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Abstract: Mycotoxin represents a significant concern for the safety of food and feed products, and
wheat represents one of the most susceptible crops. To manage this issue, fast, reliable, and low-cost
test methods are needed for regulated mycotoxins. This study aimed to assess the potential use of
the electronic nose for the early identification of wheat samples contaminated with deoxynivalenol
(DON) above a fixed threshold. A total of 214 wheat samples were collected from commercial fields
in northern Italy during the periods 2014–2015 and 2017–2018 and analyzed for DON contamination
with a conventional method (GC-MS) and using a portable e-nose “AIR PEN 3” (Airsense Analytics
GmbH, Schwerin, Germany), equipped with 10 metal oxide sensors for different categories of volatile
substances. The Machine Learning approach “Classification and regression trees” (CART) was used to
categorize samples according to four DON contamination thresholds (1750, 1250, 750, and 500 µg/kg).
Overall, this process yielded an accuracy of >83% (correct prediction of DON levels in wheat samples).
These findings suggest that the e-nose combined with CART can be an effective quick method to
distinguish between compliant and DON-contaminated wheat lots. Further validation including
more samples above the legal limits is desirable before concluding the validity of the method.

Keywords: e-nose; Fusarium graminearum; mycotoxin; machine learning; small grains; metal oxide
sensors; DON

Key Contribution: E-nose coupled with CART, a machine learning approach, was applied to a set of
214 wheat samples collected in north Italy in 4 growing seasons to allocate samples above/below
4 different thresholds, two of them corresponding to legal limits. The approach was very successful,
with an accuracy of 88–92% when the legal limit was chosen as the threshold.

1. Introduction

Trichothecenes and zearalenone (ZEN) may occur in cereal grains with Fusarium head
blight (FHB) associated with a complex of Fusarium species [1,2]. Trichothecenes are clas-
sified into two groups: type A and type B. Type B trichothecenes, produced mainly by
Fusarium graminearum and F. culmorum, are prevalent and include deoxynivalenol (DON) as
the predominant compound, commonly co-occurring with 3- and 15-acetyl-deoxynivalenol
(3-Ac-DON and 15-Ac-DON) and nivalenol (NIV). DON is the most widespread mycotoxin
in wheat, with durum wheat more contaminated than soft wheat [3]; this is confirmed
in Italian wheat grain production. Type A trichothecenes include T-2 and HT-2 toxins
produced by F. langsethiae and F. sporotrichioides; type A are more toxic than type B tri-
chothecenes, but type A commonly occur in lower amounts. Due to their stability, even
during food processing, trichothecenes and ZEN are implicated in human and animal
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health issues [4]. The European Commission [5] established maximum residue levels (MRL)
for the presence of DON and ZEN in unprocessed cereals for human consumption: 1250
and 1750 µg/kg for DON in soft and durum wheat, respectively, and 100 µg/kg for ZEN in
all cereals other than maize. In addition, MRL for T-2 and HT-2 toxins are under discussion.

Soft and durum wheat are essential crops worldwide; regarding Italy, soft wheat
is grown mainly in the north (about 75%), with durum wheat prevalent in central and
southern areas [6]. In the past decade, north Italy has increased its contribution to durum
wheat production (about 13% of the Italian output and 18% of the wheat produced in
northern Italy): the Emilia-Romagna region contributed about 30% and 9% to soft and
durum Italian wheat production, respectively [6]. Due to the regulation in force, stakehold-
ers of the wheat grain chain must check the lots for compliance with the law regarding
DON contamination. This operation is crucial when grain is delivered from farmers to
storehouses or processors because they need to know the contamination level; nevertheless,
this is a bottleneck because those who are delivering want to discharge rapidly, and time
elapsed from arrival to destination and discharge is time lost. Therefore, rapid methods
that can be applied at grain delivery are a necessity for the acquiring and delivering actors
in this process.

The presence of DON in cereals and cereal-based products is mainly detected by
chromatographic methods such as high-performance liquid chromatography (HPLC or
UHPLC) coupled with ultraviolet (UV), diode array (DAD), or mass spectrometry (MS)
detectors, and gas-chromatography (GC) coupled with electronic capture (ECD) or MS
detectors [7,8]. These methods gave reliable results, but they need time, expertise, proper
machines, and they are expensive. In regard to rapid analytical approaches that provide
qualitative or semi-quantitative results, the electronic nose (e-nose) has attracted great
interest regarding food and feed quality control [9–11], and it has been used in various
commercial agriculture-related industries [12]. E-nose, through its sensors delivers a
smell-print of samples, which can be learnt based on a pattern recognition approach [13,14].
E-nose could be a valuable method for screening grain lots at delivery due to its rapidity and
low cost in classifying food/feed matrices with various chemical “fingerprints”. Lippolis
et al. [15] applied e-nose to naturally contaminated durum, wheat either on whole or ground
kernels, but correct attributions regarding contamination, obtained with Discriminant
Function Analysis, were higher than 80% only for ground grain.

The e-nose coupled with machine learning (ML) was recently proposed by Camardo
Leggieri et al. [11] to classify maize samples by discriminating between non-contaminated
and contaminated samples; the reference thresholds used were based on the EU legislation
for aflatoxin B1 and fumonisins. The advantage in coupling ML to detection methods was
also underlined for the detection of wheat quality in artificially inoculated grains [16] or
for other agricultural aims, among others, early detection of moldy apples [17] or aphid
infestation in wheat [18].

Screening undesired compounds at grain delivery makes it possible to properly ad-
dress sorting operations aimed at reducing the occurrence of contaminated grains and
preventing contaminated lots from entering the storage/processing step. Interesting ap-
proaches have been recently developed for sorting purposes, based on single kernel analysis.
The most potent tools described are based on NIR-spectrometry and Hyperspectral Imaging
(HSI), and very good performances were reported both for fungi and mycotoxin detec-
tion [13,19]. This technique can be used as a mitigation strategy for the removal of highly
contaminated grains from cereal batches. Therefore, e-nose, or other rapid methods, such
as infrared spectrometry, supported by a robust data analysis, can be applied to identify
highly contaminated lots [20] to be addressed to single kernel selection and analyzed
later with more precise methods to confirm the compliance of the materials with the legal
limits. In reality, this is a great advantage, reducing the time delay and high cost of more
tedious laboratory analyses, which is only required upon testing positive during on-site
screening [20].
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This work aimed to extend the usage of e-nose as a rapid method for evaluating
DON contamination in wheat lots, following an approach comparable to Camardo Leg-
gieri et al. [11]. The number of fields monitored was lower than in the maize study,
which imposed a different data analysis, but four different contamination thresholds
were introduced.

2. Results
2.1. Field Sampling and Deoxynivalenol Contamination

A total of 214 wheat samples contributed to the DON dataset, with 50–57 samples
collected yearly (Table 1). Samples were collected in four different areas in the Emilia-
Romagna region (northern Italy), belonging to the province of Bologna (20%), Ferrara
(54%), Modena (9%), and Ravenna (17%). The incidence of samples above the limit of
quantification (LOQ) and mean contamination value varied between years. Both the highest
and the lowest (>LOQ) DON content were detected in 2017, 14,829 µg/kg and 20 µg/kg,
respectively; samples with DON content < LOQ were found in 2014 and 2015. The yearly
average DON contamination was lower than 500 µg/kg for 2014 and 2015 but higher than
700 µg/kg for 2017 and 2018.

Table 1. Descriptive statistics of deoxynivalenol (DON) content (µg/kg) in wheat grain samples
collected in Emilia Romagna in 2014–2018 (except for 2016).

Year N # Mean StDev Minimum Maximum

2014 52 98 126.4 <LOQ * 615
2015 55 205 233.9 <LOQ ** 1171
2017 57 1069 2208.4 20 14,829
2018 50 1147 2217.9 59 10,898

(# Number of wheat samples; * LOD: 3 µg/kg; ** LOQ: 10 µg/kg).

2.2. Data Analysis

Four different thresholds were considered, 1750, 1250, 750, and 500 µg/kg, and sam-
ples were clustered in four distinct groups. In the original data set, samples with DON
contamination above the clustering threshold of 1750, 1250, 750, and 500 µg/kg were 8%,
9%, 16%, and 23%, respectively. Two further data sets were generated from the original one,
training and blind data sets, keeping the same proportion of positive and negative samples.
Detailed information on the distribution of DON contaminated and non-contaminated
wheat samples, based on different thresholds, are listed in Table 2.

Table 2. Distribution of the number of contaminated (positive) and non-contaminated (nega-
tive) wheat samples based on different thresholds of deoxynivalenol (DON) content (1750 µg/kg,
1250 µg/kg, 750 µg/kg, and 500 µg/kg), used for Training and Blind Dataset.

Threshold
(µg/kg)

Original Dataset Training Dataset Blind Dataset

Positive Negative Positive Negative Positive Negative

1750 18 196 13 138 5 58
1250 20 194 14 136 6 58
750 34 180 24 126 10 54
500 49 165 35 116 14 49

The e-nose sensors measures were used as input features and put in relation to
mycotoxin contamination following the same approach of Camardo Leggieri et al. [11],
without satisfactory results. Therefore, the Classification and Regression Tree (CART)
was implemented.

Figure 1 shows the CART output for the extreme thresholds (1750 and 500 µg/kg). The
CART used data generated by two sensor arrays to classify samples above the threshold
of 1750 µg/kg (Figure 1A); in particular, W3C and W5S sensors accounting for ammonia
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(used as a sensor for aromatic compound) and broad range sensitivity (nitrogen oxides and
ozone), respectively. The same sensors were used for the threshold 1250 µg/kg.
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Figure 1. Example of tree classifiers for two selected thresholds of mycotoxin contamination:
(A) 1750 µg/kg, (B) 500 µg/kg. Starting from the top, only one sensor is considered (i.e., W3C
in (A)). If the condition is matched, the second sensor is assumed; otherwise, the negative class is
assigned (FALSE in the figure), and another sensor is considered.

The CART utilized four sensors (Figure 1B) to split samples above the 500 µg/kg
threshold. In addition to the W5S mentioned above, in both cases, accounting for the last
step of the CART, sensors W2W, W1W, and W1S, specific for aromatic compounds (organic
sulfur compounds), sulfur compounds, and methane, were considered instead of W3C.

The coincidence matrix of DON (Table 3) for the threshold 1750 µg/kg showed that
CART correctly classified about 92% of samples. The correct classifications slightly de-
creased with lower thresholds; in particular, 90%, 90%, and 84% of correct classifications
for 1250, 750, and 500 µg/kg, respectively. Incorrect classifications included approximately
5%, 5%, 2% and 2% underestimates and 3%, 5%, 8%, 14% overestimates for 1750, 1250 and
750 and 500 µg/kg, respectively (Table 3).

Table 3. Coincidence matrices computed from Blind Dataset results for the predicted and observed
values of deoxynivalenol (DON; µg/kg): DON contamination data were shared based on four
different thresholds (1750 µg/kg, 1250 µg/kg, 750 µg/kg and 500 µg/kg). Predictions against
observed results were reported as percentages. Grey cells contribute to correct predictions for each
threshold fixed; the white cell on the right indicates underestimates (observed positive and predicted
negative), the white cell on the left indicates overestimates (observed negative and predicted positive).

Thresholds (µg/kg) Observed
Predicted

Positive (%) Negative (%)

1750
Positive 3 5

Negative 3 89

1250
Positive 3 5

Negative 5 87

750
Positive 5 2

Negative 8 85

500
Positive 6 2

Negative 14 78

2.3. Cross-Validation with Training and Blind Dataset

Regarding the assessment capability of the e-nose, for each threshold, five-cross
validation methods were performed using the Training Dataset (Table 4). The accuracy
(ACC) was 0.91–0.92 for the higher classification threshold (1750, 1250, and 700 µg/kg) and
0.85 for the threshold = 500 µg/kg. Regarding the Blind Dataset, the ACC was higher than
0.81 for all the considered thresholds and consistently lower than the ACC of the Training
Dataset. The index was higher in the Training Dataset for all the thresholds considered
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regarding the Blind Dataset. The e-nose sensitivity (or TPR) was consistently higher for
the Training Dataset compared to the Blind Dataset for all the four tested thresholds, while
the specificity (or TNR) was ≥0.94 for all the thresholds regardless of the dataset. Finally,
higher precision (or PPV) was consistently observed for the Training Dataset with respect
to the Blind Dataset at all the tested classification thresholds, with the highest PPV for the
thresholds set at 750 and 500 µg/kg.

Table 4. Summary of results for deoxynivalenol (DON) prediction in wheat samples. Results of
the cross validation with the Training Dataset (TD) and Blind Dataset (BD) of each tested threshold
(1750 µg/kg, 1250 µg/kg, 750 µg/kg, and 500 µg/kg) were reported.

Threshold (µg/kg) 1750 1250 750 500

Data Set TD BD TD BD TD BD TD BD

Cross validation method

* ACC 0.92 0.89 0.91 0.88 0.91 0.81 0.85 0.83
TPR 0.31 0.50 0.29 0.40 0.54 0.37 0.40 0.36
TNR 0.98 0.97 0.98 0.97 0.98 0.94 0.99 0.96
PPV 0.57 0.40 0.57 0.40 0.87 0.75 0.93 0.71
BA 0.64 0.72 0.63 0.67 0.76 0.567 0.70 0.66

* ACC, Accuracy; TPR, True Positive Rate or Sensitivity; TNR, True Negative Rate or Specificity; PPV, Positive
Predictive Value or Precision; BA, Balanced Accuracy.

3. Discussion

Developing reliable and rapid methods for mycotoxin detection is a priority [21];
mycotoxins are food contaminants, and legal limits for the maximum content allowed
in different matrices have been set in most countries worldwide. The e-nose has been
identified in many studies as an effective tool for rapidly screening food substances [15,22].
Recently, the e-nose, in combination with ML techniques, has been very successful when
applied to maize naturally contaminated with mycotoxin [11]. The current research used
the same approach to evaluate DON contamination in wheat. In total. 214 wheat samples
were analyzed with the e-nose; this dataset did not allow for the application of the same
ML approach previously used for maize. However, good results were obtained with the
ML-CART, which was applied to separate contaminated and non-contaminated samples.

Four different DON thresholds were set in this study to share positive (above the
threshold) and negative samples. Two thresholds, 1750 and 1250 µg/kg, match the legal
limits set by the European Union [5] for durum and soft wheat, respectively. Two additional
values, 750 and 500 µg/kg, were included to pursue a more balanced distribution of samples
above and below the threshold, and to assess the potentiality of the e-nose to discriminate
samples for more restrictive contamination levels. The number of positive samples was
approximately 8–9% for the highest thresholds and 16 and 23% for 750 and 500 µg/kg,
respectively. The e-nose is known to produce qualitative output responses for mycotoxins,
the presence or absence of mycotoxins at fixed thresholds; in this study, the use of four
different thresholds makes this attempt semi-quantitative.

The highest accuracy in sample attribution (0.88–0.92) was obtained for the cut-off
values ≥ 1250 µg/kg, with 87–89% correct predictions, the same correct classification
reported in the previous study [10]. These thresholds are the official ones; therefore, the
result is quite important, and its validity is robust because the tested samples were collected
in four growing seasons and from different locations in north Italy. Rapid analytical
methods, including e-nose, gave variable results with samples derived from different years
or geographic areas; therefore, the high accuracy obtained with this dataset allows us to
also speculate on the validity of the approach with other datasets [23,24].

Unfortunately, increased incorrect predictions were found with the lower threshold
(µ ≤ 750 µg/kg), and this effect may be due to the lower sensitivity of the instrument at a
lower concentration of DON; this hypothesis is supported by the number of sensors used
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by the CART to classify samples according to the thresholds. Only two sensors have been
used for the threshold of 1750 µg/kg and four for 500 µg/kg. In particular, the most critical
sensors used by the e-nose, selected through the CART, were W3C and W5S for the thresh-
old of 1750 µg/kg, which can detect ammonia and broad range molecules, respectively. In
past studies, only acetates and γ-caprolactone were associated as volatile compounds with
DON [15,25], but due to the application of the HS-SPME/GC-MS technique. However, the
ability of an e-nose to detect volatile compounds associated with mycotoxins contamination
depends on the sensor’s sensitivity to the various compounds. This has recently been
tested by Machungo et al. [26]. They considered three portable e-nose devices to compare
the performance of metal oxide sensors (MOS) and conducted polymer noses to detect
aflatoxins in artificially contaminated maize; MOS was the most effective for mycotoxin
detection. In our study, the e-nose was a portable device equipped with 10 MOS sensors.
Combined with the ML approach, it gave good results in categorizing the occurrence of
aflatoxin and fumonisin in maize [11], as previously reported.

Only W5S sensor, used for sample classification, characterized by the broadest range
sensitivity among the sensors used, was common among data sets generated with different
thresholds. This is not surprising; in fact, e-nose sensors give a qualitative answer, as they
respond to families of volatile compounds and are not specific. Increasing the number of
samples, some additional substances may be considered only because they are present in
some samples, and this could involve the selection of an additional sensor or the leakage of
other sensors. In addition, volatiles result from the interaction between plants and fungi,
and they are tuned by the severity of the fungal attack and the susceptibility of the host
crop [27,28]. Therefore, changing the threshold, the contribution of samples changes, as do
the volatiles perceived by the sensors.

Other researchers have also tested and discussed the potentialities of the e-nose.
Campagnoli et al. [29] performed a discriminant analysis using a data set of 30 wheat
samples, 22 above the LOD (50 µg/kg), and obtained an accuracy of 100%. However, the
number of samples considered in the study was small, and the reliability of the e-nose
technology based on such a dataset is questionable. A further e-nose application, including
122 durum wheat samples, was managed in 2011 by Campagnoli et al. [30] to predict
DON content, using the principal component analysis (PCA) to assess three different
contamination clusters as non-contaminated and contaminated below/above the EU limit
of 1750 µg/kg; a 3.3% error rate was obtained. As expected, the rate of correct predictions
slightly decreased, increasing the number of samples analyzed from 30 [29] to 122 [30],
confirming the importance of a reasonable number of samples to gain reliable predictions.
Another example on a similar food/feed matrix (wheat bran) was performed in a broader
dataset with 470 samples naturally contaminated by DON and was used to test the e-
nose potentiality at the cut-off threshold of 400 µg/kg; 89% of correct classification using
discriminant analysis (DA) was reached, utilizing samples with DON ≥ 400 µg/kg [10].
Therefore, irrespective of the number of samples used, e-nose gave good results.

This is the first study using wheat samples naturally contaminated by DON collected
in four different years and combining an e-nose with an ML-CART analysis. The accuracy
obtained, regardless of the sensors that contributed significantly, offer an insight into
the potential application of e-nose as a diagnostic technique for untargeted preliminary
screening of wheat samples, based on different thresholds of contamination, to reduce
the number of samples requiring more expensive and time-consuming chemical analysis.
The weak point that should be underlined is the limited number of samples contaminated
above the legal limits occurring in the data set: only 8–9, a maximum of 23%, were clustered
positive with 500 µg/kg as a threshold.

4. Conclusions

As repeatedly mentioned in the text, to conclude, e-nose is a screening method and
cannot be used as an alternative to more reliable and precise methods based on HPLC
or mass spectrometry. Nevertheless, practical problems to be solved by crop value chain
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operators should be considered. The rapid acquirement of information regarding the
compliance of cereal lots with the regulation in force is crucial, even if confirmations are
requested. The data set used in this study is comprehensive but due to the source of
variation mentioned, to conclude on the validity of the method, further validation with
a more balanced data set is desirable. The acquirement of further data, both for soft and
durum wheat, would be quite useful to confirm the proposed approach’s performance and
possibly improve its accuracy with a tailored data analysis for the two Triticum species.

5. Materials and Methods
5.1. Field Sampling and Laboratory Sample Preparation
5.1.1. Samples

Over the harvest years 2014, 2015, 2017, and 2018, 214 wheat samples were collected in
fields distributed in the Emilia-Romagna region (Northern Italy) at full ripening, according
to EC Regulation 401/2006 [31]. For mycotoxin quantification, a final grain sample of
7–10 kg for each field was delivered to the laboratory. A lab sample of 200 g was randomly
taken from each field for e-nose analysis; the remaining samples were milled and homoge-
nized with a cyclone hammer mill (1 mm sieve, Pulverisette, Fritsch GmbH, Idar-Oberstein,
Germany). After milling and homogenization, an aliquot of 2 kg was stored at –20 ◦C until
the time of mycotoxin analysis.

5.1.2. e-Nose Analysis

The e-nose used in this study was a portable “AIR PEN 3” (Airsense Analytics GmbH,
Schwerin, Germany) equipped with 10 metal oxide sensors (MOS) for different categories of
detectable volatile substances (Table 5). The e-nose was equipped with pattern recognition
software for data recording and processing (WinMuster, v. 1.6.2.13). As Camardo Leggieri
et al. [11] reported, e-nose parameters were set. Briefly, a calibration procedure was applied
each day of e-nose use and reference sensor response was recorded (G0). The aliquot of
100 g of wheat grain was placed into 250 mL round bottom flasks and left to stand for one
hour at 25 ◦C to allow a build-up of volatiles in the headspace before e-nose sampling.
The analysis was managed for 60 s, registering each second the signals for each sensor (G),
reported as conductance ratio G/G0. E-nose sensor outputs were used in data analysis and
associated with DON contamination, according to Camardo Leggieri et al. [11].

Table 5. Sensitivity and selectivity of the sensor array in the portable electronic nose device (PEN 3
Portable Electronic Nose, Airsense Analytics GmbH, Schwerin, Germany).

Number in Array Sensor General Description Reference

1 W1C
aromatic Aromatic compounds Toluene, 10 ppm

2 W5S
broad range

Broad range sensitivity, react on nitrogen oxides and
ozone, very sensitive with negative signal NO2, 1 ppm

3 W3C
aromatic Ammonia, used as sensor for aromatic compounds Benzene, 10 ppm

4 W6S
hydrogen Mainly hydrogen, selectively (breath gases) H2, 100 ppb

5 W5C
aromatic-aliphatic

Alkanes, aromatic compounds, less polar
compounds Propane, 1 ppm

6 W1S
broad methane

Sensitive to methane (environment) ca. 10 ppm,
broad range, similar to W2S CH4, 100 ppm

7 W1W
sulphur organic

Reacts on sulphur compounds (H2S 0,1 ppm),
otherwise sensitive to many terpenes and sulphur
organic compounds, which are important for smell
(limonene, pyrazine)

H2S, 1 ppm
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Table 5. Cont.

Number in Array Sensor General Description Reference

8 W2S
broad alcohol

Detects alcohol’s, partially aromatic compounds,
broad range CO, 100 ppm

9 W2W
sulphur-chlorine Aromatic compounds, sulfur organic compounds H2S, 1 ppm

10 W3S
methane-aliphatic

Reacts on high concentrations > 100 ppm
sometimes very selective (methane) CH4, 100 ppm

5.2. Mycotoxin Analysis

Analyses and standard preparations were performed according to methods reported
by Bertuzzi et al. [23]; briefly, DON was extracted using a mixture CH3CN:H2O = 84:16 and
a volume of 6 mL was eluted through a SPE column (PuriTox Trichothecene, R-Biopharm,
Darmstadt, Germany). Determination was carried out by GC-MS after derivatisation (limit
of detection, LOD: 3 µg/kg and limit of quantification, LOQ: 10 µg/kg).

5.3. Data Analysis

Deoxynivalenol (DON) concentration was used to cluster samples in contaminated
and not contaminated. Four different thresholds were considered, 1750, 1250, 750, and
500 µg/kg, giving four distinct sample clusters. The thresholds 1750 and 1250 µg/kg
correspond to the maximum level of DON in unprocessed cereals, particularly for durum
and soft wheat, respectively (EC 2006 [5], 2007 [32]). For each sample clustering, Class 1
was assigned to all the samples exceeding the fixed threshold and class 0 to all samples
equal to or below it.

The relationship between DON occurrence and e-nose data was analyzed following
the same approach used in Camardo Leggieri et al. [11]. Briefly, three methods were used:
1. Artificial Neural Network (ANN); 2. Discriminant Analysis (DA); and 3. Logistic Regres-
sion (LR) analysis. However, none of the previously cited methods reached satisfactory
results, mainly due to the high unbalance (many samples with class 0 vs. very few samples
with class 1) of the dataset considered.

Therefore, the machine learning (ML) algorithm Classification and Regression Tree
(CART) was implemented using R (v4.0.3) and the package “Caret” [33].

5.3.1. Classification and Regression Trees (CART)

The CART is an ML approach that divides the dataset into smaller and smaller groups
through repeated binary splits. At each step, only one e-nose sensor is considered. The
algorithm then uses the value of the sensors to divide the space into smaller regions until a
region is assigned to a class label 0 or 1, non-contaminated (0, negative) or contaminated
(1, positive) in this study. An impurity function is computed at each step to measure how
good a split is. The algorithm is defined based on an impurity function, which determines
how good the classification is at each partition. The algorithm keeps the division that
minimizes the impurity function at each step. This is achieved when many samples belong
to a class in that part of the space, and a few belong to the other. Finally, a stop criterion is
introduced to avoid overfitting. During the training process “Caret” requires some specific
parameters to compute the model. The metric “accuracy” has been specified to select the
best one. Cross-validation was implemented as a 5-fold. Then, a complexity factor (cp)
used to compute the optimal tree was used. For the purpose of this study, a cp of 0.001
was used.

The CART is a supervised approach, like many other ML algorithms, and it requires
a training phase with labeled samples (training data set) to create a suitable model for
further classification or regression purposes. The CART has advantages which were helpful
during the entire classification process. It is quick to implement and requires very low data
pre-processing; the output of the sensors can be used as they are, while other ML algo-
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rithms require different pre-processing methods such as outliers filtering, normalization,
or standardization to achieve consistent results. Furthermore, the CART output is easily
represented and understood, unlike, for example, ANNs, which are black boxes, and it is
almost impossible to understand where the error occurred during a misclassification [34].
Therefore, using this approach, e-nose sensor outputs were related to DON contamination
and run four times, one for each threshold used for clustering.

5.3.2. Model Evaluation

The four models obtained with the CART approach, one for each threshold used, were
evaluated as described in Camardo Leggieri et al. [11]. Briefly, two datasets were randomly
generated, maintaining the proportion of contaminated versus non-contaminated samples
using the built-in function “createDataPartition” of the R package “Caret” [33].

This is essential to balance datasets and obtain reliable results. These two datasets
were named Training and Blind Datasets; the Blind Dataset accounted for ~30% of the
whole dataset. Feature importance was computed during the training; if a variable is
not significant for the classification, it is removed and thus not considered [34]. A 5-fold
Cross-validation (CV) was performed on the Training Dataset, and then the quality of the
model was computed on the Blind Dataset. Several statistical scores were computed both
for the Training Dataset and Blind Dataset for the evaluation of the models:

Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
(1)

True Positive and True Negative rates (TPR, TNR):

TNR =
TN

TN + FP
(2)

Positive Predictive Value (PPV):

PPV =
TP

TP + FP
(3)

Balanced Accuracy (BA):

BA =

TP
TP + FN

+
TN

TN + FP
2

(4)
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