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Host heterogeneity is a key driver of host–pathogen dynamics. In particular, the
use of treatments against infectious diseases creates variation in quality among
hosts, which can have both epidemiological and evolutionary consequences.
We present a general theoretical model to highlight the consequences of
different imperfect treatments on pathogen prevalence and evolution. These
treatments differ in their action on host and pathogen traits. In contrast with
previous studies, we assume that treatment coverage can vary in time, as in sea-
sonal or pulsed treatment strategies. We show that periodic treatment strategies
can limit both disease spread and virulence evolution, depending on the type
of treatment. We also introduce a new method to analytically calculate
the selection gradient in periodic environments, which allows our predictions
to be interpreted using the concept of reproductive value, and can be applied
more generally to analyse eco-evolutionary dynamics in class-structured
populations and fluctuating environments.
1. Introduction
Parasites are an ubiquitous threat to plant, animal and human populations. This
has led to the development of numerous pre- and post-infection treatments,
which play a central role in the fight against infectious diseases. At a funda-
mental level, this has also motivated a long line of research in epidemiology
to devise control measures that can limit the potentially dramatic effects of epi-
demics for animal and plant species [1,2]. A key driver of this theoretical work
is to find the optimal strategy to deploy treatments in order to maximize the
short-term (epidemiological) benefits of treatments while mitigating their
potential long-term (evolutionary) negative consequences.

Indeed, it is increasingly acknowledged that pathogens may evolve in response
to treatments, as exemplified by the evolution of antibiotic resistance or vaccine
escape. Pathogen evolution is fuelled by the high reproduction rate of pathogens
and the increasing use of treatments. In particular, both empirical evidence [3–5]
and theoretical predictions [6–8] support the idea that imperfect treatments may
cause selection on pathogen life-history traits, such as transmission and virulence.

In practice, treatments are rarely perfect, either because of partial efficacy, or
limited coverage. From an ecological perspective, this introduces heterogeneity
in the host population. Indeed, naive and treated hosts can be viewed as two
habitats with different qualities for the pathogen. We expect pathogens to
have higher fitness in good habitats (e.g. untreated hosts), and lower fitness
in bad habitats (e.g. treated hosts). However, if the pathogen adapts to the
bad habitat by increasing its virulence, this can negatively impact untreated
hosts in the population. The potential negative effects of such imperfect treat-
ments have been theoretically studied, showing in particular that some types
of treatments (notably those reducing host susceptibility or pathogen transmis-
sibility) can be viewed as evolution-proof, while others (such as those that
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Figure 1. (a) Life cycle of the host–pathogen interaction, showing transition rates between classes. (b) Infection process and the different treatment mechanisms:
anti-infection (r1, blue), anti-growth (r2, orange), anti-transmission (r3, green) and anti-toxin (r4, black), with a human as illustration of hosts. (Online version
in colour.)
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mainly increase the tolerance of hosts to the disease) can lead
to the long-term evolution of virulence [7–9].

A central assumption of these earlier studies is that
treatment coverage is constant in time. In practice, however,
treatment coverage fluctuates in time, either because of
social or economical constraints (vaccine scares, shortage in
drugs, vaccination campaigns linked to time-limited humani-
tarian or scientific missions), or because of specific treatment
strategies. For instance, pulse vaccination has been the
main strategy deployed to eradicate polio and significantly
decreased its incidence [10]. In addition, many crop diseases
are seasonally treated, either directly in fields, or by pre-
treatment at the seed stage. Periodic treatments may also be
implemented through rotation between naive and treated
plants, which has been shown to reduce pathogen prevalence
[11]. In this context, it is of major interest to study the conse-
quences of periodic treatment strategies through theoretical
studies to guide future experimentations or applications.
In particular, an important question is whether temporal
variations in treatment may increase or decrease selection
on pathogen virulence or transmission. At a conceptual
level, fluctuations in treatment coverage will cause temporal
variation in host quality for the pathogen, and it is not
clear that the optimal strategy in a constant environment
will also maximize pathogen fitness in this context.

Our purpose here is to analyse the epidemiological and
evolutionary effects of periodic imperfect prophylactic treat-
ments that create heterogeneity among hosts. Building on
previous theoretical studies of imperfect treatments with con-
stant coverage [7–9], we first present the consequences of
periodic treatment coverage on the prevalence of the disease
and the pathogen’s basic reproduction number. We then
assume that a rare mutation occurs in the pathogen, modify-
ing the life-history traits, and we analyse how the selective
pressures on the mutant pathogen depend on (i) the mode
of action, and (ii) the temporal distribution of treatments.
Part of our analysis is based on a new approach to analyse
selection in fluctuating environments, which allows us to
measure host quality using a dynamical concept of reproduc-
tive value [12]. We discuss the practical and conceptual
implications of our work.
2. Model
We consider a host–pathogen interaction with the life cycle
depicted in figure 1a (see table 1 for notations). The host
population is structured in two classes corresponding to the
host’s immune state, naive (N) or treated (T). Hosts can be
either susceptible (S) or infected by a pathogen responsible
for an infectious disease (I). This leads to four different
types of hosts, SN, ST, IN and IT. Host reproduction occurs
at rate b. Upon birth, offspring have a probability ν of being
treated, in which case they enter the ST class, and a prob-
ability (1− ν) of remaining untreated, in which case they
enter the SN class. All hosts (susceptible and infected) have
a background mortality rate, d, with an additional disease-
induced mortality (i.e. virulence), which we note αN and αT,
respectively, for naive or treated infected hosts. A susceptible
naive (respectively, treated) host can be infected by naive and
treated infected hosts, IN and IT, at rate hN (respectively, hT).
The forces of infections, hN and hT, directly depend on the
horizontal transmission of the pathogen, such that hN = βN
IN + βT IT and hT = σhN, where βN and βT are the transmissibil-
ities of naive and treated hosts, respectively, and σ represents
the relative susceptibility of treated hosts. With these assump-
tions, the epidemiological dynamics can be described by the
following ODE system

dSN
dt

¼ (1� n(t))b� (dþ hN)SN , (2:1a)

dST
dt

¼ n(t)b� (dþ hT)ST , (2:1b)

dIN
dt

¼ hNSN � (dþ aN)IN (2:1c)

and
dIT
dt

¼ hTST � (dþ aT)IT , (2:1d)

The model is based on a previously analysed model of imper-
fect vaccines [7,8], but instead of a constant treatment
coverage, we consider that ν is a function of time. In most
simulations, we use a T-periodic square function (figure 2a)
that varies between νmin and νmax. The treatment coverage
takes the value νmax during pT and νmin during (1− p)T,
with p the fraction of the period with a maximum coverage.



Table 1. Table of parameters and variables.

parameter definition

life-history traits

αk disease-induced death rate (virulence) of the

resident strain in class k

αk0 disease-induced death rate (virulence) of the

mutant strain in class k

α* evolutionarily stable virulence

βk transmission rate of the resident strain in class k

βk0 transmission rate of the mutant strain in class k

b birth rate

d natural death rate

hk force of infection in class k

σ susceptibility of hosts

treatments

ν(t) periodic treatment coverage function

T period of the treatment function

p fraction of T with treatment

ri efficacy of the i treatment (see §2)

reproductive values

cek pathogen class reproductive value in class k under

a constant coverage

ck pathogen class reproductive value in class k under

a periodic coverage

k stands for naive (N) or treated (T) hosts
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Figure 2. Typical behaviour of the model, for an anti-growth treatment. (a)
Square function for treatment coverage: ν takes the value 1 during pT (all new-
borns are treated), and the value 0 during (1− p)T (no newborn is treated). (b)
Density dynamics for susceptible naive ( plain grey), susceptible treated (plain
black), infected naive (dashed grey) and infected treated (dashed black). (c)
Phase portrait for the total densities of susceptible (SN + ST) and infected
(IN + IT) hosts, showing convergence to a periodic attractor. Parameter
values: r2 = 0.8, p = 0.6, T = 30, α = 1, b = 2, d = 1. Typical behaviours of
the model with anti-infection, anti-transmission and anti-toxin treatments
are shown in electronic supplementary material, appendix S.1.
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The average coverage is thus �n ¼ p nmax þ (1� p) nmin. For the
sake of simplicity, we choose νmax = 1 and νmin = 0 in our
simulations, so that the average coverage is �n ¼ p.

As typical in the literature, we assume a trade-off between
transmission and virulence, so that a pathogen cannot see
its transmission increase without paying a cost through an
increase of the host’s death [13,14]. Following this hypothesis,
we assume an increasing saturating trade-off between trans-
mission, β and virulence, α. In figures, we typically use the
function β[α] = 5α/(1 + α).

As in [7–9], we assume that treatments are imperfect: being
treated does not guarantee a full and lifelong protection against
pathogens. Several imperfect vaccines against cholera for
instance have been reported, with various efficacies [15,16]. Fol-
lowing [7], we consider four different types of treatments
showed in figure 1b. First, we consider an anti-infection treat-
ment that prevents the primary infection of the host by the
pathogen. Potential examples include the human papilloma-
virus (HPV) vaccine, which aims to reduce the penetration of
the HP virus into cells [17], or the copper in Bordeaux
mixture,which lowers the riskof infectionbypreventing theger-
mination of fungal spores on leaves [18]. Second,we consider an
anti-growth treatment which aims to decrease the intra-host
growth rate of the pathogen, and has an action on its life-history
traits (virulence α and transmission β). This is reminiscent of the
mode of action of the ABT-538 drug, which reduces thewithin-
host replication ofHIV [19,20]. The third treatment acts by redu-
cing the transmission ofpathogens toother hosts. For instance, it
has been shown that an effect of the feline calcivirus vaccine is to
reduce virus shedding [21,22]. Fourth, we consider a leaky
anti-toxin treatment that only reduces pathogen’s virulence, as
documented for instance for the vaccine againstMarek’s disease
[4], or the toxoid vaccine against diphteria [3].

In naive hosts, the virulence and transmission rates are
simply αN = α and βN = β(α), where α is the virulence trait.
Treatments cause a reduction in virulence, transmission or
susceptibility of hosts, depending on the treatment type i,
with an efficacy ri that takes values between 0 (no effect)
and 1 (perfect treatment). With our definitions for the
different types of treatments, we have

s ¼ 1� r1, aT ¼ (1� r2)(1� r4)a, bT ¼ (1� r3)b [(1� r2)a]:

(2:2)

3. Epidemiology
In this section, we investigate how the periodicity of treat-
ment coverage affects the ability of a pathogen to spread in
an uninfected host population and the endemic prevalence
of the disease. The invasion success of a pathogen can be
quantified by its basic reproduction number, R0, which
represents the average number of hosts to which a single
infected host in a disease-free population can transmit the
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pathogen over its lifetime. In a deterministic model,
the pathogen can create an epidemic if R0 > 1, or die out if
R0 < 1 [23–25]. R0 is calculated in the stable population in
the absence of the disease, typically an equilibrium in most
studies. In our model, however, the disease-free population
settles on a periodic attractor, due to the periodic forcing ν(t).

(a) Constant treatment coverage
When the treatment coverage is constant (n(t) ¼ �n), the popu-
lation settles on an equilibrium in the absence of the disease.
We can therefore calculate R0 using the next-generation theo-
rem (see electronic supplementary material, appendix S.2.1,
[24,26]), which leads to

R0 ¼ RNS0N þ sRTS0T (3:1)

with

RN ¼ bN

dþ aN
and RT ¼ bT

dþ aT
, (3:2)

the basic reproductive numbers in a fully naive (�n ¼ 0) or
fully treated (�n ¼ 1) population respectively, and S0N and S0T
the densities of susceptible hosts at the disease-free equili-
brium, which are given by S0N ¼ (1� �n)b=d and S0T ¼ �nb=d
(electronic supplementary material, appendix S.3). Thus, the
basic reproductive number in a heterogeneous population
corresponds to the sum of R0’s in a fully naive and a fully
treated population, weighted by the densities of susceptible
hosts in each class.

(b) Periodic treatment coverage
When host dynamics are periodic (figure 2a,b), the next-
generation theorem cannot be applied to calculate the basic
reproductive number. However, the concept of Floquet mul-
tipliers can be used to extend the definition of R0 [24] to
periodic environments [27,28]. Floquet theory allows for the
study of the stability of continuous-time periodical systems
([29]; e.g. [30] for an ecologically oriented treatment). In our
study, we can distinguish two cases: anti-infection and anti-
transmission treatments, for which an analytical study is
possible, and anti-growth and anti-toxin treatments for
which R0 can only be calculated numerically.

(i) Anti-infection and anti-transmission treatments
For these treatments, we show in electronic supplementary
material, appendix S.2.2 that, following [27], we can calculate
the basic reproduction number as:

R0 ¼ b

dþ a
S0N
� �þ (1� r1)(1� r3) S0T

� �� �
, (3:3)

where S0k
� � ¼ Ð tþT

t S0k (t) dt gives the average density of sus-
ceptible hosts in class k during one period. In particular, we
show in electronic supplementary material, appendix S.3
that, for our model

S0N
� � ¼ (1� �n)b

d
and S0T

� � ¼ �nb
d
: (3:4)

We can see that the average susceptible densities, S0N
� �

and
S0T
� �

have the same expressions as the equilibrium densities
in the constant case, and only depend on b, d, and the average
treatment coverage, �n (equation (3.4)). As a result, the invasion
threshold is independent of the period, and only depends on
the average coverage �n. Hence, any periodic treatment with
average coverage �n leads to the same condition for pathogen
invasion as a constant treatment with coverage �n.

After pathogen invasion, the population settles on a
periodic endemic attractor (figure 2c), and the average preva-
lence is then the fraction of infected hosts in the population
integrated over one period. Increasing the average coverage
(�n ¼ p) decreases the average prevalence for these treatments
(figure 3a, blue and green lines), until extinction above a critical
value of p. Moreover, an increase of the period T also reduces
the average prevalence (figure 3b). Note that periodicity
in treatment coverage always leads to a lower prevalence
compared to the corresponding constant coverage.
(ii) Anti-growth and anti-toxin treatments
For these treatments, the basic reproduction number cannot
be expressed in a closed analytical form, but can be calculated
numerically using Floquet’s theory [30,31]. We show in elec-
tronic supplementary material, appendix S.2.3 that the effect
of periodicity on R0 is weak, but tends to slightly lower the
extinction threshold for both types of treatments.

As the average coverage (�n ¼ p) increases, the average
prevalence decreases with an anti-growth treatment and
increases with an anti-toxin. This can be intuitively explained
by the fact that anti-toxin treatmentsmerely reduce the survival
cost of pathogens and cause infected hosts to transmit for a
longer time. By contrast, anti-growth treatment directly impacts
the transmission-virulence trade-off. It causes a reduction of
pathogen spread for treated hosts, counterbalanced by a
reduction of host mortality. This explains the lower decrease
of the prevalence compared to anti-infection or anti-trans-
mission treatments (figure 3a). As for previous treatments, the
average prevalence decreases when the period increases and
the periodic treatment is beneficial compared to the constant
coverage in terms of average prevalence reduction (figure 3b).

To understand why, note that the prevalence for short
periods can be approximated by the prevalence with the cor-
responding constant average coverage. Indeed, the dynamics
are characterized by small oscillations around the equilibrium
solution. Hence, for short periods, pathogens are exposed, at
any given time, to a heterogeneous population of naive and
treated hosts. For large periods, however, the environment
experienced by the pathogen alternates between temporary
equilibria corresponding to either fully naive or fully treated
populations. The average prevalence then tends to the arith-
metic mean between the equilibrium prevalences in fully
naive and fully treated poulations, which is always lower
than the prevalence in a heterogeneous population at equili-
brium (figure 3b). Note that, due to the epidemiological
feedbacks, the endemic attractor is more sensitive to the for-
cing period than the disease-free state of the population,
which explains why periodicity has a weaker impact on the
invasion threshold compared to the average prevalence.
4. Evolution
Assuming the population has reached an endemic attractor,
we now aim to understand how imperfect treatments and
periodicity may jointly affect the evolution of pathogen life-
history traits, such as virulence. In this section, we consider
that a pathogen strain is characterized by a trait z (for instance
the pathogen’s within-host growth rate) and that the virulence
and transmission traits are all functions of this trait. For
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simplicity, we assume αN = z, so that z represents virulence in
naive hosts. Eventually, a host population infected by the resi-
dent strain settles on its endemic attractor (ŜN(t), ŜT(t), ÎN (t),
ÎT(t)). Extensive numerical simulations show that the period
of the attractor is always equal to the period of ν(t). Now let
us assume that a mutant with a trait z0 which is slightly differ-
ent from the resident’s appears (the full model including the
infected hosts by the mutant strain is shown in electronic sup-
plementarymaterial, appendix S.4.1).Whether themutant can
invade the population or not is determined by the sign of its
invasion fitness [32–35]. We use this conceptual tool to inves-
tigate the direction of selection on pathogen traits, and
potential evolutionary endpoints.

(a) Anti-infection and anti-transmission treatments
For these treatments, the invasion fitness of a rare mutant
pathogen can be calculated analytically from the mutant
pathogen’s basic reproduction number R(z0, z), which acts
as a proxy for invasion fitness [25]. Using the same approach
used to derive equation (3.3), we find that a rare mutant can
invade the resident population on its periodic attractor if R(z0,
z) > 1, where

R(z0, z) ¼ b(z0)
dþ a(z0)

ŜN
D E

þ (1� r1)(1� r3) ŜT
D E� �

: (4:1)

Because for the resident pathogen, we have ŜN
D E

þ (1� r1)
(1� r3) ŜT

D E
¼ (dþ a(z))=b(z) ¼ 1=R0(z), it follows that

R(z0, z) ¼ R0(z0)
R0(z)

: (4:2)

Equation (4.2) shows that selection favours the strain that
maximizes the epidemiological R0, as in the case with con-
stant coverage [7–9]. As a result, periodicity in treatment
coverage does not impact the evolutionarily stable virulence
for these two treatments. This can be numerically confirmed
using Floquet’s theory (electronic supplementary material,
figure S.5). For completeness, we note that, in the original
models by Gandon et al. [7,8], the prediction that higher effi-
cacy selects for lower virulence was due to the possibility of
superinfection, which we ignore here, as a full analysis of
the interplay between multiple infections and environmental
fluctuations is beyond the scope of this paper.
(b) Anti-growth and anti-toxin treatments
For anti-growth and anti-toxin treatments, an analytical
expression of the invasion fitness s(z0, z) (or its proxy R(z0,
z)) is beyond our reach. However, we use a new approach
to derive an analytical expression of the selection gradient,
S(z) ¼ @s=@z0jz0¼z. The zeros of the selection gradient give
the evolutionarily singular points [36].

As a useful baseline scenario, we first examine the case of
a constant coverage analysed in [7,8]. We then have

Se ¼ ceN b0
N(z)

dþ aN

bN
� a0

N(z)
� 	

þ ceT b0
T(z)

dþ aT

bT
� a0

T(z)
� 	

: (4:3)

The selection gradient then takes the form of a weighted sum,
where the weights ceN and ceT ¼ 1� ceN are the pathogen’s
class reproductive values in naive and treated hosts, in a resi-
dent population at equilibrium [9,12,37,38]. Thus, the ES
virulence is intermediate between the value which maximizes
the basic reproduction number in a fully naive population
(i.e. when ceN ¼ 1) and the value which that maximizes the
basic reproduction number in a fully treated population (i.e.
when ceT ¼ 1). The class reproductive value ceT is a measure
of the quality of treated hosts from the point of view of the
parasite.

With periodic treatment coverage, we show in electronic
supplementary material, appendix S.4.2 that the average
change in mean trait over one period on the resident periodic
attractor, is approximately proportional to

S ¼ cNh i b0
N(z)

dþ aN

bN
� a0

N(z)
� 	

þ cTh i b0
T(z)

dþ aT

bT
� a0

T(z)
� 	

,

(4:4)
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where cT(t) is the class reproductive value of resident patho-
gens infecting treated hosts at time t, and cN(t) = 1− cT(t) is
the class reproductive value on naive hosts. Note that
equation (4.4) is directly comparable to equation (4.3), but,
in contrast with the classical definition, reproductive values
are here time-dependent quantities [12]. This reflects the
fact that the relative qualities of the different classes of
hosts for the pathogen change as the population moves
along the periodic attractor.

Equation (4.4) shows that, as in the constant treatment
model, the ES virulence in a heterogeneous host population
is intermediate between the value which maximizes the
basic reproduction number in a fully naive population and
that maximizes the basic reproduction number in a fully trea-
ted population. Interestingly, the potentially complex effects
of fluctuations on the exact value of the ESS are captured
by a single variable, which is the average class reproductive
value over one period, 〈cT〉. In general, 〈cT〉 will deviate
from the class reproductive value ceT in the constant treatment
model (figure 4a–c), and as a result the ESS will be different in
periodic versus constant environments.

For anti-toxin treatments, where βN = βT = β(α) and αT =
α(1− r4), a useful graphical representation can be obtained
from equation (4.4) by noting that the ES virulencemust satisfy

b0(a) ¼ b(a)
dþ a

1� r4 cTh i
1� r4 cTh i a

dþ a

(4:5)

which is a form of marginal value theorem [39]. As shown
graphically in figure 4d, the ES virulence for periodic anti-
toxin treatment is lower than in a constant treatment. This
effect is mediated by the average class reproductive value
which decreases as the period T increases (figure 4c). For
large T, 〈cT〉 converges towards �n ¼ p (electronic supplemen-
tary material, appendix S.4.2), which provides a lower
bound for the reduction in virulence that can be achieved by
using periodic treatments. For our trade-off function β(α) =
5α/(1 + α), this lower bound can be calculated as

a� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pr4

p , (4:6)

which implies that, for a fixed efficacy r4, the ES virulence
should be lower for low values of p (e.g. short bouts
of treatment).

While the average value 〈cT〉 is sufficient to determine the
ES virulence, the impact of periodicity on the full dynamics of
cT(t) sheds light on the process by which higher periods select
for lower virulence. Figure 4a shows that, for short periods,
the class reproductive value rapidly fluctuates around its
mean value, which is close to the equilibrium value ceT but
overestimates the average state of the environment, �n. As
the period increases, the environmental change becomes
slower and easier to track by the pathogen, and the class
reproductive value more closely matches the environmental
signal ν(t) (figure 4b). Because the pathogen is now better
able to perceive the true alternance of good and bad
epochs, its optimal strategy is less biased towards treated
hosts. Note that equation (4.4) also allows us to understand
why anti-infection and anti-transmission treatments are
insensitive to periodicity, since, for these treatments, the
class-specific selection gradients (the terms between brackets)
are equal, so that both classes have the same optimum.
These analytical predictions can be checked using a
numerical calculation of the invasion fitness s(z0, z), which
is the Floquet exponent associated with the mutant dynamics
on the resident periodic attractor (see electronic supplemen-
tary material, appendix S.4.3). Figure 5a shows that the
predictions of equation (4.4) closely match the Floquet analy-
sis and confirms that the ES virulence decreases as the period
increases, with a stronger effect for anti-growth than for anti-
toxin treatments. There is however a lower bound to the
reduction in virulence that can be achieved using periodic
treatments, as the ES virulence saturates as T becomes
large. Nonetheless, a tentative conclusion of our work is
that selection for virulence is weaker with treatments with
periodic coverage such as pulse vaccination, compared to a
constant treatment with similar average coverage. Finally,
figure 5b shows that, for both anti-growth and anti-toxin
treatments, increasing p, and thus the average treatment
coverage in the population, leads to increased ES virulence,
as in the constant case. However, in heterogeneous host
populations (0 < p < 1), the ES virulence is lower with
periodic treatments than with constant treatments. Hence,
although, as predicted by Gandon et al. [7,8], anti-growth
and anti-toxin treatments select for higher virulence, fluctu-
ations in coverage may actually mitigate the negative
evolutionary side-effect of these treatments.

5. Discussion
Our study sheds light on the potential benefits of periodic
treatments, both for short-term epidemiological control of
infectious diseases and long-term virulence management.
Our model generalizes the predictions of [7,8], who showed
for constant treatment coverage that increasing coverage
decreases the endemic prevalence, except for anti-toxin treat-
ments. Our results show that this carries over to periodic
coverage. For long-term evolution, we show that increasing
average treatment coverage has no effect on virulence evol-
ution for anti-infection and anti-transmission treatments but
selects for significantly increased virulence with anti-growth
and anti-toxin treatments. However, for all treatments,
periodic treatments are more beneficial than constant
treatments and lead to lower prevalence and virulence.

Our results suggests that periodic treatments over long
periods may be a mitigating strategy for virulence manage-
ment, even for treatments that create selective pressures on
pathogen life-history traits. Overall, our model predicts that
the best treatment strategy with anti-infection and anti-trans-
mission is a periodic coverage with a high average coverage,
to lower the prevalence. Anti-growth treatment strategies
require a compromise between high coverage (reduction of
prevalence on the short term) and low coverage (to limit
the long-term emergence of virulent strains). Anti-toxin treat-
ments are not recommended, but if no alternative exists,
periodic strategies of treatment would seem preferable.

At a conceptual level, our modelling approach provides a
generalmethod to analyse selectivepressures inheterogeneous
habitats where habitat quality can vary over time due to
environmental fluctuations. Here, the quality of treated hosts
for the parasite varies, and we use a dynamical concept of
reproductive value [12] to measure this quality and derive
the selection gradient. In contrast to previous studies [40,41],
which relied on numerical calculations of the invasion fitness,
this allows us to derive analytical expressions that can be
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readily compared to the selection gradient in constant environ-
ments. This is particularly useful as it allows us to capture the
effect of periodic coverage on virulence evolution through a
single variable, which is the average quality (or reproductive
value) of treated hosts over one period.

In our study, we focus on periodicity caused by the
availability of treatments, which implies seasonality in the sus-
ceptible host type and impacts pathogens life-history traits.
However, periodic environmental forcing can be caused by
other parameters such as seasonality in pathogen transmission
rate [42] or in host birth rates [43], towhich our approach could
be applied. In particular, considering the effect of seasonal
variations of the environment caused by climate change on
the evolution of pathogens life-history traits is of particular
interest [44]. Many epidemiological studies have addressed
the issue of periodic environments in epidemiology, in particu-
lar on the expression of R0 and the probability of emergence
[27,28,31,42,45]. There is however a lack of studies about
evolution in fluctuating environments, notably when the
population is structured. Partly, this is due to the lack of
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analyticalmethods to tackle this question. For instance, Ferris &
Best [40,41] have analysed the evolution of host defence
in fluctuating environments, but had to resort to numerical
calculations of Floquet exponents when selection depends on
both susceptible and infected host classes (e.g. when recovery
is not negligible). This makes a direct comparison with
constant environments difficult. By contrast, the approach we
use in this paper allows us to derive an insightful analytical
expression for the selection gradient and to capture much
of the complexity of environmental fluctuations using the bio-
logically meaningful concept of reproductive value. We think
this approach can be more generally applied to analyse other
evolutionary scenarios.

In this work, we focus on the evolution of life-history traits
and do not consider the possibility that pathogens evolve
resistance to treatments. We have shown that increasing the
period of treatment leads to a decrease both in the prevalence
and the evolutionarily stable virulence, and seems to be a
good treatment strategy. However, large periods means that
pathogens are potentially exposed to a treated population
during a long time. In principle, this could favour the evol-
ution of pathogen resistance, so that too long a period
would probably also have unwanted effects. To sharpen
these predictions, our model could be extended to consider
other treatements strategies which aim to reduce pathogen
resistance, such as combination therapies (patients are treated
with several drugs at the same time), mixing (different patients
are treated with different drugs) or cycling (each patient is
given different drugs in alternace) [46]. For instance, it has
been shown that combination therapies are more beneficial
than mixing strategies, which are in turn more beneficial
than cycling strategies [47]. It would be interesting to couple
these models with fluctuations in coverage to investigate the
robustness of these public health strategies.

There are a number of interesting potential extensions to
our study. For instance, the treatment coverage could be a
function of disease prevalence, so that the treatment strategy
would vary with the spread of the disease. Also, our model
assumes that only new individuals (either by birth or
migration) are treated, but for some treatments a global cover-
age over the whole population would be more realistic. Third,
it could be interesting to investigate what happens when trea-
ted hosts lose their immunity after some time and join the
respective susceptible or infected untreated class. Williams &
Kamel [48] have considered a similar heterogeneous model
where hosts can switch class over their lifetime. The authors
have shown that if an infected host transits from a class with
a high reproductive value to a class with a lower reproductive
value, selection favours increased host exploitation and there-
fore increased virulence. These results are consistent with ours,
which suggests that the loss of immunity over time would not
significantly impact our conclusions.

Our main results were obtained under a number of
assumptions. First, we assumed no recovery of infected
hosts. This hypothesis is relaxed in electronic supplementary
material, appendix S.5 where we explore the effect of non-
zero recovery rates. We show that recovery reduces preva-
lence regardless of the treatment, and decreases the
eradication threshold for all treatments but the anti-toxin. It
does not significantly affect the evolutionarily stable viru-
lence. Second, we used a step function for the coverage,
which is relaxed in electronic supplementary material, appen-
dix S.6, where we use a sinusoidal function to capture a softer
change from no coverage to full coverage. Qualitatively, our
results and the associated public health recommendations
do not depend of the shape on the periodic coverage func-
tion. Third, as commonly assumed in the literature [2,7],
we used a density-independent birth rate for simplicity.
However, the potential feedback between environmental
fluctuations and density-dependent reproduction could be
biologically relevant and worth a detailed investigation.
Fourth, in contrast with the original model of Gandon et al.
[7,8], we neglect here the possibility of multiple infections.
With superinfection, anti-infection and anti-transmission
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treatments actually select for lower virulence with constant
coverage [7]. Although it is beyond the scope of this study,
it would be interesting to see how the interplay between
within-host selection and population-level environmental
fluctuations could alter the selective pressures on virulence.

Importantly, our evolutionary analysis is based on an
adaptive dynamics approach, which uncouples epidemiolo-
gical and evolutionary timescales. Evolution is supposed to
be much slower than epidemiological processes, due to rare
mutations. However, many pathogens have high mutation
rates and the dominant strain during an epidemic can differ
from the strain that is selected in the long run. As experimen-
tally demonstrated in [49], during an epidemic susceptible
hosts are abundant and virulent strains investing in trans-
mission are mostly selected, while less virulent strains are
favoured at endemic equilibrium, where the proportion of
susceptible is lower. It would be interesting to extend our
model to take into account potential short-term evolutionary
dynamics. Using quantitative genetics methods could help to
shed light on these processes [50,51].

Finally, it would be interesting to test our theoretical pre-
dictions using field or experimental data. Unfortunately, the
kind of field data needed to test our predictions require
long-term studies of joint epidemiological and evolutionary
dynamics, which are only beginning to appear. Nevertheless,
our conclusions could be tested experimentally in microbial,
or agricultural systems. Bacteria–phage interactions are well
suited to explore the interplay between ecology and evolution
in heterogeneous host–parasite interactions [49,52]. By
periodically varying the influx of naive or treated susceptible
bacteria and monitoring the effects on parasite prevalence
and the evolution of phage virulence, it would be possible
to test our predictions. We think our theoretical results pro-
vide an interesting foundation to guide experimental and
empirical studies, which can potentially lead to useful rec-
ommendations to control and reduce the damages caused
by infectious diseases.
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