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Abstract.
Background: Language production deficits occur early in the course of Alzheimer’s disease (AD); however, only a few
studies have focused on language network’s functional connectivity in mild cognitive impairment (MCI) due to AD.
Objective: The current study aims to uncover the extent of language alteration at the MCI stage, at a behavioral and neural
level, using univariate and multivariate analyses of structural MRI and resting-state fMRI.
Methods: Twenty-four MCI due to AD participants and 24 matched healthy controls underwent a comprehensive language
evaluation, a structural T1-3D MRI, and resting-state fMRI. We performed seed-based analyses, using the left inferior frontal
gyrus and left posterior temporal gyrus as seeds. Then, we analyzed connectivity between executive control networks and
language network in each group. Finally, we used multivariate pattern analyses to test whether the two groups could be
distinguished based on the pattern of atrophy within the language network; within the executive control networks, as well as
the pattern of functional connectivity within the language network and within the executive control networks.
Results: MCI due to AD participants had language impairment during standardized language tasks and connected-speech
production. Regarding functional connectivity, univariate analyses were not able to discriminate participants, while multi-
variate pattern analyses could significantly predict participants’ group. Language network’s functional connectivity could
discriminate MCI due to AD participants better than executive control networks. Most notably, they revealed an increased
connectivity at the MCI stage, positively correlated with language performance.
Conclusion: Multivariate analyses represent a useful tool for investigating the functional and structural (re-)organization of
the neural bases of language.

Keywords: Alzheimer’s disease, connected speech, functional connectivity, functional MRI, language, multivariate pattern
analysis

INTRODUCTION

Language production deficits occur early in the
course of Alzheimer’s disease (AD). Most studies
have shown impairment in fluency tasks and con-
frontation naming tasks [1], usually attributed to
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lexical-semantic impairment [2]. These tasks have
also been shown to accurately discriminate mild
cognitive impairment (MCI) patients from healthy
controls [1, 3]. Fewer studies have analyzed other
language processes. Some studies have shown pre-
served syntactic abilities in early AD [1], while others
did not find such preservations [4]. Most studies have
stressed the fact that phonological capacities are rel-
atively preserved in early AD [1]. More and more
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studies have been focusing on connected speech pro-
duction in AD, for the assessment of the functional
use of language and cognition. They revealed sev-
eral impairments in AD: reduced lexical content [5],
increased word-finding difficulty and use of repeti-
tions and self-corrections [6], etc. While most studies
focused on AD at a dementia stage, other studies
revealed changes as early as the MCI stage. Some
authors [3] demonstrated that MCI due to AD patients
had lower lexical richness compared to healthy con-
trols, but similar production of filled pauses (e.g.,
“hm”). Others [7] also showed that these patients
produced more modalizing discourse, which refers to
“discourse about discourse” (i.e., comments, feelings
and uncertainty about the task).

Neuroimaging studies in AD patients have shown
that language impairments are associated with atro-
phy or hypometabolism in the left inferior frontal
gyrus (IFG) and temporal regions [8]. However,
besides the alteration of isolated brain regions, the
functional connectivity within brain networks can
underlie the cognitive impairments or compensations
observed. Resting-state functional connectivity is one
of the current methods that allows to investigate
functional brain networks, including the language
network [9, 10]. In AD, only few studies focused on
this network, reporting lower functional connectiv-
ity in AD compared to healthy controls (Weiler and
colleagues [11], patients’ mean MMSE: 18.86; Mas-
cali and colleagues [12], patients’ mean MMSE: 20.5;
Montembeault and colleagues [13], patients’ mean
MMSE: 24.9). These studies used the left IFG [12,
13] or left posterior temporal gyrus [11–13] as seeds.
They also showed that connectivity changes were
only marginally correlated with AD participants’ lan-
guage performance (i.e., no significant correlations in
Mascali et al., 2018 [12], no correlations with IFG’s
connectivity map in Montembeault et al., 2019 [13]).
However, it is possible that some changes remain
unnoticed when focusing exclusively on the language
network. For example, we now know that, in healthy
aging, the language network interacts with the execu-
tive control network/attentional network to maintain
a sufficient level of language performance [14, 15]. It
is therefore possible that MCI due to AD is primarily
characterized by a loss of this compensation, rather
than an alteration within the language network.

Second, univariate fMRI analyses may not be able
to uncover the extent of changes occurring at the MCI
stage. Indeed, analysis of structural or functional MRI
data is traditionally performed in a univariate manner,
where each voxel or area in the brain is separately

tested for a condition of interest. By contrast, mul-
tivariate pattern analyses (MVPA) simultaneously
consider patterns of information (i.e., atrophy or
BOLD signal), leveraging the multivariate, i.e., multi-
voxel, and distributed nature of neural representations
[16]. In other words, while univariate analyses ask
to what degree each voxel’s activity is affected by
a particular condition, MVPA examines whether, by
contrast, an experimental manipulation or a clinical
population can be predicted based on the pattern of
activity across a set of voxels. Using multivariate
patterns of activity, i.e., activity across multiple vox-
els, can increase sensitivity in differentiating between
individuals or conditions [16] (but see Hebart &
Baker [17] for a discussion on the benefits and pitfalls
of MVPA as compared with classical univariate anal-
yses). Regarding Alzheimer’s disease, some authors
[18] applied MVPA to investigate the topologic
alterations of resting-state functional connectivity in
participants with subjective cognitive decline, MCI
and AD compared with healthy individuals. They
showed that by using MVPA, it was possible to pre-
dict whether a participant belonged to one of the three
clinical groups or to the healthy control group, which
indicated that patterns of resting-state data are already
discriminant for cognitive decline and MCI due to
AD. Further work is required to understand how these
changes relate to patients’ cognitive impairment.

In the current study, we focus on language pro-
cessing to uncover the extent of language alteration
in MCI due to AD at behavioral and neural levels,
using univariate and multivariate analyses of struc-
tural MRI and resting-state fMRI. Additionally, we
will examine whether neural changes are correlated
with language performance, using both standard-
ized and connected speech tasks. Regarding language
performance, we expect behavioral inter-group dif-
ferences for both the standardized language tasks
and discourse task, in line with current literature on
MCI due to AD. Regarding functional connectivity,
we will first analyze language networks using the
same method as previous literature on AD, and the
same two seeds: left IFG and left posterior temporal
gyrus. We anticipate marginal inter-group differences
with this analysis. We will then analyze connectiv-
ity between executive control networks and language
network, to test whether MCI due to AD induced a
loss of the compensation observed in typical aging
[10, 15]. We expect lower between-network connec-
tivity in MCI due to AD participants, correlated with
lower language performance. Finally, we will use
MVPA to test whether it is possible to distinguish
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the two groups based on 1) the pattern of atrophy
within the language network, 2) atrophy within the
executive control networks, as well as 3) the pat-
tern of functional connectivity within the language
network and 4) functional connectivity within execu-
tive control networks (using atlases from Shirer et al.
[19]). Based on previous studies showing that func-
tional connectivity is affected in MCI due to AD, we
predict that functional information will allow to dis-
criminate MCI due to AD participants from healthy
controls using MVPA. We also hypothesize that func-
tional changes within both language and executive
control networks will be related to language perfor-
mance. In particular, we will test correlations with
language tasks that rely on the speech production
network (seed LIFG) and speech perception network
(seed LSTG) based on current literature on language
functional networks [20]. Regarding classifications
based on atrophy patterns, no study, to the best of our
knowledge, focused on language network’s atrophy
in MCI due to AD. Nonetheless, we predict that this
information will distinguish MCI due to AD partici-
pants from healthy controls, but will not be correlated
with participants’ language performance, similarly to
healthy aging [15].

MATERIAL AND METHODS

Participants

Participants’ recruitment followed the same pro-
cedure as the one described in Pistono et al., 2019;
2021 [15, 21]. Participants were right-handed and
native French speakers. In order to avoid possible
reorganization of the language network due to mul-
tilingualism, we only included speakers that did not
have a good command and/or a frequent use of a lan-
guage other than French. All the participants provided
written, informed consent before participating in the
study and received monetary compensation for their
participation. The current study was approved by the
ethics committee (IDRCB: 2015-A01416–43).

MCI due to AD participants were selected if they
presented with a memory complaint and had no
concomitant history of neurological or psychiatric
disease other than AD. They underwent the following
pre-inclusion assessment:

- Autonomy in daily living (Instrumental Activi-
ties of Daily Living (IADL) [22]) and Clinical
Dementia Rating (CDR) [23]);

- Global cognition (Mini-Mental State Evaluation
(MMSE) [24]);

- Anterograde verbal memory (Free and Cued
Selective Reminding Test (FCSRT [25]).

- Amyloid assessment with cerebrospinal fluid
(CSF) analysis by lumbar puncture: CSF bio-
marker levels of total tau (T-Tau), phospho-
tau (P-Tau), A�42 and A�40 were measured
using an ELISA method (Innogenetics, Ghent,
Belgium). Innotest Amyloid Tau Index (IATI)
was calculated. P-Tau ≥ 60 pg/ml and IATI ≤ 0.8
were deemed to be suggestive of AD. In case
of an ambiguous profile (P-Tau < 60 pg/ml or
IATI > 0.8), we calculated the A�42/A�40 ratio
and a score < 0.045 was considered to be com-
patible with a diagnosis of AD.

Individuals with typical AD were included at the
MCI stage, which corresponds to the following cri-
teria: MMSE ≥ 24; CDR ≤ 0.5, and based on the
IWG-2 criteria [26]: evidence of a gradual and pro-
gressive change in memory function reported by
patient or informant for more than 6 months and
demonstrated by an episodic memory test, and CSF
evidence of AD.

Healthy control participants underwent the same
pre-inclusion neuropsychological assessment as the
MCI due to AD group. They were included if they
had no memory complaint and no history of neu-
rological or psychiatric disease and a MMSE ≥ 27.
They were excluded if they presented with cognitive
impairment (test scores < –1.5 SDs) during the pre-
or post-inclusion neuropsychological assessment.

Twenty-four MCI due to AD participants and 24
healthy controls (HC) were recruited. Both groups
were matched for age (MCI due to AD: 72.9 ± 8 years
old; HC: 70 ± 4 years old, p = 0.09), gender (MCI
due to AD: 13 women; HC: 11 women) and level
of education (years of education, MCI due to AD:
12.5 ± 4; HC: 12.4 ± 4, p = 0.9).

Cognitive evaluation

Neuropsychological assessment
All participants also underwent a comprehensive

neuropsychological assessment, executed by trained
neuropsychologists. Visual recognition memory was
assessed with the Doors and People test [27]. Short-
term memory and working memory were evaluated
with the WAIS-III Digit Span and Backward Digit
Span subtest [28]. Cognitive flexibility was assessed
with the Trail Making Test, TMT [29]). Praxis was
explored with Mahieux’s assessment [30] and gnosis
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with the Visual Gnosis Evaluation Protocol (VGEP
[31]). Apathy and depression were also measured,
using the Starkstein scale [32] and the Beck Depres-
sion Inventory [33].

Language assessment
Language was assessed with the GREMOTs as-

sessment [34]. GREMOTs is a computerized battery
of language tests that evaluates both oral and written
language as well as production and comprehension
at different levels (i.e., phonological processing,
lexical processing and syntactic processing).

This battery includes a connected-speech task,
which we analyzed more specifically. With regards
to the procedure for this task, the participants were
given the same instructions: “This is a story depicted
in 5 pictures. Tell me the story with as many details as
possible.” During the task, the experimenter remained
neutral and avoided speaking in order to ensure uni-
form conditions for discourse production. The oral
productions of participants were recorded and manu-
ally and orthographically transcribed. The following
variables were used to analyze the discourse of both
the MCI due to AD group and healthy controls:

- Total number of words in the narrative;
- Lexical content [21]: proportion of closed class

and open class words (i.e. nouns, most verbs,
adjectives, numerals and adverbs of manner).
Standardized indexes were calculated according
to the following formula: (Open class – Closed
class)/(Open class + Closed class);

- Proportion of self-corrections: number of self-
corrections normalized per 100 words (e.g.,
when the speaker stops and resumes with a sub-
stitution for a word or a new utterance);

- Proportion of repetitions: number of repetitions
(of sounds, syllables, words or partial phrases)
normalized per 100 words;

- Proportion of filled pauses: number of filled
pauses (e.g., “hm,” “um,” “pff”) normalized per
100 words;

- Proportion of modalizing discourse: number of
words that are part of a modalizing utterance,
normalized per 100 words (e.g., “It seems that”;
“I don’t know how to say it”; etc.).

Intergroup comparisons for the neuropsycholog-
ical assessment and the language assessment were
performed using Student’s t-test for independent
samples. Bonferroni-Holm corrections for multiple
comparisons were applied.

Structural and functional MRI

MRI acquisition, preprocessing, and univariate
analyses follow the same methods as the ones
described in Pistono et al., 2021 [15], since it is part
of the same project.

MRI acquisition
MRI scans were performed for all participants

using a 3-T imager (Philips Achieva dStream,
Inserm/UPS UMR1214 ToNIC Technical Platform,
Toulouse, France). A 3D-T1 image was acquired
for anatomical reference with the following param-
eters: TR = 8 ms, TE = 3.7 ms, flip angle = 8◦, matrix
size = 256 × 256 mm, 170 slices, voxel size (in
mm) = 0.9 × 0.9 × 1. Whole-brain resting-state fMRI
images were obtained with the following parameters:
TR = 2837 ms, TE = 40 ms, flip angle = 90◦ 46 inter-
leaved acquisition, slice thickness = 3 mm, matrix
size = 80 × 80 mm, 200 volumes, total scan time
10 min. During scanning, participants were instructed
to keep their eyes closed but to stay awake and avoid
thinking of anything in particular. All participants
affirmed that they were fully awake during the 10 min
of the scanning.

Preprocessing
The data were analyzed using the Conn tool-

box (Version 18b [35]), implemented in MATLAB.
The preprocessing pipeline of the functional images
included: functional realignment and unwarp, slice-
timing correction, outlier identification, normaliza-
tion to the MNI template, and smoothing with a
Gaussian kernel of 6 mm. This step created a scrub-
bing covariate (containing the potential outliers scans
for each participant) and a realignment covariate
(containing the six head motion parameters). Average
head motion (t(46) = 0.97, p = 0.17) and maximum
head motion (t(46) = 1.16, p = 0.13) did not signif-
icantly differ between the two groups. Then, the
six head motion parameters plus their associated
first-order derivatives, the identified outliers scans,
white matter and cerebrospinal fluid signals and the
effect of rest were removed by means of the Comp-
Cor method. The resulting preprocessed images were
band-pass filtered (0.01 Hz–0.1 Hz) to remove physi-
ological high- and low-frequency noise (e.g., cardiac
and respiratory fluctuations).

Atlases
Language and executive control ROIs were

selected from Shirer’s atlas [19]. The language net-
work includes 7 ROIs within the left IFG, right IFG,
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left middle temporal gyrus, left middle/angular gyrus,
left middle/superior/supramarginal gyrus, right mid-
dle/superior/ supramarginal gyrus, left thalamus and
left cerebellum. Following Shirer’s parcellation, we
used two executive control networks (ECN): a left
ECN and right ECN. The left ECN includes 6 ROIs
within the left middle frontal/superior frontal gyrus,
left IFG/orbitofrontal gyrus, left superior/inferior
parietal/precuneus/angular gyrus, right cerebellum
and left thalamus. The right ECN includes 6 ROIs as
well: the right middle frontal/superior frontal gyrus,
right middle frontal gyrus, right superior frontal
gyrus, right inferior parietal/supramarginal/angular
gyrus, left cerebellum and right caudate.

For each ROI we used individual participants’ gray
matter masks estimated from the T1 segmentation
to restrict the analyses to voxels located in the gray
matter.

Voxel based morphometry (VBM)

Gray matter density was assessed using a voxel-
based morphometry method on Statistical Parametric
Mapping version 12 (SPM 12, Wellcome Trust Centre
for Neuroimaging). For each participant, the 3D-
T1 sequence was segmented to isolate gray matter
and white matter partitions, modulated for deforma-
tion, normalized to the MNI space and smoothed
(8×8×8 mm). Inter-group comparison on gray mat-
ter density was then performed (two-sample t-test,
voxel level p < 0.05, FWE-corrected, cluster = 50
voxels).

Seed-based analyses

The left Inferior frontal gyrus (LIFG) and the left
posterior temporal gyrus (LSTG, including parts of
the left middle/superior/supramarginal gyrus) were
used as seeds, based on Shirer’s functional atlas of
language. Correlation maps were constructed by cor-
relating the average BOLD-signal dynamic of the
region of interest with the BOLD-signal of every
other single voxel belonging to an estimated gray
matter mask derived from the T1 segmentation. To
enforce a Gaussian distribution of the correlation
data, Pearson’s correlation coefficients were then
transformed to z-scores using the Fisher r to z trans-
formation for subsequent t-tests. These individual z
values maps were entered into a one-sample t-test
to determine the functional network correlated with
spontaneous activity of the seed region within each
group (p < 0.05 FWE at the cluster level). We then

performed two-sample t-tests to detect inter-group
differences. The threshold for second-level maps was
set at p < 0.05 FWE at the cluster level.

Within- and between-network connectivity

Within- and between-network connectivity (aver-
age for all the ROIs within each network) was
evaluated for each participant. More precisely,
within-network connectivity is a mean composite
network connectivity estimate, calculated by means
of pairwise correlations between all the regions
comprising an individual network. Between-network
connectivity is the result of pairwise correlations
between the regions in each pair of different net-
works. Averages of within- and between-network
connectivity were compared between groups with
one-tailed t-tests to assess whether healthy controls
present greater within- and between-network connec-
tivity than MCI due to AD participants.

Multivariate pattern analyses (MVPA)

To investigate whether the two groups could be
identified based on the pattern of atrophy or connec-
tivity within the language network and the ECN, we
performed multivariate pattern classification.

Supervised classification analyses, performed
using a classifier algorithm, consist in training a clas-
sifier to distinguish two or more classes of data (e.g.,
class 1: healthy controls (HC), class 2: MCI due to
AD participants (AD)) from a set of training sam-
ples by providing the corresponding labels of each
sample, e.g., “HC” or “AD.”. Following this training
phase, the classifier is then tested on a test dataset
composed of samples not used during the training
phase, in order to assess whether the classifier is able
to generalize to new unseen data. If the classifier
is able to predict the class of novel samples in the
test dataset, i.e., accurate prediction, it indicates that
the multivariate pattern of information is informa-
tive about the classes of interest. To ensure unbiased
evaluation of classification performance, this proce-
dure is repeated over multiple independent divisions
of the entire dataset into training and test datasets,
i.e., cross-validation. The accuracy of classifier pre-
dictions, i.e., 0 for incorrect and 1 for correct, are
then averaged across cross-validation folds to obtain
a classification score between 0 and 1 (or 0% and
100%) that can be compared to chance level. For our
analyses, there was always 2 classes, corresponding
to the HC or AD groups, therefore chance level was
1/2 = 50%.
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Features selection
Classifiers are sensitive to the ratio between the

number of variables, e.g., voxels, and number of sam-
ples, i.e., the different data samples provided, which
can cause overfitting and/or poor classification accu-
racy [36]. One method to prevent this is to perform
the analysis on specific ROIs based on anatomical
or functional data [37]. Doing so decreases the num-
ber of voxels used by the classifier and focuses on
appropriate regions that allow for best discrimina-
tion. We therefore extracted ROIs from the Shirer’s
atlas [19] of language network (7 ROIs), left ECN (6
ROIs), and right ECN (6 ROIs) to perform 6 classi-
fications: gray matter density within areas of each of
these three networks, as well as functional connectiv-
ity between areas of each of these three networks. We
extracted the average gray matter density values of
each ROI, for each participant. We therefore obtained
7 values per participant for the language network, 6
values for the left ECN and 6 values for the right
ECN. We also extracted individual connectivity val-
ues between each ROI of the networks under study
using the Conn toolbox. This yielded 21 values for
the language network, and 15 values for the left ECN
and right ECN.

Classification procedure
We used a linear discriminant analysis (LDA)

classifier implemented in the Scikit-learn toolbox
[38]. More precisely, we trained the LDA classifier
to distinguish the two classes of data, i.e., “HC”
versus “AD”. The classification was performed in
a leave-one-out cross-validation approach. In each
cross-validation fold, the classifier was trained on
data from all but one participant from each class and
used on the left-out participants to predict their class
membership. This procedure was repeated until each
trial’s class had been used as a test.

Permutation test
To evaluate the significance of classification accu-

racies, for each analysis, we computed permutation
tests. In order to estimate the null distribution of
classification accuracy, we randomly permuted the
labels of all samples (i.e., HC or AD) and performed
the classification analysis 100,000 times, yielding
100,000 surrogate classification accuracies under the
null hypothesis that the two classes are completely
interchangeable. From these surrogate distributions,
we computed the probability of observing a certain
classification accuracy, i.e., p-value.

Feature contribution
For each classification, we extracted each fea-

ture contribution by using a method that allows an
“informativity” measure to be extracted from clas-
sifier weights [39]. Indeed, classifier weights cannot
be interpreted, as they reflect both noise and signal
in the data; we thus used this approach to evaluate
the extent to which a certain feature was informative
in performing the classification. For each classifi-
cation, the contribution value of each feature was
calculated. Furthermore, a null distribution of each
feature’s contribution was computed using the per-
mutation procedure described above to estimate the
significance of the contribution values.

Correlations between functional connectivity and
language performance

For the different functional analyses, signifi-
cant inter-group differences were further examined
through intra-group correlations. To do so, we
selected variables to link functional results to lin-
guistic theories [20]. Phonemic fluency and sentence
production scores were chosen to test correlations
with the speech production network (i.e., functional
connectivity with the LIFG). Word repetition, non-
words repetition, object naming, and action naming
tasks were chosen to test correlations with the speech
perception network (i.e., functional connectivity with
the LSTG, that also contributes to higher level lexical
processes [20]). We also tested correlations with the
narrative task (lexical content, modalizing discourse,
self-corrections). We performed Kendall correlations
and then applied Bonferroni-Holm corrections.

RESULTS

Population

Neuropsychological assessment
During the pre-inclusion assessment, MCI due to

AD participants had a lower MMSE (MCI due to
AD group: 25.5 ± 2.6 - [range: 24–30]; HC group:
29 ± 1 - [range: 27–30], p < 0.0001) and lower per-
formance during the FCSRT than the control group
(sum three free recalls MCI due to AD group:
14.17 ± 9.69; HC group: 32.29 ± 4.79, p < 0.0001;
sum three cued recalls MCI due to AD group:
30.33 ± 12; HC group: 46.42 ± 1.93, p < 0.0001).

During the post-inclusion neuropsychological
assessment, MCI due to AD participants’ perfor-
mance on the Doors and People test, digit span
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Table 1
Performance during the neuropsychological assessment. Results represent mean ± SD.

Results that are significant after Bonferroni-Holm correction are in bold. Cohen’s d values were
measured for these variables only

Healthy MCI due to AD p Cohen’s d
Controls participants

Doors and People test, set A 10.78 ± 1.38 8.00 ± 2.55 < 0.0001 1.36
Digit span forward 6.00 ± 1.00 5.21 ± 0.98 0.009 0.80
Digit span backward 4.83 ± 1.40 4.04 ± 0.91 0.027 -
Trail Making Test, A 38.79 ± 12.50 51 ± 16.41 0.006 0.83
Trail Making Test, B-A 55.13 ± 27.86 114.22 ± 81.83 0.002 0.97
VGEP 35.26 ± 1.10 33.79 ± 2.87 0.026 -
Beck 2.58 ± 2.21 3.29 ± 3.28 0.384 -
Starkstein 9.50 ± 4.19 11.78 ± 4.60 0.082 -

Table 2
Performance during the language assessment. Results represent mean ± SD. Results that are significant after Bonferroni-Holm correction

are in bold. Cohen’s d values were measured for these variables only

Healthy MCI due to AD p Cohen’s d
Controls participants

Lexical processing Repetition, words (/10) 9.38 ± 1.01 9.17 ± 1.05 0.488 -
Grammatical fluency (category: verbs) 35.21 ± 11.66 27.08 ± 11.23 0.018 -
Semantic fluency (category: fruits) 19.33 ± 3.38 15.04 ± 6.03 0.004 -
Phonemic fluency (letter V) 17.29 ± 6.12 17 ± 8.01 0.888 -
Object naming (/36) 34.7 ± 1.40 32.63 ± 1.91 < 0.0001 1.23
Action naming (/36) 33.13 ± 3.25 31.13 ± 2.8 0.028 -
Famous face naming (/10) 8.75 ± 1.15 4.83 ± 2.78 < 0.0001 1.84
Reading, words (/30) 29.71 ± .55 29.33 ± .92 0.092 -
Spelling, words (/12) 11.58 ± .504 10.04 ± 1.33 < 0.001 1.53
Oral semantic verification (/18) 17.04 ± 1.27 15.96 ± 1.6À 0.013 -
Written semantic verification (/18) 16.3 ± 1.69 14 ± 2.21 < 0.001 1.17

Syntactic processing Repetition, sentences (/4) 3.46 ± .78 3.42 ± .65 0.842 -
Order execution (/6) 5.96 ± .20 5.79 ± .42 0.084 -
Sentence production (/6) 5.75 ± .68 5.25 ± .94 0.040 -
Syntactic comprehension (/24) 21.25 ± 2.51 18.92 ± 3.62 0.013 -
Spelling, sentence (/27) 25.83 ± 1.05 24.25 ± 1.98 0.001 1.00
Text comprehension (time in seconds) 49.3 ± 15.73 80.88 ± 30.51 < 0.0001 1.30

Phonological processing Repetitions, non-words (/6) 5.54 ± .66 5.08 ± .93 0.055 -
Reading, non-words (/15) 14.67 ± .64 13.79 ± 1.06 0.001 1.00
Spelling, non-words (/6) 5.50 ± .59 4.96 ± 1.04 0.032 -

forward and Trail Making Test was also lower than
that of the control group, as shown in Table 1.

Brain atrophy
MCI due to AD participants had significant atro-

phy in two clusters compared to the control group (see
Supplementary Material), with one cluster encom-
passing the left hippocampus, parahippocampus
and thalamus (K voxels = 3278; t = 7.28; pFWE-
corr < 0.0), and one cluster involving the contralateral
areas (K voxels = 1076; t = 7.40; pFWE-corr < 0.05).

Language evaluation

Standardized assessment
MCI due to AD participants had lower perfor-

mance during several lexical tasks, as well as syn-
tactic tasks. Results are detailed in Table 2.

Connected-speech production
The MCI due to AD group did not produce shorter

narratives compared to healthy controls (number of
words MCI due to AD group: 172 ± 112; HC group:
146 ± 84, p = 0.4). However, they produced signifi-
cantly more self-corrections (MCI due to AD group:
3.3 ± 2.1; HC group: 1.7 ± 1.5, p = 0.006, Fig. 1)
and more modalizing discourse (MCI due to AD
group: 12.1 ± 11.5; HC group: 3.7 ± 7.5, p = 0.005)
while performing this task. Their lexical content
was also lower than the control group (MCI due
to AD group: –0.82 ± 0.8; HC group: 0.19 ± 0.8,
p = 0.0001, Fig. 1). On the contrary, the two groups
produced the same proportion of repetitions (MCI
due to AD group: 1.9 ± 1.9; HC group: 1.2 ± 0.9,
p = 0.1) and filled pauses (MCI due to AD group:
4.1 ± 2.8; HC group: 3.5 ± 2.9, p = 0.5).
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Fig. 1. Inter-group comparisons for self-corrections (left) and lexical content (right) between MCI due to AD participants (AD) and Healthy
Control group (HC). ∗∗p < 0.01; ∗∗∗p < 0.001.

Fig. 2. Cluster map for A) LIFG and B) LSTG in healthy controls and MCI due to AD participants. Yellow to red color for clusters positively
correlated to LIGF activity; blue to pink color for clusters negatively correlated to LIFG activity.

Seed-based analyses

Inferior frontal gyrus
At a group level, connectivity maps show that

both groups have extended maps of fronto-temporal
areas connected with the LIFG (Fig. 2). They did not
reveal any inter-group differences (threshold for sec-
ond level maps p < 0.05 FWE at the cluster level).
As a consequence, we did not perform further cor-
relation analyses. Regions positively and negatively
correlated with the LIFG in each group are detailed
in the Supplementary Material.

Posterior temporal gyrus
Similar to the previous seed-based analysis, both

groups had extended map areas connected with the
LSTG (Fig. 2). Two sample t-tests did not reveal any
inter-group differences (threshold for second level

maps p < 0.05 FWE at the cluster level), correla-
tion analyses were therefore not performed. Regions
positively and negatively correlated with the LIFG
in each group are detailed in the Supplementary
Material.

Within- and between-network connectivity

The average connectivity within the language net-
work (t(46) = 1.12, p = 0.13), within the Left ECN
(t(46) = 1.35, p = 0.09) and within the right ECN
(t(46) = –0.77, p = 0.78) were not lower in the MCI
due to AD group compared to the HC group.

Additionally, the strength of connectivity between
the language network and the left ECN (t(46) = 1.,
p = 0.46) or between the language network and the
right ECN (t(46) = 0.53, p = 0.3) was not lower in the
MCI due to AD group.
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Multivariate pattern analyses (MVPA)

Language network
Classification analysis based on language net-

work’s grey matter density yielded an accuracy of
95.8%. The permutation tests indicated that this
classification was highly significant (p < 0.0001).
Furthermore, it indicated that the discriminative
regions included the right inferior frontal gyrus, the
right superior temporal gyrus, the left middle tempo-
ral gyrus and the left middle temporal gyrus/angular
gyrus (Fig. 3).

Regarding functional connectivity within the lan-
guage network, the classification analysis yielded an
accuracy of 64.5% (p < 0.05). This pattern revealed
a global increase in language functional connectiv-
ity in the MCI due to AD group compared to the
control group (Fig. 4). There were three significantly
discriminative connectivity features: the connectiv-
ity between the left inferior frontal gyrus and the left
middle temporal gyrus/angular gyrus, the connectiv-
ity between the left inferior frontal gyrus and the left
superior temporal gyrus and the connectivity between
the left middle temporal gyrus/angular gyrus and the
left superior temporal gyrus.

Executive control networks

For left ECN, the classification analysis based
on structural data yielded an accuracy of 95.8%

(p < 0.0001). All the features of this network but
one (left IFG/orbitofrontal gyrus) were significantly
informative for the classification. For the right ECN,
the classification analysis yielded an accuracy of

Fig. 3. Contribution of each feature when classifying the pattern
of atrophy within language network. The dashed lines represent
the threshold (p < 0.05) for significance obtained through permu-
tations. Significant features are indicated in bold on the y-axis.
Only the main area of each ROI is displayed on the y-axis.
LMTG, left middle temporal gyrus; LMTG/AG, left middle tem-
poral/angular gyrus; LSTG, left middle/superior/supramarginal
gyrus; RSTG, right middle/superior/ supramarginal gyrus, LCereb,
left cerebellum.

Fig. 4. Contribution of each feature when classifying the pattern of functional connectivity within the language network. The dashed lines
represent the threshold for significance (p < 0.05) obtained through permutations. Significant features are indicated in bold red on the y-axis.
Only the main area of each ROI is displayed on the y-axis. LMTG, left middle temporal gyrus; LMTG/AG, left middle temporal/angular
gyrus; LSTG, left middle/superior/supramarginal gyrus; RSTG, right middle/superior/ supramarginal gyrus; LCereb, left cerebellum.
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91.8% (p < 0.0001). All the features of this network
were significantly informative for the classification.

Regarding these functional networks, neither of the
two networks could significantly discriminate MCI
due to AD participants from healthy controls (left
ECN: 60.9%; p = 0.09; right ECN: 44%; p = 0.7).

Correlations with language performance

We first extracted a measure of group-typicality
from classification analyses to perform intra-group
correlations between discriminative patterns and
language performance. For each participant, we
extracted the confidence score of the classifier to pre-
dict the class of this participant (HC or MCI due to
AD). This score corresponds to the distance of each
participant from the hyperplane that distinguishes the
two classes. For instance, a participant whose data
represent a point far from the classification hyper-
plane will have a high confidence score, indicating
that they can be confidently classified as a member
of the class (depending on which side of the hyper-
plane they fall). This measure therefore represents
a continuous group-typicality measure that allow us
to relate multivariate patterns analyses to behavioral
performance [40, 41]. For the language network’s
gray matter density, confidence scores were not corre-
lated with language performance, in any group. For
the language network’s functional data, confidence
scores were not correlated with any language task in
the MCI due to AD group. There was a positive cor-
relation with the connected speech task in the HC
group: participants with high confidence scores had
superior lexical content during this task (p = 0.015;
r = 0.36). This means that participants that were the
most different from the MCI due to AD group in
terms of language network’s functional connectiv-
ity had richer lexical content during their narrative
production. Confidence scores obtained during ECN
classifications were not correlated with language per-
formance in any group.

We also tested, in the MCI due to AD group, corre-
lations between pairs of ROIs that showed significant
increased connectivity. Connectivity between the left
inferior frontal gyrus and the left middle temporal
gyrus/angular gyrus was positively correlated with
MCI due to AD participants’ phonemic fluency scores
(r = 0.35; p = 0.018); connectivity between the left
inferior frontal gyrus and the left superior tempo-
ral gyrus was positively correlated with MCI due to
AD participants’ performance during the sentence
production task (r = 0.38; p = 0.016); connectivity

between the left middle temporal gyrus/angular gyrus
and the left superior temporal gyrus was posi-
tively correlated with object naming performance,
but not significant after Bonferroni-Holm corrections
(r = 0.32; p = 0.039). No significant correlations were
found with the narrative task.

DISCUSSION

In the current study, we recruited typical AD
participants at the MCI stage who underwent a com-
prehensive language assessment, a structural 3D-T1
MRI and a resting-state fMRI. We showed that MCI
due to AD participants had language impairment
during standardized language tasks and connected
speech production. Based on MVPA results, we show
that an increased functional connectivity within the
language network could be a marker of early AD,
despite gray matter loss. However, such differences
were not noticeable during univariate analyses.

Behavioral level

The MCI due to AD group had lower perfor-
mance than HC during several lexical tasks: object
naming, famous face naming, word spelling and writ-
ten semantic verification. These results are coherent
with previous literature that showed an early seman-
tic and naming impairment in AD [2, 42]. Contrary
to what was expected, their verbal fluency was not
lower than in HC (contrary to Mueller and colleagues
[3]).

During connected-speech production, the two
groups did not differ in terms of number of words.
Additionally, and similarly to Mueller and col-
leagues, the MCI due to AD group did not produce
more filled pauses than HC. However, we revealed
three qualitative differences in MCI due to AD par-
ticipants’ productions. First, their lexical content was
lower than healthy controls, which is similar to what
we previously found using the same narrative task
[21]. They also produced more modalizing discourse
and more self-corrections while speaking. Previous
studies [7] also found an increase of modalizing dis-
course in MCI due to AD patients’ narratives. As
mentioned by Duong et al. [43], the fact that AD par-
ticipants produced modalizing discourse means that
their pragmatic abilities are preserved and used to
communicate about their productions. It is therefore
possible that this variable increases in MCI due to
AD but decreases in later stages, when pragmatic and
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metacognitive processes are altered. Similarly, self-
corrections can be seen as evidence that some abilities
remain. Indeed, self-corrections are the result of a rel-
atively late process of verbal self-monitoring. Verbal
self-monitoring is a cognitive system that inspects
the speech plan and overt speech and initiates correc-
tions when necessary [44]. In the current study, the
MCI due to AD participants exhibited more errors
than the controls. However, they were able to correct
themselves, while an impaired monitoring system
would lead to uncorrected errors. The significant pro-
portion of modalizing discourse and self-corrections
therefore reflects the use of metacognitive abilities
in MCI due to AD patients’ discourse production. In
sum, in our sample, despite lexical difficulties, MCI
due to AD participants present with mostly preserved
language/communicational abilities reflected by dif-
ferent compensation mechanisms during discourse
production.

Univariate analyses

No inter-group differences were found during
seed-based analyses, both when using the LIFG or
LSTG as a seed. This result is, however, unsurpris-
ing, given the early stage of AD participants that were
recruited in the current study. Indeed, Montembeault
et al. [13] recruited AD participants with a slightly
lower MMSE than AD participants in the current
study (24.9 ± 3.1 in their study versus 25.5 ± 2.6 in
the current study). They showed that only one cluster
(the right posterior temporal gyrus) was significantly
less connected to the left posterior temporal gyrus in
MCI due to AD, while there was no difference with
the control group when the LIFG was used a seed.
However, the use of these seeds may not be suitable
for MCI due to AD. Using a semantic hub such as the
left anterior temporal lobe as a seed could be more
sensitive to AD changes, since semantic decline is
associated with atrophy in the anterior temporal lobe
from the MCI stage [2].

More surprisingly, functional connectivity
between the language network and the executive
control network was not lower in MCI due to AD
participants. Since this type of measure is the result
of mean pairwise correlations between several ROIs,
it is possible that it is too broad to reveal differences
at the MCI stage. Additionally, the MCI due to
AD group did not significantly differ from the HC
group on fluency tasks during language assessment
(i.e., not after corrections for multiple comparisons).
Studies that revealed interactions with the executive

control network in healthy aging suggested that
older adults may rely on these additional attentional
resources to maintain successful verbal fluency
performance [10, 15]. It is therefore also possible
that AD participants at the MCI stage do not differ
from HC in the interaction of language and executive
resources. However, although the two groups did
not differ on any of these univariate measures, the
pattern of atrophy or functional connectivity within
the language network allowed discriminate the two
groups, as shown with multivariate analyses.

Multivariate analyses

MVPA uses machine-learning algorithms that
allow information patterns to be extracted from
multi-dimensional data and the class of new data
to be predicted. Here, we aimed to classify the two
groups based on the pattern of atrophy and func-
tional connectivity within the language network and
the executive control networks. By doing so, we
revealed two main findings. First, MCI due to AD is
not characterized by decreased language functional
connectivity. Second, language network connectiv-
ity could better classify participants than executive
control networks.

Regarding language networks, the pattern of atro-
phy was highly discriminative of MCI due to AD
participants from HC. However, this pattern was
not correlated with language performance in any
group. This discrepancy between atrophy and lan-
guage performance has already been shown in the
literature on healthy aging [15]. Additionally, while
MCI due to AD participants could be classified
above chance based of their pattern of atrophy, the
classifier was also able to discriminate them when
examining their pattern of functional connectivity.
However, this pattern revealed an overall increased
connectivity between most language ROIs in the MCI
due to AD group. In other words, despite impor-
tant gray matter loss, MCI due to AD participants
presented increased functional connectivity within
language network. Taken individually, connectivity
values between each ROI are not informative (i.e., not
significantly different in univariate analyses); how-
ever, when all the information is considered, this
global increase becomes discriminant. In HC, the
confidence score of each individual was correlated
with higher lexical content during connected-speech
production. This means that HC that presented a pat-
tern of connectivity highly different from MCI due
to AD participants had superior lexical content in
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their narrative. On the contrary, this global pattern of
connectivity was not correlated with language per-
formance in the MCI due to AD group. Nevertheless,
when we tested correlations between language per-
formance and pairs of ROIs that showed significant
increased connectivity in the MCI due to AD group,
we found positive correlations between the language
production network (i.e., correlations with LIFG) and
language production tasks (i.e., phonemic fluency and
sentence production). This suggests that this pattern
of connectivity may compensate for patients’ lan-
guage difficulties and could therefore explain why
the MCI due to AD group did not significantly differ
from HC on these tasks.

This pattern of connectivity could have been
caused by the fact that AD participants were at the
MCI stage. Indeed, increased functional connectiv-
ity associated with gray matter loss has already been
shown in the literature about subjective cognitive
impairment [45] or MCI [46]. Two explanations are
developed in the current literature: either this type of
mechanism could compensate for cognitive decline,
or increased functional connectivity reflects a shift in
network properties that may cause further brain dam-
age [47]. Even though, correlations with language
performance are in favor of a compensatory mech-
anism, future work is required to examine whether
increased connectivity switches to decreased connec-
tivity at a later stage of AD and how it relates to
language decline.

The pattern of atrophy in the left and right ECN was
highly discriminative of MCI due to AD participants
from HC. However, similarly to the language net-
work, this pattern was not correlated with language
performance in any group. Additionally, classifica-
tion accuracies of MCI due to AD participants and
HC based on the functional connectivity within exec-
utive control networks were not significant. This
suggests that despite significant atrophy, MCI due
to AD participants’ functional connectivity patterns
within the executive control networks were not dif-
ferent from HC.

Taken together, current findings show that func-
tional connectivity within language network can
better discriminate MCI due to AD participants than
executive control networks. More precisely, func-
tional connectivity increased within MCI due to AD
participants’ language network, in particular between
three areas: left IFG, left STG and left MTG/AG.
While the language network is usually understudied
in AD compared to other networks, it could provide
important insight at an early stage.

Limitations

This study has 24 participants in each group, which
is comparable to previous studies we mentioned ear-
lier [11], but represent a rather small sample size.
Further studies are therefore required to examine
structural and functional language network changes
in MCI due to AD and to reinforce current find-
ings. Although we adapted our methods to the current
sample size (e.g., using feature selection and a cross-
validated MVPA procedure), further research on
large samples of participants could combine multi-
ple modalities (e.g., language task performance, gray
matter, functional connectivity) into a single multi-
variate pattern classification analysis. Moreover, as
mentioned earlier, it would be interesting to repli-
cate current methods on larger longitudinal data to
uncover how the patterns we observed evolve over
the course of AD.

Additionally, we did not use a functional language
task to control that participants were left hemi-
sphere dominant or to define our ROIs. Although we
exclusively included right-handed participants, we
cannot be sure that their language was left lateralized.
Similarly, the use of a predefined atlas might have
influenced the results. Nonetheless, we decided to
use an atlas that was functionally defined, since these
are more likely to represent brain regions effectively
involved in language processing than anatomical
seeds [9].

CONCLUSIONS

The current study demonstrated that MCI due to
AD participants present with language alterations,
both when examining standardized language tasks
and connected-speech production. It also showed
that, when analyzing language functional networks,
multivariate pattern analyses could significantly pre-
dict the group membership of MCI due to AD
participants and HC, while univariate analyses were
not able to discriminate participants at this stage. This
method therefore represents a useful tool for investi-
gating the functional and structural (re-)organization
of the neural bases of language in various populations.
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