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Applications of interrater agreement (IRA) statistics for Likert scales are plentiful in

research and practice. IRA may be implicated in job analysis, performance appraisal,

panel interviews, and any other approach to gathering systematic observations. Any

rating system involving subject-matter experts can also benefit from IRA as a measure

of consensus. Further, IRA is fundamental to aggregation in multilevel research, which is

becoming increasingly common in order to address nesting. Although, several technical

descriptions of a few specific IRA statistics exist, this paper aims to provide a tractable

orientation to common IRA indices to support application. The introductory overview is

written with the intent of facilitating contrasts among IRA statistics by critically reviewing

equations, interpretations, strengths, and weaknesses. Statistics considered include rwg,

r∗wg, r
′
wg, rwg(p), average deviation (AD), awg, standard deviation (Swg), and the coefficient

of variation (CVwg). Equations support quick calculation and contrasting of different

agreement indices. The article also includes a “quick reference” table and three figures

in order to help readers identify how IRA statistics differ and how interpretations of IRA

will depend strongly on the statistic employed. A brief consideration of recommended

practices involving statistical and practical cutoff standards is presented, and conclusions

are offered in light of the current literature.

Keywords: interrater agreement, rwg, multilevel methods, data aggregation, within-group agreement, reliability

INTRODUCTION

The assessment of interrater agreement (IRA) for Likert-type response scales has fundamental
implications for a wide range of research and practice. One application of IRA is to quantify
consensus in ratings of a target, which is often crucial in job analysis, performance assessment,
employment interviews, assessment centers, and so forth (e.g., Brutus et al., 1998; Lindell and
Brandt, 1999; Walker and Smither, 1999; Morgeson and Campion, 2000; Harvey and Hollander,
2004). Another application of IRA is to determine the appropriateness of averaging individual
survey responses to the group level (van Mierlo et al., 2009). In that spirit, IRA has been used
to support the aggregation of individual ratings to the team level, follower ratings of leadership
to the leader level, organizational culture ratings to the organizational level, and leadership
ratings to the leader level (see discussions by Rousseau, 1985; Chan, 1998; Kozlowski and Klein,
2000). If consensus in the ratings of a target is low, then the mean rating may be a misleading
or inappropriate summary of the underlying ratings (George, 1990; George and James, 1993).
Underscoring the importance of IRA statistics is that, unlike interrater reliability and consistency
statistics, IRA provides a single value of agreement for each rating target, thereby facilitating
identification of units of raters who are very high or very low in agreement. This advantageous
feature also permits subsequent investigation of other substantive and theoretically interesting
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variables that may be related to variance in agreement (Klein
et al., 2001;Meade and Eby, 2007), or as amoderator of predictor-
criterion relations (e.g., climate strength; Schneider et al., 2002).

IRA are particularly common when collecting systematic
observations of behavior or phenomena. For example, Bernardin
and Walter (1977) found that training and diary keeping
reduced the errors in performance ratings. O’Neill and Allen
(2014) investigated subject-matter experts’ ratings of product
innovation. Weingart et al. (2004) observed and coded
negotiation behavior between teams and reported on methods
for doing so. Many more examples exist. The key is that IRA
becomes highly relevant when judges observe and provide ratings
of behavior or phenomena, and the absolute agreement of those
ratings is of interest.

Despite the widespread application of IRA statistics and the
extensive research focusing on IRA, it appears that considerable
challenges persist. For example, a recent review by Biemann
et al. (2012) identified situations in which applications of IRA
for aggregation of leadership ratings has been misused, as ratings
were aggregated (or not) based on flawed interpretations of IRA.
A possible contributing factor of the potential for IRA misuse
is that considerations of the logic underlying equations and
interpretations of alternative IRA statistics have been relatively
scattered across organizational (e.g., Lindell and Brandt, 1999),
methodological (e.g., Cohen et al., 2001), and measurement (e.g.,
Lindell, 2001) journals, thereby making it difficult for researchers
and practitioners to contrast the variety of statistics available and
to readily apply them appropriately. LeBreton and Senter (2008)
provided a seminal review of IRA and consistency statistics,
but the focus was largely on implications of these types of
statistics for multilevel research methods and not on the many
other applications of IRA (e.g., agreement in importance ratings
collected in job analysis; Harvey, 1991). Elsewhere, IRA statistics
have been investigated as dispersion measures of substantive
constructs in multilevel research in terms of criterion validity
(Meade and Eby, 2007), power (e.g., Roberson et al., 2007),
significance testing (e.g., Cohen et al., 2009; Pasisz and Hurtz,
2009), and performance under missing data conditions (Allen
et al., 2007; Newman and Sin, 2009). Importantly, some existing
articles may be seen as highly technical for some scholars that are
new to the IRA literature (e.g., Lindell and Brandt, 1999; Cohen
et al., 2001), and other reviews tend to focus on only one or two
IRA statistics (e.g., Castro, 2002).

Given the above, what is needed is a relatively non-technical
and tractable orientation to IRA that facilitates comparison and
interpretation of various statistics for scholars. Accordingly, the
purpose of this article is to contribute by providing an accessible
and digestible IRA resource for researchers and practitioners
with a diverse range of training and educational backgrounds
who need to interpret or report on IRA. The current article
fills a gap by reporting on an introductory comparative analysis
involving eight IRA statistics: rwg, r∗wg, r′wg, rwg(p), average
deviation (AD), awg, standard deviation (Swg), and the coefficient
of variation (CVwg). A unique contribution is a “quick reference”
table containing citations, formulas, interpretations, strengths,
and limitations (see Table 1). The aim of Table 1 is to support
expedient consideration of the appropriateness of various IRA

statistics given a researcher or practitioner’s unique situation,
and to serve as a foundation for more focused, complex issues
addressed in technical guides (e.g., Burke and Dunlap, 2002).
Further, three figures attempt to clarify the behavior of IRA
statistics and to supplement understanding and interpretation of
various IRA statistics. The article introduces James et al.’s (1984)
rwg, some potential issues with interpretations of that statistic,
and numerous contemporary alternatives. Before beginning, a
comment on IRA and interrater consistency is offered.

JAMES ET AL.’S IRA: rwg FOR SINGLE AND
MULTIPLE ITEMS

General Logic
For use on single-item scales, James et al. (1984; see also
Finn, 1970) introduced the commonly-used, and perhaps most
ubiquitous, IRA statistic known as rwg. This statistic is a function
of two values: the observed variance in judges’ ratings (denoted
as S2x), and the variance in judges’ ratings if their ratings were
random (denoted as σ

2
e in its general form, referred to as the null

distribution). What constitutes a reasonable standard for random
ratings is highly debated. One option, apparently the default
in most research, is the rectangular or uniform distribution
calculated with the following (Mood et al., 1974):

σ
2
eu = (A2 − 1)/12 (1)

where A is the number of discrete Likert response alternatives.
This distribution yields the variance obtained if each Likert
category had an equal probability of being selected. Observed
variance in judges’ ratings on a single item can be compared to
this index of completely random responding to determine the
proportion of error variance present in the ratings:

proportion of random variance in judges’ ratings = S2x/σ
2
eu (2)

If this value—the proportion of error variance in judges’ ratings—
is subtracted from 1, the remaining variance can be interpreted as
the proportion of variance due to agreement. Hence, the IRA for
single item scales can be:

rwg = 1− (S2x/σ
2
eu) (3)

Whereas, Equation (3) is for single-item scales, James et al. (1984)
derived an index for multi-item response scales denoted as rwg(j).
It applies the Spearman-Brown prophecy formula (see Nunnally,
1978) to estimate IRA given a certain number of scale items
(although James et al., 1984 did not use the Spearman-Brown in
its derivation; see also LeBreton et al., 2005). Further, the term S2x
from Equation (3) is substituted with the mean S2x derived from
judges’ ratings on each scale item to yield the following:

rwg(j) = J(1− S2x/σ
2
eu)/[J(1− S2x/σ

2
eu)+ (S2x/σ

2
eu)] (4)

where σ
2
eu is the same as in Equation (1), and J is the number of

items.
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Interpretation
Figure 1 shows the range of rwg values across all possible levels
of mean S2x based on four raters and a five-point Likert scale (see
also Lindell and Brandt, 1997). One observation from Figure 1 is
that the single-item rwg is a linear function, such that complete
agreement equals 1.0 and uniform disagreement equals 0 (i.e.,
raters select response options completely at random). But notice
that for Sx

2 > 2—that is, where Sx
2 exceeds σ

2
eu − rwg takes

on negative values. Figure 1 also contains the rwg(j) function

ranging from −1.0 to +1.0 across levels of Sx
2 based on four

raters, a five-point Likert scale, and two, five, and ten items.
Consistent with expectations, when rwg(j) is 1.0 agreement is
perfect and when rwg(j) is 0 there exists uniform disagreement.
However, at all other levels of rwg(j), interpretation is complicated
because the shape of the function changes depending on the
number of items. Consider that, as the mean Sx

2 moves from
0 to 1.5, rwg(j) ranges from 1.0 to 0.40 [rwg(2)], 1.0 to 0.63
[rwg(5)], and 1.0 to 0.77 [rwg(5)] suggesting that rwg(j) is insensitive

to substantial changes at reasonable levels of mean S2x, and
it might imply surprisingly high agreement even when there
is considerable variance in judges’ ratings. This also illustrates
the extent to which the problem increases in severity as the
number of items increases. The pattern creates the potential for
misleading or inaccurate interpretations when the shape of the
function is unknown to the researcher. Another issue is that Sx

2

> 2 produces inadmissible values that are outside the boundaries
of rwg(j) (i.e., < 0 or > 1.0). Regarding inadmissible values, James
et al. (1984) suggested that these may be a result of sampling
error. Other possible contributing factors include inappropriate
choices of null distributions and the existence of subgroups. One
recommended procedure is to set inadmissible values to 0 (James
et al., 1993). This could be an undesirable heuristic, however,
because it results in lost information (Lindell and Brandt, 1999,
2000; Brown and Hauenstein, 2005).

Potential Cause for Concern
Whereas, rwg is arguably the most widely used IRA statistic,
there are five issues concerning its interpretation. First, there is
the issue of non-linearity described above. This non-linearity,
occurring with increased magnitude as the number of scale
items increases, renders interpretations of agreement levels
ambiguous compared to interpretations of linear functions. The
appropriateness of interpretations may be particularly weak if
the researcher or practitioner is unaware that the function is
non-linear. Indeed, scales with a large number of items will
almost always have very high agreement (Brown and Hauenstein,
2005; cf. Lindell and Brandt, 1997; Lindell et al., 1999; Lindell,
2001), which limits the interpretational and informative value
of rwg(j) with scales containing more than a few items. Figure 1
clarifies this. Second, there are difficulties involving inadmissible
values, also described above. Resetting these values to 0 or
1.0 seems suboptimal because potentially useful information is
arbitrarily discarded. It would be advantageous if that additional
information could be used to further shed light on agreement.
Third, rwg and rwg(j) appear to be related to the mean rating
extremity. Brown and Hauenstein (2005) found a correlation
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FIGURE 1 | Single and multiple-item rwg across levels of Sx
2 (five-point scale).

between mean judge ratings and rwg(j) values of 0.63. This is
not surprising because mean ratings falling closer to the scale
endpoint must have restricted variance (i.e., agreement). Thus,
rwg will be affected by the mean rating. Fourth, the typical
selection of σe

2, the theoretical distribution of random variance,
seems to be the rectangular distribution, described above as σeu

2

(Cohen et al., 2009). But the σeu
2 uses scaling that leads to

inadmissible values (i.e., rwg < 0), and other distributions may be
an improvement (LeBreton and Senter, 2008). Whereas, James
et al. (1984) offered alternatives to σeu

2 that attempt to model
response tendencies or biases, in many cases it is difficult to
make a choice other than σ

2
eu that can be defended (for laudable

attempts, see Kozlowski and Hults, 1987; LeBreton et al., 2003).
One alternative to σ

2
eu, suggested by Lindell and Brandt (1997),

however, seems promising (described further below). Fifth, the
observed variance in the numerator, Sx

2, tends to decrease with
sample size, which creates the potential to spuriously increase rwg
(Brown and Hauenstein, 2005).

Given the above issues involving James et al.’s (1984) rwg, the
remainder of this article describes some alternatives and how
each alternative was proposed to address at least one of the
issues raised. Knowledge of this is intended to help the researcher
or practitioner make informed decisions regarding the most
applicable statistic (even rwg) given his or her unique situation.

r∗wg WITH THE RECTANGULAR NULL AND
MAXIMUM DISSENSUS NULL
DISTRIBUTIONS

General Logic
In order to overcome shortcomings of non-linearity and
inadmissible values of rwg and rwg(j), Lindell et al. (1999)

proposed r∗wg. r
∗
wg using σeu

2 is equal to rwg except r
∗
wg allows for

meaningful negative values to −1.0. Negative values will occur

when S2x exceeds the variance of the rectangular distribution, σ
2
eu,

and these negative values indicate bimodal distributions. In other
words, clusters of raters are at or near the scale end points. Unlike
rwg, which does not consider negative values to be admissible, r∗wg
recognizes that this information can provide theoretical insight
into the nature of the disagreement. r∗

wg(j)
with σ

2
eu also uses the

same equation as does rwg but instead uses the mean variance in
the numerator:

r∗wg = 1− (Sx2/σ
2
eu) (5)

where S2x is the mean of the item variances of judge ratings.
Figure 2 illustrates that r∗

wg(j)
has the favorable property of

linearity, meaning that it will not be affected by increasing scale
items. Lindell et al. (1999) suggested that interpretation may
be aided by keeping the range of admissible values to those of
James et al.’s (1984) rwg and rwg(j) (i.e., 0–1.0). Lindell et al.
(1999) pointed out that this could be done by setting the expected
random variance, σe

2, to the maximum possible disagreement,
known as maximum dissensus. Maximum dissensus (σmv

2) is:

σ
2
mv = 0.5(X2

U + X2
L)− [0.5(XU + XL)]

2 (6)

where XU and XL are the upper and lower discrete Likert
categories, respectively (e.g., “5” and “1” on a five-point scale;
Lindell, 2001). Maximum dissensus occurs when all judges are
distributed evenly at the scale endpoints, and it can be used in
the denominator of the r∗wg or r

∗
wg(j)

equations. For example, for

multi-item scales:

r∗wg(j) = 1− (Sx2/σmv
2) (7)

It is instructive to point out that on a five-point scale, σeu
2 is 2

and σmv
2 is 4. Thus, the use of maximum dissensus essentially
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FIGURE 2 | Sample rwg-family and awg statistics across levels of Sx
2 (five-point scale).

rescales James et al.’s (1984) rwg such that all values of Sx
2 will

result in r∗wg values within the range of 0 and 1.0. This index
avoids the problem of non-linearity and corresponding inflation
potential of rwg(j) and addresses the problem of inadmissible
values.

Interpretation
Figure 2 contains functions for r∗wg and r∗

wg(j)
with σeu

2 and

σ
2
mv. Values for r∗wg and r∗

wg(j)
will range from −1.0 to 1.0 if

the denominator is σeu
2, wherein a value of 0 is uniform

disagreement (i.e., Sx
2 = σeu

2) and a value of −1.0 is
maximum dissensus (i.e., Sx

2 = σmv
2). Note the advantage of

r∗wg and r∗
wg(j)

in that information is preserved by assigning

a meaningful interpretation to negative values. Values for r∗wg
and r∗

wg(j)
will range from 0 to 1.0 when the denominator

is σmv
2, wherein a value of 0.5 is uniform disagreement

(i.e., Sx
2 = σeu

2), and a value of 0 is maximum dissensus
(i.e., S2x = σmv

2). Taken together, r∗wg and r∗
wg(j)

potentially

address three drawbacks of James et al.’s (1984) statistics.
First, negative values are interpretable by incorporating the
concept of maximum dissensus. Second, by using S2x in the
numerator, the multi-item agreement index is not extensively
affected by the addition of scale items, which is a major
interpretational difficulty of r∗

wg(j)
. Third, r∗wg and r∗

wg(j)
have the

further advantage of avoiding inadmissible values that exceed
+1.0.

FURTHER ADVANCES ON r∗wg:
DISATTENUATED MULTI-ITEM r∗wg: (r’WG(j))

General Logic
One of the difficulties with Lindell et al.’s (1999) observed r∗wg
statistics, described above, is the use of σ

2
mv when comparisons

between James et al.’s (1984) rwg are of interest (Lindell, 2001).
The problem lies in the differences in ranges; James et al.’s (1984)
rwg statistics have admissible values within 0 and +1.0, whereas
for r∗wg statistics that use σ

2
mv the admissible range is from 1.0 to

+1.0. Two steps could be taken to remedy this problem. First, as
mentioned above, Lindell et al. (1999) observed that r∗wg statistics

could be computed with σ
2
eu. This facilitates comparisons, and

also allows the researcher to use a multi-item r∗wg that would
have similar behavior compared to single-item rwg. But, a further
problem noted by Lindell (2001) is that r∗wg and r∗

wg(j)
with σeu

2

will be attenuated in comparison to admissible rwg and rwg(j)
values. Thus, a second avenue offered by Lindell (2001) to address
the relative attenuation of r∗

wg(j)
using σ

2
eu is an alternative called

r′wg(j). r
′
wg(j) uses the variance of raters’ scale scores onmulti-item

scales (referred to as Sy
2, see Table 1 for derivation details):

r′wg(j) = 1− (Sy
2/σeu

2) (8)

Interpretation
Lindell (2001) demonstrated that r’wg(j)tends to produce larger

values than does r∗
wg(j)

using σ
2
eu, thereby addressing the issue of

Frontiers in Psychology | www.frontiersin.org 8 May 2017 | Volume 8 | Article 777

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


O’Neill Interrater Agreement

attenuation. Otherwise, r′wg(j) has the same general interpretation
as does r∗

wg(j)
, although it might be expected to share the

limitation of being correlated with group mean extremity. A
further difficulty might involve the need to extensively explain
r’wg(j) and its logic as reviewers may not be as familiar with this
agreement statistic as they are with more frequently employed
agreement indices (see Table 1).

POOLED AGREEMENT FOR SUBGROUPS:
rwg(p)

General Logic
As a possible remedy for the problem of inadmissible rwg values
that fall below 0 or above 1.0, LeBreton et al. (2005) offered
rwg(p). The rationale is that inadmissible values suggest bimodal
response distributions, and the different clusters comprise
subgroups. Therefore, separate IRA could be computed for
each subgroup, which could then be pooled. Accordingly, rwg(p)
computes the sample-size weighted average of raters’ variance for
the two groups, and this value is used in James et al.’s rwg or rwg(j)
(see also Table 1). This will effectively remove the possibility of
inadmissible values.

Interpretation
There are a few noteworthy drawbacks involving the use of rwg(p).
Calculating the pooled rwg(p) requires homogeneity of observed
variances (e.g., using Fisher’s F-test; see Table 1), otherwise
pooling the variances to calculate the rwg(p) may not be justifiable.
Another limitation is that these subgroups may be difficult to
identify theoretically or a priori; thus, capitalization on chance is
possible (LeBreton et al., 2005). This can be contrary to purpose
as most researchers are interested in a pre-specified set of judges
(e.g., team membership). Finally, given that rwg(p) has its basis
on rwg and rwg(j), rwg(p) would share many of the limitation of
James et al.’s (1984) statistics. Notwithstanding these limitations,
rwg(p) does provide a potentially advantageous extension of rwg
and rwg(j) for use when subgroups are suspected.

AVERAGE DEVIATION INDEX

General Logic
One major difficulty inherent in rwg is the choice of a suitable
null distribution. As reviewed above, there is the choice of the
rectangular distribution or the maximum dissensus distribution.
Moreover, there are other potential distributions, such as
skewed bell-shaped distributions, that may more realistically
represent null distributions by taking into account factors
such as socially-desirable responding or acquiescence tendencies
(James et al., 1984; see also discussions by Schmidt and
DeShon, 2003; LeBreton and Senter, 2008). Importantly, the
selected distribution affects the magnitude of IRA statistics,
their interpretation, and comparisons to other IRA statistics. To
circumvent difficulties in choosing a null distribution, Burke et al.
(1999) offered the average deviation index. The average deviation
is calculated by determining the sum of the differences between

each rater and the mean rating divided by the number of raters:

ADM(j) =
∑

(|xi − x|)/k (9)

whereADM(j) is the average deviation of judges’ ratings on a given
item, xi is a judge’s rating on the item, x is judges’ mean rating on
the item, and k is the number of judges. When there are multiple
items:

ADM(J) =
∑

ADM(j)/J (10)

where ADM(J) is the average deviation of judges’ ratings from the
mean judge rating across items, ADM(j) is the average deviation
on a given item, and J is the number of scale items. Note that AD
can be generalized for use with the median, instead of the mean,
in order to minimize the effects of outlier or extreme raters.

Interpretation
The average deviation approach is advantageous as it provides
a direct assessment of IRA without invoking assumptions about
the null distribution. Moreover, Burke and Dunlap (2002)
made useful inroads for determining cutoffs for supporting
aggregation, as they attempt to control for the number of Likert
response options by suggesting a cutoff criterion of A/6 (where
A is the number of Likert categories; cutoff criteria are discussed
further below). On the downside, like rwg statistics, the average
deviation will be correlated with the groupmean such that means
closer to the extremities will be negatively related to average
deviation values (see Table 1). In addition, whereas some forms
of rwg can suffer from inadmissible values, AD has the problem
of having no standard range whatsoever. Thus, AD values will
be difficult to compare across scales with a different numbers of
categories.

BROWN AND HAUENSTEIN’S
“ALTERNATIVE” ESTIMATE OF IRA: awg(1)

General Logic
Brown and Hauenstein (2005) developed the awg(1) to overcome
the limitation of other agreement indices that are correlated with
the extremeness of mean ratings. The closer the mean rating is
to the scale endpoint (i.e., the extremity of the group mean),
the lower the variance in those ratings, and the greater the
agreement. This confounds all of the above IRA statistics with
the group mean and consequently renders them incomparable
across groups with different means. Accordingly, Brown and
Hauenstein presented awg(1), which uses, as a null distribution,
the maximum possible variance (i.e., maximum dissensus) given
a group’s mean:

Smpv/m
2 = [(H+ L)M − (M2)−H∗L]∗[k/(k− 1)] (11)

where Smpv/m
2 is the maximum possible variance given k raters,

M is the observed mean rating, and H and L are the maximum
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and minimum discrete scale values, respectively. Once the
maximum possible variance is known, the single-item awg is:

awg = 1− [(2∗Sx
2)/Smpv/m

2] (12)

Note that multiplying Sx
2 by 2 is arbitrary, and is done to

give it the same empirical range as James et al.’s (1984) rwg. For
multi-item scales, the single-item awgs are averaged:

awg(j) =
∑

awg(1)/J (13)

Interpretation
Figure 2 contains awg values for means of 3, 2.5, and 3.5, on
a five-point scale. Values of −1.0 indicate maximum dissensus
(i.e., judge’s ratings are on the scale endpoints as much as
possible so as to maximize observed variance, Sx

2), 0 indicate
the observed variance is 50% of the maximum variance (i.e.,
uniform disagreement), and +1.0 indicate perfect agreement,
given the group mean. Note that this is the same interpretation
as of the single-item rwg, except awg is adjusted for the group
mean. Moreover, single and multi-item awg are linear functions,
thereby enhancing ease of interpretation (see Figure 2). Notice
that awg for means departing from the midpoint of the scale are
slightly lower, thereby taking into account decreases inmaximum
dissensus as a result of restricted variance. Finally, awg will not be
influenced by sample sizes or number of scale anchors, which are
notable additional advantages.

One limitation to Brown and Hauenstein’s (2005) awg is that
Smpv/m

2 cannot be applied when the mean is extreme (e.g., 4.9
on a 5-point scale). This is because Smpv/m

2 assumes that at least
one rater falls on each scale endpoint, although this is impossible
given some extreme means. Thus, there are boundaries in means,
outside of which appropriate maximum variance estimates
should not be applied (Brown and Hauenstein):

Minimum mean with interpretable awg = [L(k − 1)+H]/k

(14)

Maximum mean with interpretable awg = [H(k − 1)+ L]/k

(15)

where L and H are the lowest and highest scale values, and k is the
number of judges. This is however, a relatively modest limitation
because mean ratings falling beyond these boundaries are likely
to indicate strong agreement, as values close to the endpoints
will only occur when agreement is high. Nevertheless, awg scores
exceeding interpretational boundaries cannot be compared at
face value to other groups’ awgs. An additional limitation of awg
is that, unlike most other IRA statistics, awg is based on more
than a single parameter (e.g., the observed variance, S2x). It also
includes the mean. As both Sx

2 and x are affected by sampling
error, sampling error may have a greater influence on awg than on
some other IRA statistics (Brown and Hauenstein). Limitations
aside, awg is advantageous because it controls for the mean rating
using a mean-adjusted maximum dissensus null distribution and
it has a linear function.

Unlike other agreement statistics, awg matches the variances
(Sx

2, Smpv/m
2) on whether they employ the unbiased

(denominator is n − 1) or population-based (denominator
is n) variance equations. The rwg family mixes unbiased and
population-based variances (i.e., Sx

2, σeu
2, respectively), thereby

potentially leading to inflation of Sx
2 as sample sizes decreases

(see Brown and Hauenstein, 2005). This results in larger values
for the rwg family as sample size increases, and, therefore,
IRA agreement will almost always be high in large samples
(Kozlowski and Hattrup, 1992). Conversely, awg matches the
variances by employing sample-based equations for both of
Sx

2 and Smpv/m
2, making awg independent of sample size. If

population-level data is obtained, controls for sample size can be
employed by substituting k for k−1 in both of Sx

2 and Smpv/m
2

(Brown and Hauenstein; see Table 1).

STANDARD DEVIATION

General Logic
The square root of the variance term used throughout the current
article, Sx

2, is the standard deviation, Swg. As Swg is the square
root of the average squared deviations from the mean, Schmidt
and Hunter (1989) advocated for Swg as a straightforward index
of IRA around which confidence intervals can be computed.
Using the standard deviation addresses problems associated with
choosing a null distribution and of non-linearity. The average Swg
across items can be used in the case of multi-item scales.

Interpretation
Advantages of using Swg as an index of IRA is that it is a common
measure of variation, and its interpretation is not complicated
by the use of multi-item scales or non-linear functions [see
rwg(j)]. However, the Swg has not always enjoyed widespread
application. It cannot be explicitly compared to random response
distributions, and this could be of interest. It also tends to
increase with the size of the scale response options, meaning that
comparisons across scales are not feasible. Finally, it will also
tend to decrease with increases in sample size; thus, it will not
be sample-size independent.

COEFFICIENT OF VARIATION

A problem with most IRA statistics reviewed is that they are
scale dependent, making comparisons across scales with widely
discrepant numbers of Likert response options problematic.
With greater numbers of response options, the variance will
tend to increase. Thus, the amount of variance (e.g., Sx

2) could
partly depend on scaling, thereby presenting a possible source
of contamination for many IRA statistics. One way to address
this difficulty is to control for the group mean, because means
will typically be larger with greater numbers of response options.
One statistic that attempts to address this issue is the coefficient
of variation (CVwg). The CVwg indexes IRA by transforming
the standard deviation into a variance estimate that is less scale
dependent, using the following:

CVwg = {[
∑

(xi − x)2]/(n − 1)}1/2/x (16)
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MULTI-ITEM CVwg COULD BE COMPUTED
BY AVERAGING CVwg OVER THE J ITEMS.

Interpretation
By dividing the standard deviation (the numerator) by the group
mean, CVwg aims to provide an index of IRA that is not severely
influenced by choice of scale, thereby facilitating comparisons of
IRA across different scales. For example, the CVwg for a sample
with a standard deviation of 6 and a mean of 100 would be
identical to the CVwg for a sample with a standard deviation of
12 and a mean of 200. Figure 3 contains CVwg for means equal
to 50, 100, and 200 with standard deviations ranging from 0 to 15.
An inspection of Figure 3 indicates that theCVwg increases faster
with increases in standard deviations for lowmeans than for high
means, thereby taking into account the difference in variation
that may be related to scaling. Thus, the CVwg could be helpful in
comparing IRA across scales with different numbers of response
options. On the other hand, it is only helpful for relative (to
the mean) comparisons, and not absolute comparisons (Allison,
1978; Klein et al., 2001). This can be clarified by observing
that the addition of a constant to a set of scores will affect the
mean and not the standard deviation, making it difficult to offer
meaningful interpretations of absolute CVwgs (but ratio scaling
helps; Bedeian and Mossholder, 2000). Another issue is that
negative CVwg will occur in the presence of a negative mean, but
a negative CVwg is not theoretically interpretable. Thus, a further
requirement is non-negative scaling (Roberson et al., 2007).

STANDARDS FOR AGREEMENT

What constitutes strong agreement within raters? This is
an important question as researchers wishing to employ
IRA statistics to support and justify decisions. For example,
aggregation of individuals’ responses to the group (mean) level
may assume a certain level of consensus (Chan, 1998). Or,
consensus thresholds may be used in the critical incident
technique in job analysis, where performance levels of the
employees involved in the incident should be agreed upon by
experts (Flanagan, 1954). Identifying a unified set of standards for
agreement, however, has proven elusive. Two general approaches
to identifying standards for agreement have been suggested:
statistical and practical. These are considered briefly below.

Practical Standards
Historically, the emphasis on IRA has been on practical standards
or “rules of thumb.” For example, the rwg family of statistics has
relied on the 0.70 rule of thumb. It is important to acknowledge
that the decision to choose 0.70 as the cutoff was based on
what amounted to no more than a phone call (see personal
communication, February 4th, 1987, in (George, 1990), p. 110;
for a discussion, see LeBreton et al., 2003; Lance et al., 2006),
and James et al. (1984) likely never intended for this cutoff
to be so strongly, and perhaps blindly, adopted. Nevertheless,
a perusal of Figures 1, 2 clearly shows why common, rule of
thumb standards for any of these statistics are difficult to support.
A value of 0.70 has a different meaning for most statistics in
the rwg family. Further, even within-statistic, different situations

may render that statistic incomparable. For example, agreement
of 0.70 for an rwg based on 10 items vs. an rwg(j) based on
two items is a different agreement benchmark because of the
non-linearity. Identification of the null distribution is another
influencing factor, as Figure 2 clearly shows that use of σeu

2

vs. σmv
2 changes the interpretation of any absolute rwg value

(e.g., 0.70), not to mention other potential null distributions (see
LeBreton and Senter, 2008).

As noted by Harvey and Hollander (2004), justification for
a cutoff of 0.70 is based on an assumption that agreement is
similar to reliability, and reliabilities exceeding 0.70 are preferred.
However, reliability is about consistency of test scores, not
absolute agreement of test scores. Test scores can be perfectly
reliable (consistent) but very distinct in absolute quantities.
Reliability can, and should be, approached using Generalizability
Theory. G-theory involves the systematic investigation of all
sources of consistency and error (Cronbach et al., 1972). For
example, O’Neill et al. (2015) identified raters as the largest
source of variance in performance ratings, rather than rates or
dimensions. Thus, drawing on the 0.70 cutoff from reliability
theory is not tenable as this rule of thumb underscores the
complexity of reliability. An additional assumption is that
a single value (e.g., 0.70) would be meaningfully compared
across situations and possibly statistics in the rwg family. These
assumptions seem untenable, and adopting any standard rule
of thumb for agreement involving the entire rwg family would
appear to be misguided (see Harvey and Hollander, 2004). For
many of the same reasons (i.e., incomparability across different
situations), there is no clear avenue for setting practical cutoff
criteria for Swg and CVwg.

LeBreton and Senter (2008) proposed that standards for
interpreting IRA could follow the general logic advanced
by Nunnally (1978; see also Nunnally and Bernstein, 1994).
Specifically, cutoff criteria should be more stringent when
decisions will be highly impactful on the individuals involved
(e.g., performance appraisal for administrative decision making).
Where applicable, LeBreton and Senter (2008) added that cutoff
criteria should consider the nature of the theory underlying
aggregation for multilevel research, and the quality of the
measure (e.g., newly-established measures may be expected
to show lower IRA than do well-established measures). For
application to the rwg family, the following standards were
recommended: 0–0.30 (lack of agreement), 0.31–0.50 (weak
agreement), 0.51–0.70 (moderate agreement), 0.71–0.90 (strong
agreement), and 0.91–1.0 (very strong agreement). Whereas,
these standards will have different implications and meaning for
different types of rwg and null distributions (consider Figures 1,
2), LeBreton and Senter (2008) proposed the standards for all
forms of rwg. Thus, there is a strong “disincentive” to report
versions of rwg that will result in the appearance of lower IRA
(e.g., using a normal distribution for the null; LeBreton and
Senter, p. 836). Nevertheless, they challenged researchers to select
the most appropriate rwg by using theory (especially in the
identification of a suitable null distribution), with the hope that
professional judgment will prevail. Future research will be telling
with regard to whether or not researchers adopt LeBreton and
Senter’s (2008) recommended practices.
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FIGURE 3 | CVwg from 0 to 15 within-group standard deviations (Swg) and means of 50, 100, and 200.

Turning to other IRA statistics, Burke and Dunlap (2002)
suggested that practical significance standards forAD could apply
the decision ruleA/6 (whereA is the number of Likert categories).
Thus, for a five point Likert scale 5/6 = 0.83, and AD values
exceeding 0.83 would be seen as not exhibiting strong agreement.
But this decision rule makes two assumptions in its derivation
(see Burke and Dunlap for details): (a) the basis is in classical test
theory and that interrater reliability should exceed 0.70; and (b)
the appropriate null distribution is the rectangular distribution.
If these assumptions can be accepted, then the AD has a sound
approach for determining cutoffs for practical significance. But
if that “null distribution fails to model disagreement properly,
then the interpretability of the resultant agreement coefficient is
suspect” (Brown and Hauenstein, 2005, p. 166). Elsewhere, Burke
et al. (1999) proposed different criteria. They suggested that
AD should not exceed 1.0 for five- and seven-point scales, and
AD should not exceed 2.0 for 11-point scales. Finally, it should
be noted that Brown and Hauenstein (2005) proposed rules of
thumb for awg. Specifically, 0–0.59 was considered unacceptable,
0.60–0.69 was weak, and 0.70–0.79 was moderate, and above 0.80
was strong agreement.

Statistical Standards
Identifying standards for IRA using statistical significance testing
involves conducting Monte Carlo simulations or random group
resampling. For Monte Carlo simulations, the input is the
correlation matrix of scale items, the null distribution, and
the significance level (see Cohen et al., 2001, 2009; Burke and
Dunlap, 2002; Dunlap et al., 2003). Tabled significance values
were provided by several researchers (e.g., Dunlap et al., 2003;
Cohen et al., 2009). The program R contains commands for
running Monte Carlo simulations involving rwg and AD (see
Bliese, 2009). The objective is to create a sampling distribution

for the IRA statistic with an expected mean and standard
deviation, which can be used to generate confidence intervals
and significance tests. Random group resampling involves
constructing a sampling distribution by repeatedly sampling and
forming random groups from observations in the observed data
set, and comparing the significance of the mean difference in
within-group variances of the observed distribution and the
randomly generated distribution using a Z-test (Bliese et al., 2000;
Bliese and Halverson, 2002; Ludtke and Robitzsch, 2009), for
which commands are available in R. Thus, significance testing
of the Swg is possible through the random-group resampling
approach. Similar logic could be applied to test the significance
of r∗wg, awg, and CVwg, although existing scripts for running these
tests may be more difficult to find.

Statistical significance testing of IRA statistics has its
advantages. Cutoff criteria are relatively objective, thereby
potentially reducing misuse by relying on inappropriate or
arbitrary rules of thumb (see below). But, statistical significance
does not appear to have been widely implemented. One reason
might be because of the novelty of the methods for doing so,
and the need to understand and implement commands in R, for
example. Another reason might be because statistical agreement
might be difficult to reach in many commonly-encountered
practical situations. Specifically, many applications will involve
three to five raters, yet rwg(j) needs to be in the range of at
least 0.75 and AD would have to fall below 0.40 (Burke and
Dunlap, 2002; Cohen et al., 2009) in order to reject the null
hypothesis of no agreement. Indeed, Cohen et al. reported that
groups with low sample sizes rarely reached levels of statistical
significance that would allow the hypothesis of no statistical
agreement to be rejected. If statistical significance testing is
treated as a hurdle against which agreement must be passed in
order for further consideration of the implicated variables, there
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is potential to interfere with advancement of research involving
low (but typical) sample sizes. This may not always be the most
desirable application of IRA, and, not surprisingly, practical
standards have tended to be most common.

Current Best Practice in Judging
Agreement Levels
It is important to acknowledge the two divergent purposes
of practical and statistical approaches to judging agreement.
Practical cutoffs provide decision rules about whether or not
agreement seems to have exceeded a minimum threshold in
order to justify a decision. Examples of such decisions include
aggregation of lower-level data to higher-level units, retention of
critical incidents in job analyses, and for assessing whether frame-
of-reference training has successfully “calibrated” raters. The use
of practical cutoff criteria in these decisions implies that a certain
level of agreement is needed in order to make some practical
decision in light of the agreement qualities of the data (Burke and
Dunlap, 2002).

Statistical standards are not focused on the absolute level
of agreement so much as they are concerned with drawing
inferences about a population given a sample. Statistical
agreement tests the likelihood that the observed agreement in
the sample is greater than what would be expected by chance at
a certain probability value (e.g., p < 0.05). It involves making
inferences about whether the sample was most likely drawn
from a population with chance levels of agreement vs. systematic
agreement. For example, a set of judges could be asked to
rate the job relevance of a personality variable in personality
oriented job analysis (Goffin et al., 2011). If agreement is not
significant for a particular variable, it would suggest that there
is no systematic agreement in the population of judges (Cohen
et al., 2009). Notice that this differs from practical significance,
which would posit a cutoff, above which agreement levels would
be considered adequate for supporting the use of the mean rating
as an assessment of the job relevance of the trait (e.g., O’Neill
et al., 2011).

Statistical agreement raises issues of power and sample size.
Specifically, in small samples statistical agreement will be more
difficult to reach than in large samples. Accordingly, outcomes
of whether agreement is strong or not may depend on whether
one focuses on statistical or practical decision standards, and in
large samples, statistical agreement alone should not sufficiently
justify aggregation (Cohen et al., 2009). The key point, however,
is that statistical significance testing is for determining whether
the agreement level for a particular set of judges exceeds chance
levels. Practical agreement is about absolute levels of agreement
in a sample, which could be seen as strong even for non-
significant agreement when sample sizes are low.

In light of the above discussion, it is clear that more research
is needed in order to identify defensible and practical approaches
for judging IRA levels. Best practice recommendations for the
interim would involve reporting several IRA statistics, ideally
from different families, in order to provide a balanced perspective
on IRA. Practical significance levels could be advanced a priori
using suggestions described above (e.g., Burke and Dunlap,
2002; Brown and Hauenstein, 2005; LeBreton and Senter, 2008)
in order to identify cutoffs for making decisions. Statistical

significance would be employed only when inferences about
the population are important and when a power analysis
suggests sufficient power to detect agreement, although practical
standards should also be considered especially when power
is very high. Thus, a researcher or practitioner might place
little emphasis on statistical significance when he or she is not
concerned about generalizing to the population, and when there
are very few judges the researcher might be advised to consider
a less stringent significance level (e.g., α = 0.10). Importantly,
when evaluating agreement in a set of judges, the focus is typically
not on whether the sample was drawn from a population with
chance or systematic agreement, but whether there is a certain
practically meaningful level of agreement. Thus, in many cases
practical significance might be most critical.

Interpretations of practical agreement should probably not be
threshold-based, all-or-none decision rules applied to a single
statistic [e.g., satisfactory vs. unsatisfactory rwg(j)]. This is how
statistics can bemisused to support a decision (see Biemann et al.,
2012). Rather, reporting the values from several IRA statistics
along with proposed practical standards of agreement reviewed
here will provide some evidence of the quality of the ratings,
which can be considered in the context of other important indices
that also reflect data quality (e.g., reliability, validity). An overall
judgment can then be advanced and the reader (including the
reviewer) will also have the necessary information upon which
to form his or her own judgment. This procedure fits well within
the spirit of the unitary perspective on validity (Messick, 1991;
Guion, 1998), which suggests that validity involves an expert
judgment on the basis of all the available reliability and validity
evidence regarding a construct. It would seem that IRA levels
should be considered in the development of this judgment, but
it may not be productive to always require an arbitrary level of
agreement to support or disconfirm the validity of a measure in
a single study. In any case, consequential validity (Messick, 1998,
2000) should be kept in mind, and more research examining the
consequences, implications, and meaning of various standards
for IRA is needed.

CONCLUSION

IRA statistics are critical to justification of aggregation in
multilevel research, but they are also frequently applied
in job analysis, performance appraisal, assessment centers,
employment interviews, and so forth. Importantly, IRA offers a
unique perspective from reliability because reliability deals with
consistency of ratings and agreement deals with the similarity
of absolute levels of ratings. IRA has the added advantage of
providing one estimate per set of raters—not one estimate for
the sample as is the case with reliability. This feature of IRA can
be helpful for diagnostic purposes, such as identifying particular
groups with high or low IRA.

Despite the prevalence of IRA, there is the problem that
articles considering IRA statistics tend to be heavy on the
technicals (e.g., Lindell and Brandt, 1999; Cohen et al., 2001),
and this might be a reason why rwg, with its widely known
limitations (e.g., see Brown and Hauenstein, 2005), appears to
persevere as the leading statistical choice for IRA. Indeed, a
recent review suggested that a lack of a sound understanding
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of IRA statistics may have led to some misuses (see Biemann
et al., 2012). Thus, despite the many alternatives offered (e.g., r∗wg,
AD, awg, CVwg), they may not receive full consideration because
accessible, tractable, and non-technical resources describing
each within a framework that allows for simple contrasting
is not available. LeBreton and Senter (2008) provided solid
coverage, but it was mainly with respect to multilevel aggregation
issues and not directly applicable to other purposes (e.g., job
analysis).

The current article aims to fill a gap in earlier research
by offering an introductory source, intended to be useful for
scholars with a wide range of backgrounds, in order to facilitate
application and interpretation of IRA statistics. Through a
comparative analysis regarding eight IRA statistics, it appears
that these statistics are not interchangeable and that they are
differentially affected by various contextual details (e.g., number
of Likert response options, number of judges, number of scale
items). The goal of the article is to facilitate critical and
appropriate applications of IRA in the future, offer a foundation
for tackling the more technical sources currently available, and
make suggestions regarding best practices in light of the insights
gleaned through the review. It is proposed that researchers
interpret IRA levels with respect to the situation and best-practice
recommendations for practical and statistical standards in the
literature, as reviewed here. Because of the unique limitations
of each statistic, it is probably safe to conclude that more than

one statistic should always be reported. In submissions where this
has been ignored, reviewers should request the author to report
additional agreement statistics, ideally from other IRA families.
Consistent with the unitary perspective on validity, it is suggested
that judgments regarding the adequacy of the ratings rely on
evidence of IRA in conjunction with additional statistics that
shed light on the quality of the data (e.g., reliability coefficients,
criterion validity coefficients). Regarding agreement standards,
it would seem advisable to evaluate a given IRA statistic using
appropriate a priori practical cutoffs and statistical criteria,
depending on the purpose of assessing agreement levels. What
we need to avoid is misuses of agreement statistics and adoption
of inappropriate or misleading decision rules. This critical review
aims to provide tools to help researchers and practitioners avoid
these problems.
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