulation runs of 200 ns each were performed.

System # Filaments # Layers a Aβ residues # H2O # Atoms

AL3x1 3 1 1–40 24,488 95,100

AT3x1 3 1 9–40 16,503 66,897

AL3x12 3 12 1–40 38,302 136,542

AT3x12 3 12 9–40 20,053 77,547

AL3x6 3 6 1–40 33,395 111,003

AT3x6 3 6 9–40 14,903 53,403

AL3x3 3 3 1–40 23,577 76,140

AT3x3 3 3 9–40 13,137 43,758

a In the infinite fibril system, the periodic box contained 12 layers; see text for details

https://doi.org/10.1371/journal.pone.0186347.t001
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individual Aβ filaments formed a linear arrangement, showed a strong twisting of the stacks

relative to each other, or underwent dissociation of one stack. Three Aβ layers are thus not suf-

ficient to stabilize a triple-fibril conformation in accordance with previous findings [35, 36].

Thus, these systems were excluded from further analysis.

Fig 2. Final structures of full-length (AL, Aβ1–40) and truncated (AT, Aβ9–40) triple-fibril systems obtained from the MD

simulations. The left and right panels show the structures of the two independent MD runs. Only the backbone conformation is

displayed with β-sheets depicted as yellow arrows.

https://doi.org/10.1371/journal.pone.0186347.g002
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All larger full-length Aβ systems investigated, AL3x6, AL3x12, and AL3x1 retained their tri-

ple-fibril conformation (cf Fig 2A, 2C and 2E), although the systems displayed a certain flexi-

bility. The terminal Aβ chains in AL3x6 and AL3x12 lacking a second β-sheet binding partner

were more mobile than the other chains, which is known from other simulation studies [38,

47, 57–59]. Overall, our findings for the full-length Aβ40 systems with respect to their struc-

tural stability are in agreement with earlier studies [35, 36].

In contrast, the triple-fibril conformation was not stable in the truncated Aβ systems AT3x6,

AT3x12, and AT3x1 (cf. Fig 2B, 2D and 2F). Basically, we noted two types of conformational

rearrangements:

1. Dissociation of fibril stacks, as observed for both AT3x12 and one of the AT3x6 simulations.

Whereas a full dissociation for one of the stacks was observed for AT3x6 (Fig 2F left panel),

the AT3x12 simulations still exhibited some contacts between the individual stacks (Fig 2D).

These differences can most likely be attributed to the limited simulation time of 200 ns,

which does not allow monitoring the full dissociation process in the larger systems.

2. Another type of conformational rearrangement was observed in one run of the AT3x6 and

AT3x1 simulations. The respective structures adopted a 2+1 topology, in which two Aβ fila-

ments pair along their hydrophobic C-terminal sheet, while the third Aβ filament laterally

associated to that structure via its C-terminal residues (Fig 2B right panel, 2F right panel).

The fact that a structural rearrangement is observed in only one of the two AT3x1 simula-

tions may be attributed to the incomplete sampling of large-scale motions on the simulated

time scales.

Both dissociation and formation of a 2+1 topology show that the triple-fibril conformation

is not stable without the N-terminal residues. Thus, the fibril stabilization by lateral growth

known from two-fold symmetric structures [38, 58, 60] is not sufficient to compensate the

missing N-terminus even in the infinite triple-fibril. Compared to its significant role for the

stabilization of the triple-fibril, the role of the N-terminus for the stabilization of the individual

fibril stacks appears to be rather small and full-length and truncated fibrils exhibit a rather

similar content of secondary structure. Thus, we did not detect an allosteric effect of the N-

terminus on the remaining parts of the peptide chain as it has been observed previously for

monomeric Aβ peptides [12].

The role of the N-terminus for the stability of the triple-fibril becomes also apparent from

the structural parameters compiled in Table 2. When comparing systems with the same num-

ber of fibril layers, the RMSD values are lower for the full-length compared to the truncated

systems (with the exception of the triple-layered systems, which are generally instable). The

mean torsion angle between the fibril axes is close to zero for the infinite AL3x1 fibrils indicat-

ing that the stacks remain well aligned and that no significant twisting of the individual fila-

ments takes place. This is in line with the experimental characterization of this triple-fibril

indicating a lack of twisting [32].

The conformational differences between the full-length and truncated Aβ species may also

be monitored via the stability of the central water pore, a structural feature that may relate to

Aβ’s cytotoxicity by disrupting membranes [61]. This water pore, which was originally

described by Miller et al. [34] for triple-fibrils, is also present in our simulated structures (Fig

3). The dimensions of the pore, which is formed by the C-terminal sheets of the Aβ chains

(Figs 1A and 3, can be deduced from the Met35 sidechain distances within the same layer [34,

35]. In our study, the full-length Aβ systems show a constant pore dimension of ~20 Å
throughout the simulations (Fig 4), after a quick initial relaxation from the initial distance of

23 Å observed in the PDB structure. In contrary, due to structural rearrangements the
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truncated species AT3x1 shows a drift in the distances in one of the simulations, and AT3x6

and AT3x12 water pores are instable.

In summary, our MD simulations show a clear trend for the Aβ40 triple-fibril investigated.

Full length Aβ40 systems with six or more layers retain the three-fold symmetry, while the

missing N-terminal residues cause a structural instability in the truncated systems resulting in

dissociation or formation of a distinct 2+1 topology of the Aβ filaments. Small three-layered

species on the other hand are not stable regardless of their N-terminal length.

Stabilizing interactions of the N-terminal residues

Since the N-terminus clearly influences the overall structure, the role of the individual residues

was analyzed in more detail. Inspection of the experimental structure suggests that the stabiliz-

ing role of the N-terminus originates from its interaction with the turn region of the neighbor-

ing Aβ chain (Fig 5A), thereby fixing the arrangement of the individual stacks. Pairs of

interacting polar residues include Ser8-Ser26, Asp7-Ser26, and Arg5-Glu22. Furthermore,

hydrophobic contacts are formed between the alkyl chains of Arg5 and Val24. However, the

geometry was not optimal for most of these interactions in the initial structure. Therefore, it

was of particular interest to investigate, whether these interactions remain stable during the

MD simulation and also whether additional interactions are formed.

To cover all potential contacts originating from the N-terminus, the interactions between

turn residues 21 to 30 and N-terminal residues 1–8 were analyzed in detail. Fig 6 shows the

average frequency of contacts between the two stretches of residues in fibrils with different

number of layers.

First of all, there is a striking similarity in the interaction pattern in all systems independent

from the number of layers. Of the eight N-terminal residues, only Arg5, Asp7, and Ser8 estab-

lish contacts with a significant frequency. All contact pairs deduced from the experimental

structure, i.e. Arg5-Glu22, Arg5-Val24, Asp7-Ser26, and Ser8-Ser26, were found in the MD

Table 2. Global structural properties. Backbone RMSD, backbone RMSF, radius of gyration Rg, and average torsion angle ϕ between filament axes.

System Run RMSD [Å] a RMSF [Å] a Rg [Å] b ϕ [˚]

AL3x1 1 5.2 ± 0.6 1.1 ± 0.6 33.3 ± 0.2 1.5 ± 0.5

2 6.4 ± 1.4 1.7 ± 0.9 33.8 ± 0.8 1.6 ± 0.3

AT3x1 1 7.5 ± 0.6 0.9 ± 0.4 30.3 ± 0.2 2.4 ± 0.5

2 9.3 ± 1.9 2.5 ± 1.2 31.3 ± 0.6 0.8 ± 0.4

AL3x12 1 6.1 ± 1.1 1.7 ± 0.6 34.2 ± 0.3 7.2 ± 2.8

2 5.9 ± 1.1 1.9 ± 0.7 34.3 ± 0.4 7.3 ± 1.3

AT3x12 1 14.0 ± 3.5 3.3 ± 1.1 35.4 ± 1.9 14.6 ± 4.6

2 17.6 ± 5.1 4.8 ± 1.5 37.5 ± 3.1 17.8 ± 4.9

AL3x6 1 5.7 ± 1.0 1.8 ± 0.7 29.0 ± 0.2 22.6 ± 5.9

2 5.5 ± 0.9 1.7 ± 0.7 29.0 ± 0.3 18.4 ± 4.6

AT3x6 1 28.9 ± 10.8 11.9 ± 4.2 41.5 ± 7.2 30.0 ±11.2

2 12.7 ± 1.7 2.6 ± 1.0 27.9 ± 0.4 25.6 ± 5.5

AL3x3 1 25.0 ± 8.3 9.3 ± 2.8 37.9 ± 4.2 88.9 ± 25.5

2 8.5 ± 1.3 2.4 ± 1.0 25.3 ± 0.6 49.3 ± 10.4

AT3x3 1 15.9 ± 10.7 5.5 ± 1.9 29.2 ± 2.5 60.9 ± 17.0

2 20.9 ± 5.0 8.8 ± 3.0 34.4 ± 4.5 73.7 ± 20.5

a Calculated for residues 9–40.
b Averaged over all layers.

https://doi.org/10.1371/journal.pone.0186347.t002
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simulation. Additionally, there arose contacts between Arg5 and Asp23, Asp7 and Val24, as

well as between Ser8 and Asn27 (Fig 6). Structural examples for the major contacts listed in

Fig 6 are presented in Fig 5B and 5E. The different types of interactions include hydrogen

bonds Asp7-Ser26 and Ser8-Ser26, the salt-bridge bridge Arg5-Glu22, and the nonpolar inter-

action Arg5-Val24.

In order to have a closer look into the dynamical behavior of the interactions formed by the

N-terminal residues, we analyzed the evolution of the respective distances over the simulation

time. This more detailed analysis allowed dissecting the average values shown in Fig 6 and

revealed that the rather low percentage of contacts detected in Fig 6 rather result from differ-

ences between the individual layers than from large fluctuations over time within each layer.

This behavior was generally observed in all simulations of the full-length triple fibril and is

shown for run 1 of AL3x1 in Fig 7. Fig 8A exemplarily depicts this different behavior for the

contact Arg5-Val24 in the 9th an 10th layer of AL3x1 showing that the contact remains stable

in layer 9 whereas it is rapidly lost in layer 10. A possible explanation for this alternation might

be the system’s conformational response to the electrostatic repulsion of the charged residues

Arg5 and Asp7 due to the parallel in-register orientation of the Aβ chains within a single fila-

ment: The location in the terminus allows for a larger local flexibility of the individual peptide

Fig 3. Solvation of the central water pore. The final structure of AL 3x1 (run 1) is shown as example.

For clarity, only water molecules within a distance of 7 Å to Met35 are shown in blue.

https://doi.org/10.1371/journal.pone.0186347.g003
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termini without compromising the interactions of adjacent termini with the core (cf Fig 2A,

2C and 2E). The spatial arrangement of these charged amino acids, which potentially leads to

the alternating interaction pattern, is depicted in Fig 8B and 8C. The distance between two

Asp7 residues in neighboring chains changes from 3.8 Å in the initial structure to 12.6 Å in

one of the layers that undergo conformational rearrangement during the simulation.

In both conformations shown in Fig 8B and 8C, Phe4 forms stacking interactions between

adjacent layers thus stabilizing the fibril stack. This mode of stabilization is slightly different

from a previous work, in which interactions between Phe4 and Gly25 were observed [34].

These differences can most likely be attributed to the model building procedure, in which

Phe4 was either modeled to interact with Gly25 [34] or to form Phe4-Phe4 stacking interac-

tions according to the structure by Lu et al.[32].

In summary, the data presented in Figs 6 and 7 shows that there is some plasticity in the

interactions formed by residues Arg5, Asp7, and Ser8 of the N-terminus. Notably, only these

three polar residues are involved in fixing the conformation of the N-terminus in the fibril

investigated in the present study.

Our analyses thus show that the N-terminal residues play a pivotal role in the stabilization

of the Aβ40 triple-fibril structure. In their absence, the interaction between the single filaments

is too weak to preserve the three-fold symmetry.

Characterization of the 2+1 topology and a suggested mechanism

involved in triple-fibril formation

In two simulations of the N-terminally truncated triple-fibrils, a conformational rearrange-

ment to a 2+1 topology was observed. In this topology two Aβ filaments paired along their

hydrophobic C-terminal sheet, while the third Aβ filament remained laterally associated to

that structure via its C-terminal residues.

Fig 4. Stability of the central water pore. The average Met35-Met35 distance between Aβ chains within the

same layer is shown as function of the simulation time for both full-length (left panels) and truncated (right

panels) Aβ species. (A) AL3x1. (B) AT3x1. (C) AL3x12. (D) AT3x12. (E) AL3x6. (F) AT3x6. The two MD runs are

shown in blue and orange, respectively.

https://doi.org/10.1371/journal.pone.0186347.g004
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Fig 5. Contacts between N-terminus and the neighboring Aβ chain of the same fibril layer. (A)

Orientation of the N-terminal residues 1–8 and the proximal residues 21–30 in the initial structure (hydrogen

atoms are omitted for clarity). (B-E) Representative N-terminal contacts observed during the MD simulation:

(B) Asp7-Ser26, (C) Arg5-Val24, (D) Ser8-Ser26, and (E) Arg5-Glu22.

https://doi.org/10.1371/journal.pone.0186347.g005
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To characterize the mechanism of this conformational change, we investigated the AT3x1

system in more detail. Fig 9 shows the evolution of the contacts between the individual fila-

ments over the course of both AT3x1 simulations. In the first MD run, in which the original

triple-fibril structure is retained (Fig 2B left panel), the number of ~ 60 interfilament contacts

is similar for all three interfaces, yielding a total number of ~ 180 contacts per layer within the

triple-fibril (Fig 9A). In the second run, where the 2+1 topology formed (Fig 2B right panel),

the situation is different. While the contacts between filament F1 and the two others (F2, F3)

decrease over the simulation and reach a value of ~ 20 at the end, the interface between F2 and

F3 becomes reinforced after 50 ns and the number of contacts increases to ~ 160 (Fig 9B). The

number of total contacts first decreases thus reflecting the initial destabilization of the triple-

fibril topology. After 50 ns, the gain of interactions between filaments F2 and F3 also leads to

an increase of the total number of contacts (Fig 9B). This behavior, in which the contacts drop

at first and then rise again, reflects the refolding process from the triple-fibril to the double

fibril with a loosely attached third filament. Notably, the total number of contacts at the end of

the simulation is rather similar for both AT3x1 indicating that the 2+1 topology represents an

alternative stable conformation to the triple-fibril topology (Fig 9).

One hallmark of the 2+1 topology is the tight interaction between two of the filaments via

their C-terminal strands (Fig 10A). Interestingly, this mode of interaction shares some resem-

blance to the experimentally observed interface in fibrils with twofold-symmetry (Fig 10B)

Fig 6. Atom-atom contacts (distance cutoff 4Å) between the N-terminal residues 1–8 and the

neighboring residues 21–30 of the next Aβ chain for AL3x1 (A), AL3x12 (B), and AL3x6 (C). Numbers are

mean percentage values over all layers and MD runs. See Fig 5A for a structural representation of the two

sets of residues.

https://doi.org/10.1371/journal.pone.0186347.g006
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In both arrangements, the C-terminal residues associate in an antiparallel fashion and

Met35 is a key residue of the interface. However, the interaction partner of Met35 differs

between the two interfaces. In the large hydrophobic interface of the 2+1 topology Met35

interacts with Ile32, whereas it contacts Ile31 in the two-fold symmetric fibril (Fig 10). This dif-

ferent inside-outside topology around Ile31/Ile32 is not due to a conformational rearrange-

ment during MD simulations, but is already present in the experimentally determined

structures of the triple- and double-fibril. In the triple-fibril, the C-terminal residues deviate

from a β-strand topology at Gly33 thus allowing Met35 and Ile32 to point to the same side.

Fig 7. Time course of selected distances between N-terminal and core residues for each Aβ chain in

the AL3×1 (run1) fibril. The distance analyzed is given as right label of each panel. The y axis shows the

respective interacting Aβ chains: From bottom to top, interactions of filaments 1$2, 2$3, and 3$1 are

presented, separated by black lines. The chains are in the same order as in the fibril stack (i.e. line 1 shows

the 1$2 in the first fibril layer, whereas line 36 shows the 3$1 in the 12th fibril layer).

https://doi.org/10.1371/journal.pone.0186347.g007
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Fig 8. Details of the contacts between N-terminus and loop region in AL3×1 (run1). (A) Representative plot of contact distances

Arg5-Val24 for two adjacent layers as a function of simulation time. (B) Initial structure with dense packing of residues Arg5, Asp7, and

Phe4 in adjacent layers; the distance between two Asp7 residues in adjacent chains is 3.85 Å. (C) Representative snapshot structure

with the Asp7-Asp7 distance increased to 12.6 Å.

https://doi.org/10.1371/journal.pone.0186347.g008

Fig 9. Interfilament contacts in AT3x1 for run1 (A) and run2 (B). The atom-pair contacts between two of the filaments

are depicted in black, red, and blue, respectively (cutoff: 4 Å); the sum of all inter-filament contacts is shown in green.

https://doi.org/10.1371/journal.pone.0186347.g009

Fig 10. Comparison of the C-terminal interface between two filaments. (A) Final structure of the AT3x1

simulation (run2; the third loosely attached filament is omitted for clarity). (B) Twofold symmetric Aβ40 fibril

structure determined by solid-state NMR spectroscopy (PDB 2LMN [30]). Interacting residues (Met35, Ile31/

32) are shown in sticks.

https://doi.org/10.1371/journal.pone.0186347.g010
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This property is in line with the large plasticity of β-sheet topology, which tolerates various

inside-outside topologies in Aβ fibrils [62].

Our MD simulations reveal only minor conformational changes within the filaments upon

formation of the 2+1 topology including a more extended conformation for Ile32/Gly33 pep-

tide bond and a C-terminal extension of the β-strand to Val36. This finding suggests that both

triple and 2+1 conformation can be readily interconverted. This is in line with experimental

data showing that alternating regions with two and three parallel filaments within a single fibril

may occur [63].

The fact that we have observed this 2+1 topology only for the N-terminally truncated but

not for the full-length Aβ systems may be explained by the following consideration: The triple-

fibril, but not the 2+1 topology relies on interactions of the N-terminus for its stabilization.

Thus, an N-terminal truncation as performed in our simulations mainly destabilizes this tri-

ple-fibril conformation. This in turn allows monitoring filament dissociation and formation of

the 2+1 topology on the timescale of our MD simulations. For the full-length filaments the

conformational equilibrium is expected to be shifted towards the triple-fibril due to the stabi-

lizing interactions of the N-terminus. The considerations above prompted us to propose a

potential two-step mechanism involved in the formation of triple-fibrils from double fibrils by

incorporation of a single filament (Fig 11). In the first step, an existing double-fibril binds an

isolated filament. In the second step, the resulting aggregate undergoes a conformational rear-

rangement to a symmetric triple-fibril topology. However, the conformational equilibrium of

different topologies may strongly be influenced by the peptide sequence as well as the sur-

rounding environment and more comprehensive thermodynamic analyses will be required to

finally prove the mechanism of formation for this and maybe even other triple-fibril topologies

[30, 33, 64].

Conclusions

Our study suggests that the relative stability of different Aβ fibril topologies may depend on

the properties of the N-terminus. Since the key residues Arg5, Asp7, and Ser8 necessary for

stabilizing interactions of the N-terminus are polar, perturbations affecting electrostatic inter-

actions are expected to have a significant impact on the overall fibril topology observed. Such

perturbations may include external factors like pH value or ionic strength, but also internal

factors, like posttranslational modifications, mutations that affect charge/polarity (e.g. English

His6Arg and Tottori Asp7His mutant) or N-terminal truncations. Environmental factors in

turn are likely a reason for the fact that unique fibril structures were isolated from different

patients [32].

Thus our study adds evidence that the N-terminal residues may not only play a role in the

initial steps of fibrillation [27], but also at least in part be responsible for the large variety of

Fig 11. Suggested two-step mechanism for the formation of Aβ triple fibrils. In the first step (1), a

double-layered fibril binds a third single filament forming a 2+1 topology. In the second step (2), the fibril

converts into a symmetric three-fold symmetric structure.

https://doi.org/10.1371/journal.pone.0186347.g011
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fibril polymorphisms [65] observed. We conclude that the N-terminal Aβ residues significantly

influence the amount of Aβ fibril polymorphism in an organism or tissue [66] in interplay

with other physiological factors in the cell like lipid bilayers, molecular chaperones, and mac-

romolecular crowding.
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Investigation: Christian A. Söldner, Heinrich Sticht, Anselm H. C. Horn.
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