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1  |  INTRODUC TION

Traumatic brain injury (TBI) is one of the leading causes of death 
and morbidity worldwide especially in industrialized countries.1 
TBI has become a major public health concern with a global prev-
alence that has escalated to almost 27.08 million people in 2016 
as reported by the Global Burden of Diseases, Injuries, and Risk 
Factors (GBD) study.2 The study also stated that about 8.1 million 
people were living with long-term disability caused by TBI, mainly 
due to falls and motor vehicle accidents.

Traumatic brain injury has also been alarmingly related to 
a number of adverse long-term effects, including elevated risk 
toward long-term complications such as Parkinson's disease, 
Alzheimer's disease, Dementia Pugilistica, and posttraumatic 
epilepsy.3 TBI is comprised of two phases which are the primary 
and secondary injury phase. The primary injury phase is the ini-
tial impact encountered from the external mechanical force that 
results in blood vessel damage, axonal tearing,4 cell death at the 
injury site, blood-brain barrier disruption, presence of edema, and 
generation of damage-associated molecular patterns (DAMPs).5 
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Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and 
has complicated underlying pathophysiology. Numerous TBI animal models have been 
developed over the past decade to effectively mimic the human TBI pathophysiol-
ogy. These models are of mostly mammalian origin including rodents and non-human 
primates. However, the mammalian models demanded higher costs and have lower 
throughput often limiting the progress in TBI research. Thus, this systematic review 
aims to discuss the potential benefits of non-mammalian TBI models in terms of their 
face validity in resembling human TBI. Three databases were searched as follows: 
PubMed, Scopus, and Embase, for original articles relating to non-mammalian TBI 
models, published between January 2010 and December 2019. A total of 29 articles 
were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae 
and adult, was found to be the most utilized non-mammalian TBI model in the current 
literature, followed by the fruit fly and roundworm. In conclusion, non-mammalian TBI 
models have advantages over mammalian models especially for rapid, cost-effective, 
and reproducible screening of effective treatment strategies and provide an opportu-
nity to expedite the advancement of TBI research.
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Consecutively, these immediate primary injury events lead to the 
later secondary phase of injury comprised of glutamate excitotox-
icity, mitochondrial dysfunction, and neuroinflammation. Hence, 
understanding this multifactorial disease by employing these an-
imal models as well as determining its therapeutic timeframe has 
been a major goal of TBI research, which could be best achieved 
through preclinical animal studies.

Preclinical animal models have been used for decades to an-
swer questions relating to the human condition. Preclinical TBI 
studies to date have heavily depended on the usage of mammalian 
models due to its close anatomical and physiological resemblance 
to humans. Rodent models, large mammalian models (pig and 
sheep) and non-human primate models have successfully eluci-
dated some of the cellular and molecular aspects of human TBI,6–8 
the disadvantage on using these mammalian models include 
time9 and cost,10 resulting in the lengthy and expensive preclin-
ical development phase for new therapeutic options. Therefore, 
with the growing demand for TBI preclinical research and treat-
ment screening, a more effective animal model should be utilized 
instead.

Emerging TBI preclinical research reported on non-mamma-
lian animal models which includes zebrafish (Danio rerio), fruit 
fly (Drosophila melanogaster) and roundworm (Caenorhabditis ele-
gans).11–13 This is in light of recent research that suggests nearly 70% 
of disease-related genes in humans can be found in zebrafish and 
fruit flies, while roundworms possess about 40% of these genes,14–16 
thus allowing for a significant range of TBI-related long-term disease 
outcomes to be studied. The growing interest in non-mammalian 
preclinical models is highly desirable as these animal models are 
much simpler in physiology for target investigations as well as allow 
for rapid, cost-effective, and highly reproducible research. Although 
these animal models are of different species, they still closely re-
semble human TBI pathophysiology and thus provide a great tool 
for preliminary investigations and high-throughput screening before 
launching in to more detailed and comprehensive evaluations in 
mammalian models.

Therefore, this systematic review aims to summarize, elucidate, 
and critically analyze the utilization of common non-mammalian pre-
clinical TBI models in traumatic brain injury research, which may pro-
vide some interesting but crucial insight into the TBI pathology that 
resembles human TBI, and thus improve future research on thera-
peutic intervention for TBI patients.

2  |  METHODOLOGY AND SE ARCH 
STR ATEGY

2.1  |  Search strategy

The literature search was focused on studies published between 
January 2010 and December 2019. This time frame was specified 
to ensure that we retrieve only the most relevant recent literature.17 

The initial search was conducted using three databases which were 
PubMed, SCOPUS, and EMBASE. Search terms such as “brain in-
jury,” “traumatic brain injury” and “TBI” were first performed on the 
databases to create an initial list of all the relevant TBI articles. This 
list of articles was then sieved through and the non-mammalian ani-
mal models were categorized according to species. An initial search 
resulted in the identification of the common non-mammalian models 
used in the majority of the TBI studies which were only these 3 spe-
cies: zebrafish, roundworm, and fruit fly. Hence, the main keywords 
such as “zebrafish,” “fruit fly,” and “roundworm” with their respective 
scientific names such as “Danio rerio,” “Drosophila melanogaster” and 
“Caenorhabditis elegans” was performed and all the relevant articles 
were downloaded. Next, all the titles and abstracts were screened 
according to the inclusion and exclusion criteria before the full arti-
cle evaluation.

2.2  |  Selection criteria

Studies were selected based on the following inclusion criteria; (1) 
original research articles within the specified publication date range, 
and (2) articles which provide sufficient information on the non-
mammalian animal TBI model utilized, enabling effective evaluation 
and comparison for this review. The following exclusion criteria were 
also applied; (1) non research publications or publication with incom-
plete information such as symposiums, conferences, editorials, book 
chapters, reviews, and systematic reviews, (2) duplicated articles, (3) 
non-English articles, and (4) articles that were not related to non-
mammalian animal models used in traumatic brain injury research 
where they did not specifically mention the usage of non-mam-
malian animal model in traumatic brain injury research. The study 
selection for this review was performed based on the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses guide-
lines (PRISMA).18

The quality of the articles included in this review was as-
sessed using the SYstematic Review Centre for Laboratory animal 
Experimentation Risk of Bias (SYRCLE RoB tool)19 (Table S1).

3  |  RESULTS AND DISCUSSION

The literature search yielded a final total of 269 articles. After ap-
plying the inclusion and exclusion criteria, a total of 240 articles 
were excluded which included; (a) 56 articles not published within 
the specified date range (1st January 2010 – 31st December 2019), 
(b) 117 non-original research articles, (c) 38 duplicates, and (d) 29 
articles that were not related to non-mammalian animal models of 
traumatic brain injury (Figure 1). Hence, the final total of full-text 
articles included for critical appraisal in this review was 29 studies, 
which can be found compiled in Table 1. Among these articles, three 
articles examined TBI in roundworm, eight articles in the fruit fly, 
and the other 18 in the zebrafish.
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3.1  |  Roundworm (Caenorhabditis elegans model)

Caenorhabditis worm (C. elegans) is one of the least used alternate 
choices of animal models in TBI research (Table 1) despite the advan-
tages it offers including the relative ease of genetic manipulation.20 
This tiny soil nematode is known to have only 302 neurons in its entire 
nervous system, which is minute, compared to the 86 billion in the 
human brain.21 However, due to C. elegans possessing a very simple 
nervous system, high-throughput screening or rapid trial experiments 
can be performed inexpensively, as compared to the mammalian 
model.22–24 Moreover, this animal model allows disease progres-
sion studies of TBI to be carried out at a quicker pace than larger 
animal models, as roundworm's lifespan, is anywhere between 12 to 
18 days.23 Based on Table 1, two types of injury models have been 
proposed in TBI studies using the roundworm model: Therapeutic 
Shock Wave and High-Frequency Acoustic Wave injury models.

3.1.1  |  Therapeutic shock wave

This model is commonly utilized to imitate blast-related mild trau-
matic brain injury (br-mTBI) in roundworms. The shock waves gener-
ated through this injury model shared similar properties as primary 
blast applied in larger animal models of TBI. One of the disadvan-
tages of using this model is the risk of developing damaging cavita-
tion produced by the shock wave.25,26 The modifications made by 
Angstman and his team have managed to reduce the cavitation by 
running the experiment in a low cavitation medium.27

In brief, the shock wave was applied to the roundworms, con-
tained in a medium, through the handpiece of the Swiss Dolor Clast 
therapeutic shock wave device (Figure 2A). This device-generated 
therapeutic shock waves ballistically by speeding up a projectile that 
strikes an applicator and transformed the kinetic energy of the pro-
jectile into a radially expanding pressure wave. This expanding wave 
ensured that all the worms in the medium well were completely ex-
posed to the wave injury.

Based on Table 1, the C. elegans exhibited severe motor deficits 
and recovered within 10 min following the therapeutic shock wave 
injury. The recovery period shown by this less complex organism is 
the fastest as compared to the mammalian TBI models. This injury 
model has fulfilled two of the criteria for blast-related neurotrauma 
models,28 including the development of functional deficits follow-
ing injury and the possibility of inducing reproducible injury in a 
controlled and quantifiable manner. Another significant finding ob-
served when exerting 500 shock wave created much severe injury 
on NGM agar plates worms where the lifespan was much shorter. 
Invention was done to hinder the cavitation effect previously re-
ported to affect nervous tissue.25 The blast wave's primary effect 
is the main damaging factor of this model and thus the molecular 
and cellular consequences that happened cannot be directly com-
pared to study by29 on rodents model which the br-m-TBI caused 
is by blast wind as the tertiary effect. Some of the limitations of 
this model were observed by differences in the movement speed 
of the worms on different medium plates which may confound the 
comparison of post-injury outcome measures across research lab-
oratory groups.

F I G U R E  1  Flow chart of study 
selection based on the PRISMA guidelines
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3.1.2  |  High-frequency acoustic wave

This model was developed intentionally to study and imitate the 
blast-related mild TBI (br-mTBI). Previous studies showed some ir-
regularities in the C. elegans's behavioral outcomes27,30,31 and sug-
gested that the uncontrolled propagation, reflection, and destructive 
interference of the ultrasound were likely to be the root cause of 
the inconsistencies. Hence, modification of this injury model has 
adapted proper-worm-on-a-chip devices or microfluidic systems to 
control environmental exposure to the acoustic wave. The micro-
fluidic system was also believed to be a great tool for studying large 
numbers of C. elegans at once,32,33 thus ensuring this injury model to 
be highly time effective.

In brief, this injury model was induced using the surface acous-
tic wave (SAW) device integrated with the worm-on-a-chip mi-
crofluidic system and can be performed using two techniques; by 
introducing the SAW-driven acoustic waves upright into a chamber 
fill up with C. elegans (Figure 2B) or by preparing C. elegans, wet 
in sessile droplets of media and is directly placed upon the SAW 
device.

The exposure of the ultrasounds generated through this in-
jury model reduces the worms mobility and causes morphological 
changes post-injury.28 Besides that, based on Table 1, short-term 
memory deficits and associative learning delays were also evident in 
the worms post-injury when utilizing this TBI model.34 In fact, recent 
studies on the mechanism of C. elegans on the acoustic compressibil-
ity have been published in September 2018.35 In brief, this method 
has revealed to us that C. elegans can be used in TBI research per-
taining to learning and memory study.

3.2  |  Fruit fly (Drosophila melanogaster)

Drosophila melanogaster has been utilized in numerous models of 
neurological disorders36 including models of traumatic brain in-
jury.37–40 Drosophila models have around 75% genetic match with 
humans, hence this animal model is well suited for understanding 
the genetic changes within the central nervous system,38 includ-
ing as an outcome of TBI.41 The fruit fly consists of three regions: 
the protocerebrum, deutocerebrum, and tritocerebrum, which are 
homologous to the forebrain, midbrain, and hindbrain in humans,42 
therefore making this non-mammalian model a great candidate for 
clinically relevant, high-throughput, fast (short lifespan), and inex-
pensive (massive breeding capabilities) TBI study. Four types of in-
jury models can be performed using fruit fly: High Impact Trauma 
Model, Blast Model, Closed Head Injury Model, and Omni Bead 
Ruptor Model (Table 1).

3.2.1  |  High-impact trauma (HIT)

The high-impact trauma (HIT) device was developed to study the 
more common closed head TBI’s underlying cellular and molecular 
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mechanisms rather than penetrating TBI, in fruit flies.36 The HIT 
method applies mechanical force to the whole fruit fly creating 
widespread damage (polytrauma) including neuronal damage within 
the brain, which mimics the human condition, especially in motor 
vehicle accidents.40 Moreover, compared to other TBI models, the 
HIT model is the simplest, least costly, fastest and most amenable 
TBI model for fruit flies.10,39,43–45

In brief, this model involves unanesthetized or anesthetized 
flies confined to the bottom part of a plastic vial. The end of the 
vial was fitted with a stationary cotton ball. The spring with the vial 
attached was deflected and released thereby rapidly contacting the 
polyurethane pad on the bench (Figure 3A). The mechanical force 
was exerted on the flies as they hit the vial wall during the rebound. 
This injury model's advantage is that the severity of TBI can be man-
ually adjusted either by altering the extent of spring deflection or 
setting the number of strikes needed for desired severity. However, 
this manual manipulation sometimes leads to large variability in TBI 
severity as each of the flies may receive different forces at once 
and may lead to unreliable outcomes. Thus, skilled investigators are 
needed to operate the HIT device so that the inconsistencies in TBI 
severity can be minimized. Furthermore, this model has a high mor-
tality rate due to random injuries or polytrauma inflicted on the fruit 
flies,46 thus requires a large sample size.

Traumatic brain injury outcomes generated through this injury 
model were similar to closed head TBI characteristics in humans5,47 
such as temporary incapacitation ataxia, immune response activa-
tion, neurodegeneration, and death, suggesting similarities in the 
cellular and molecular pathological pathways between the two 
species. Neurodegeneration can be seen via the appearance of 
the vacuolar lesion in the brain neuropil, and the size is bigger in 
the TBI model of older age and much severe type injury model. 
Different strains produce a significant variation in the primary in-
jury threshold effect which supported the previous rodent model 
study revealed that the TBI outcome relatively depend on genetic 
background.48,49 Allen 2000 once reported in its TBI rodent model 
where motor deficits are less prominent in model that received 
severe injury after mild injury compared to the model that only 

received severe type of injury and support the finding that some 
fly lines showed low MI24 after exposed to 2 h inter-injury interval 
compared to only 5 min interval.50 Interestingly, one of the studies 
revealed the relationship of diet that affects MI24 with the time 
interval between the first with subsequent strike onto the fly had 
not been studied extensively in the mammalian model. Moreover, 
several studies using the HIT model in fruit flies have elucidated the 
importance of certain factors such as age, genetic susceptibility, 
and the effect of multiple TBI incidents on functional outcomes and 
mortality after TBI, all of which have been understudied in mamma-
lian models of TBI.

3.2.2  |  Blast testing

Mammalian blast TBI models are often time-consuming, expensive, 
and difficult to generate in large numbers.51–53 Thus, Drosophila's 
blast injury model is cost-effective and enables high-throughput 
screening may be a better alternative as a blast injury model.38 A 
blast simulator is usually a custom-built machine consisting of a 
driving compression chamber, rectangular section, and end wave 
eliminator (Figure 3B). In experiments, fruit flies were placed in an 
enclosed mesh fixture at the stimulator's rectangular section. Then, 
free-field blast exposure is generated at the compression chamber 
with an average peak overpressure of 120 kPa which the fruit flies 
were exposed to for a duration of 2 ms. The end wave eliminator 
eliminates this blast to avoid second (rebound) blast exposure in the 
fruit flies.38

This injury model displayed consistent and comparable out-
comes to human mild blast TBI such as distinct motor dysfunction 
and high mortality rate, (Table 1). Interestingly, a modified version 
of this injury model enabled it to be utilized for chronic traumatic 
encephalopathy (CTE) studies, as it simplistically inflicted repetitive 
mild TBI in fruit flies.46 Despite showing similar injury characteris-
tics to that of mild blast traumatic brain injury and CTE, none of the 
studies have attempted to reveal the underlying mechanisms related 
to the outcomes yet.

F I G U R E  2  Injury models utilized by the roundworm TBI model. (A) Therapeutic shock wave applied through handpiece Swiss Dolor Clast 
device directly into wells containing roundworms, and (B) High-frequency acoustic wave delivered through SAW device vertically into a 
liquid medium filled chamber containing roundworms
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3.2.3  |  Drosophila closed head injury (dCHI)

Unlike the other Drosophila injury models which may have shown 
some inconsistencies in the outcomes measured due to the whole 
body exertion of impact,10,54 the closed head injury model (dCHI) 
minimizes the inconsistencies as the impact by focusing only toward 
the head of the fruit fly, thereby causing TBI without the presence 
of confounding peripheral injuries.55 Moreover, this injury model 
delivered precise non-penetrating strikes to an unanesthetized fly's 
head, eliminating the possible confounding effects of anesthesia as 
implicated in mammalian TBI studies.56,57

In brief, each fly was pushed into a P200 pipette using an aspi-
rator and some air pressure. A specially designed strainer is then 
used to restrain the fly's head, thus ensuring that only the head 
is exposed outside the pipette. Next, using a micromanipulator, 
the head was positioned so that the back of the fly's head was in 
contact with the brass block attached to a spring-type solenoid 
device (Figure 3C). The brass block then delivered force to the 
fly's head causing TBI. The number of hits to the fly's head can be 
manipulated to achieve repetitive TBI of varying severity as well.

In fact, using this injury model not only can depicted the same 
phenotype seen in mammalian TBI models but the usage of mutants’ 
species in this project showed the importance of Drosophilia ge-
netic tools in the investigation of the novel pathway underlying TBI. 
Different glial genes manage to be identified in this study but most 
of the genes were not well understood, and it is a good opportunity 
for this model to serve as first-line screening for identifying in detail 
the other pathways that may modulate recovery. Besides that, this 
model may also help to understand the genomic response during TBI 

and the TBI recovery pathway, at a more effective rate than mam-
malian TBI models.

3.2.4  |  Omni bead ruptor

The omni bead ruptor TBI model was developed to investigate 
the long-term effects of low impact or mild traumatic brain injury 
(mTBI).10 This model was designed to generate high-throughput 
mTBI using the Omni Bead Ruptor-24 Homogenizer platform in 
Drosophila. In brief, flies were anesthetized using CO2 exposure and 
were then subjected to specific pre-programmed shaking conditions 
in the device (Figure 3D). In multi-bout conditions to mimic CTE, 
subsequent injuries or shaking in the device were performed after 
the flies have recovered (usually within 30 s).

In contrast to the aforementioned HIT device,39 this method 
gave control on the impact of injury, using a programmable and au-
tomated system, therefore eliminating the potential of human error 
seen in the HIT device. Besides that, the mortality rate, using the 
Omni Bead Ruptor was relatively low compared to the HIT or blast 
injury model. Like the dCHI, studies utilizing this injury model in fruit 
flies are scarce and therefore possible limitations, besides the con-
founding effects of anesthesia and polytrauma, are not identified 
yet.

The selected study using this injury model, observed deficits 
in behavior and innate immune system and witnessed transfor-
mation in the profile of key autophagy markers, which were com-
monly described in the studies conducted in mammalian models 
of TBI.58 Hence, this Drosophila mTBI injury model will allow rapid 

F I G U R E  3  Injury models utilized by fruit fly TBI model. (A) High-impact trauma (HIT) achieved by releasing spring attached with a 
vial of flies to rapidly contact the polyurethane pad, (B) Fruit flies in the mesh fixture were exposed to free-field blast released from the 
compression chamber, (C) Restrained fruit flies with only the head portion exposed were impacted with solenoid recoiled brass block to 
achieve closed head injury, and (D) Omni Bead Ruptor-24 Homogenizer Device with pre-programmed shaking conditions used to deliver TBI 
in fruit flies contained in vials
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identification and design of potential treatment options for TBI, es-
pecially targeting the molecular mechanisms revealed by the use of 
mammalian models, thus saving time and cost while still advancing 
TBI research.

3.3  |  Zebrafish (Danio rerio)

Zebrafish (Danio rerio) is one of the most common non-mammalian 
animal models used in neuroscience research, even among TBI re-
search as summarized in Table 1. Zebrafish continues to have a grow-
ing interest as an animal model due to its wide degree of genetic 
homology and similarities in cell signaling pathways to mammalian 
species16,59 and humans.60 Either the adult or larvae of zebrafish can 
be utilized in TBI studies, therefore enabling life span/aging stud-
ies to be performed alongside TBI within a shorter timeframe, due 
to the shorter life span of zebrafish compared to mammalian mod-
els. Moreover, the large breeding capability from just a single adult 
pairing, which can yield hundreds of offspring, benefits greatly in 
terms of cost and time, for high-throughput screening and preclini-
cal research experiments.61 Studies using the zebrafish larvae have 
several advantages over the adults; these include high-throughput 
screening in 96-well plates, behavioral assessment easily performed 
through in-vivo imaging, ease of application of treatments via water 
delivery to the wells and finally efficient absorption of compounds 
to the brain due to the underdeveloped blood-brain barrier.62 Based 
on the 18 articles selected for this review (Table 1), 9 types of injury 
models were established for zebrafish; 3 specified for zebrafish lar-
vae and 6 using the adult zebrafish.

3.3.1  |  Acoustic shock wave

Similar to the shock wave principles applied in the roundworm 
model, this injury model inflicts mild TBI in zebrafish by mechani-
cal stress and temporary cavitation, using fully automated acoustic 
shock waves, often with a 50 ms pulse length which offered much 
more severe injury. However, unlike the roundworms, the acoustic 
shock wave model in zebrafish uses confocal imaging to focus and 
properly align the injury toward the head of the zebrafish, thereby 
ensuring consistency in the inflicted TBI.

In brief, zebrafish were anesthetized and placed individually in 
a custom-made holder covered by a thin layer of ultrasound-trans-
parent mylar membrane (Figure 4A). The head of the zebrafish was 
tucked in properly above the membrane and the confocal B-mode 
imaging was used to check the alignment. Then, the acoustic shock 
wave was generated and bombarded under the membrane to in-
flict TBI onto the zebrafish head. Besides, Linear Acoustic and 
Temperature simulator (LATS) program may also be used to modu-
late the focal acoustic intensities and shock wave pressures,63 giving 
greater control on the injury depth and severity.

Based on the selected study, zebrafish inflicted with 50 ms 
shock waves at 11 MPa showed a longer recovery time compared to 

control fish. They showed a higher anxiety effect, reduced in swim-
ming distance and displayed irregular swimming patterns, consistent 
with the motor outcomes seen in mammalian models. Thus, this sug-
gests that this injury model may be a promising tool for TBI outcome 
and treatment studies. Unfortunately, this injury model is still in its 
infancy and therefore requires further study to determine the mech-
anistic and pathological pathway post-injury.

3.3.2  |  Brain mechanical lesion

In brief, a mechanical lesion was performed by first creating a small hole 
on the zebrafish's head with a sterile surgical blade, and then, by using 
a very fine tweezer, a cut was made in the telencephalon lobe of the 
brain (Figure 4B). The zebrafish were left to recover after replacing the 
skull and closing the hole on the zebrafish head. The open head/skull or 
exposed brain concept as well as the targeted lesion injury principle ap-
plied through this injury model may not clinically represent human TBI, 
which may be a disadvantage of this injury model. Nevertheless, protein 
and gene expression still be accurately investigated using this model, 
especially when needing to investigate TBI at a specific brain region.

More studies are needed to investigate these contrasting find-
ings between the animal models, as well as to investigate other ge-
netic and proteomic pathways, besides spred-2 in the neural repair 
process post-injury.64,65

3.3.3  |  Quinolinic acid (QA) lesion

Similar to the glutamate excitotoxicity injury model, quinolinic 
acid (QA) is an excitotoxic metabolic agent that acts as an agonist 
at N-methyl-D-aspartate (NMDA) receptors, therefore creating in-
jury lesions when injected into the brain region as well as rapidly 
stimulates a neuroinflammatory response that promotes neuronal 
repair. Previously, this QA lesion injury model has commonly per-
formed in rodent TBI models, but the extent of the neuronal re-
pair was minimal,66–71 unlike that observed in the adult zebrafish 
brain.72 Furthermore, the injury response with QA is more intense 
compared to stab injury alone, thus producing more clear and 
quantifiable post-injury measures of neuronal damage and repair. 
Interestingly, contra-lesion effects were also seen using this injury 
model in zebrafish which opens new doors toward understand-
ing the extent of neuronal connectivity in pathological pathways 
post-injury.

In brief, adult zebrafish were anesthetized and placed in a clay 
mold under a dissecting stereomicroscope. A 30-gauge needle 
was filled up with 2.5 µl of 15 mM quinolinic acid and the nee-
dle was injected vertically through the skull into the right telen-
cephalic hemisphere (Figure 4C) before it was placed into clean 
water for recovery.

The selected study in this review showed that lesion repair was 
strongly enhanced and more robust in the zebrafish telencephalon. 
Itthus proposed that QA-induced brain lesioning model in zebrafish 
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may provide an optimum tool to study neurodegeneration and neu-
ronal damage replacing the less robust rodent QA lesion models. 
However, this model is still limited in terms of understanding the 
difference in molecular signals of QA lesioning compared to other 
excitotoxic agents, the long-term behavioral outcomes associated 
with QA lesioning, and the comparison of regeneration mechanism 
between zebrafish and mammalian models.

3.3.4  |  Telencephalon injury

When the stab lesion model's principles are applied to adult ze-
brafish with the injury site specified to the telencephalon area of ze-
brafish's brain, then the injury model is termed as the Telencephalon 
injury model. This model has been commonly used to study the neu-
roinflammatory response and other secondary injury pathological 
pathways post-TBI. This model is unique as it is highly specific to-
ward the telencephalon which has the capability of exhibiting strong 
regenerative properties after injury in zebrafish.73–77 The abundance 
of radial glial cells seen in the lesion area within this region was as-
sociated with the strong regenerative properties.73 In fact, glial 
restricted precursor cells, one of the glial progenitors, have been 
described as important candidates for repairing CNS functions such 

as traumatic injuries.78 However, the telencephalon in mammalian 
models lacks the radial glia cells76 because most of them have been 
converted to astrocyte in the adult brain which has a very limited 
capacity to regenerate depending on the severity.

Baumgart and his team reported that the injured wound was 
closed without any scarring and suggested that the reduction of 
oligodendrocyte progenitors (OPC) might be the reason underlying 
this regenerative phenomenon.77 However, more research is needed 
to determine the molecular mechanism governing this extraordinary 
feature, which may advance TBI research and other CNS disorders 
stemmed from neuronal cell death.

In brief, a stab lesion was performed by inserting a needle into 
an anesthetized zebrafish through the nostril along the rostrocaudal 
body axis, passing the olfactory bulb until reaching the caudal area 
of telencephalon (Figure 4D). The validation of this injury model was 
done through the histological stain of the brain with cresyl violet. 
The main limitation of this injury model is that it is an invasive injury 
model which may have certain unaccounted side effects due to the 
small sizes of the brain which can cause non-specific cell ablation, 
increase in cell death because of secondary degeneration, the blood-
brain barrier could easily impaired and destruction of the ventricular 
zone. Hence, this model is perfect to represent the penetrating in-
jury effect rather than the bump, blow or jolt type of TBI.

F I G U R E  4  Injury models utilized by the zebrafish TBI model. (A) Acoustic shock wave generated and bombarded onto zebrafish head, 
directed by B-focal imaging system, (B) Mechanical lesion applied by surgically making a hole in the skull and using the fine tweezers to cut 
the specified brain region, (C) Injection of quinolinic acid into desired brain region under a dissecting stereomicroscope, (D) Telencephalon 
injury induced by inserting needle into the telencephalon region via nose, E) Pulsed high-intensity focused ultrasound (pHIFU) generated and 
focally targeted toward zebrafish head through an ultrasonic membrane, (F) A steel ball-bearing (weight) is dropped from a specified height 
through a plastic tube and unto the cranium of the zebrafish, (G) Larvae was incubated in a petri dish filled with atorvastatin (ATV) and 
embryo medium mixture, (H) Glutamate acid was titrated into wells of a 96-well plate containing zebrafish larvae (each in one well), and (I) 
Stab lesion was inflicted in zebrafish larvae placed on agarose medium, via a needle angled at 45o toward the desired brain region
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3.3.5  |  Ultrasound injury (pHIFU)

High-intensity focused ultrasound (HIFU) is the latest technology 
in TBI research which works by generating energy beams exter-
nally and focusing them directly on the desired injury site; the head 
in the case of TBI. A modified version of this model is the Pulsed 
HIFU (pHIFU), described as short pulses of HIFU that can induce 
clinically representative mechanical injury in the soft brain tissue.79 
The HIFU transducer can generate long intensive bursts for thermal 
therapy or short pulses (pHIFU) for acoustic shockwave generation. 
This model comes with a scanner attached to capture the high-res-
olution ultrasound imaging and assist in the target area's alignment. 
Mathematical calculation was also required by using calibrated hy-
drophone measurements and computer numerical simulations80 to 
estimate the acoustic focal pressure needed for the target zone.

In brief, the anesthetized fish was placed in a holder by lying on 
its left side and were finely secured with surgical tape. The head of 
the zebrafish was positioned on top of a clear ultrasonic membrane 
opening below the holder (Figure 4E). The pulse's amplitude and du-
ration were set into the function generator before it was given to the 
zebrafish's head.

This pHIFU injury model is a non-invasive TBI model, that fo-
cuses on a specific target region, and has an automated behavioral 
assessment that can be performed through video tracking software. 
The selected study showed that caspase 3 activity was significantly 
altered post pHIFU which corresponded to the deficits in behavioral 
outcomes,9 which were similar outcomes observed TBI’s mammalian 
models. However, the pHIFU model is limited in terms of the size 
ratio of the acoustic wave to the zebrafish brain, which may hinder 
the depth and severity of injury in TBI research.

3.3.6  |  Weight drop model

The weight drop model is a well-established and clinically repre-
sentative model of TBI in rodents.81 However, this model is still rela-
tively new in its application in the zebrafish model. Nevertheless, 
with some modifications toward the rodent model,82 this weight 
drop model can accurately inflict mild TBI in zebrafish.83 This model 
imitates a blow or a strike injury to the brain and gives an accurate 
representation of human TBI. The weight drop model in zebrafish is 
an efficient and cheap model that can be easily set up and conducted 
in any laboratory environment.

In brief, the zebrafish was fully anesthetized and was posi-
tioned with its dorsal side upward on a foam bed under the ver-
tically erected plastic tubing. Then, the superior side of the head 
was properly positioned below the tube. A steel ball bearing with 
a mass of 0.0032 N was dropped through the plastic tube from a 
specified height, thereby impacting the cranium of the zebrafish at 
free-fall speed and energy (Figure 4F). Finally, the fish was placed 
into the recovery tank. The severity of the TBI inflicted can be 
adjusted based on the height and weight of the ball bearing, but 
the consistency of these factors should be kept throughout the 

experiment and maybe set (marking the plastic tubing), to avoid 
large errors in TBI outcomes.

The selected study also summarized in Table 1, showed peak GO 
clusters as early as 3 days post-injury with a peak neuro regener-
ation at 21 days post-injury,83 which aligned with the rodent stud-
ies of this model. In addition, the MAP kinase cascade, which was 
activated at 3-day post-injury, was similarly seen in the rat weight-
drop TBI model.84 Similarly, behavioral assays also showed spatial 
memory deficits observed in other animal TBI models and human 
TBI patients.85–89 Taken together, the zebrafish weight drop model 
is an excellent, upcoming, and clinically representative model of TBI.

3.3.7  |  Larval intracerebral hemorrhage (ICH) model

Intracerebral hemorrhage (ICH) injury accounts for about 10%–15% 
of strokes and about 40% of cases of disability worldwide.90 ICH 
manifests in two phases of injury; first, an influx of blood causing he-
matoma expansion in the brain leads to a rise in intracranial pressure 
surrounding the cerebral structure thereby leading to apoptosis and 
necrosis of neuronal cells.91,92 The second phase includes a break-
down of blood compounds that activates the immune system and 
therefore, induced disruption of the blood-brain barrier and edema 
development.93 Nevertheless, one of the mammalian studies also re-
vealed the chronic blood-brain barrier disruption and neuroinflam-
mation as part of the impact after the TBI.94

Intracerebral hemorrhage in larval zebrafish can show sponta-
neous brain-specific bleeding without any invasive techniques95,96 
and yet still able to better mimic this aspect of the human TBI con-
dition compared to the commonly used rodent models.97,98 In brief, 
atorvastatin (ATV), a known substance to cause spontaneous ce-
rebral-specific blood vessel rupture, was solubilized for zebrafish 
larvae/embryo treatment in an embryo medium-filled petri dish 
(Figure 4G) and those exhibiting ICH at 24 h were separated for 
further analysis.95,99–101 Some studies alternately used the "bubble-
head" (bbh) mutant zebrafish line which can exhibit spontaneous 
ICH similar to ATV.96 Comparison between the two ICH protocols is 
yet to be discussed, but both manage to achieve similar ICH injuries 
in the zebrafish larval model.

The selected study showed cerebral bleeding in zebrafish larvae 
which led to an increase in neuronal cell death, an effect that can be 
similarly seen in humans91 but has yet to be studied in rodent mod-
els. Thus, investigating the underlying mechanism of cell death after 
ICH in zebrafish larvae may help uncover possible ways to inhibit the 
injury effect. Moreover, the study also found that motor deficiency 
improved at 3-days post-injury suggesting recovery after cell death, 
which may provide a good opportunity for researchers to investigate 
this recovery process of possible neuronal regeneration at a greater 
depth than the rodent model.102

The major advantage of utilizing this zebrafish larval ICH model 
is the immediate intact in vivo imaging of ICH-induced inflammatory 
process upon injury induction that enables cellular interactions and 
signaling within the brain to be observed spontaneously post ICH, 
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a feature not possible with mammalian models of ICH. The major 
disadvantage of this injury model, on the other hand, is the lack of 
cranium in the zebrafish larvae limits this model from developing 
clinically representative intracranial pressure,92 despite the pres-
ence of edema.96,103 Nevertheless, this model may still be the sim-
plest model to study ICH pathophysiology and its subsequent drug 
discovery.

3.3.8  |  Larval glutamate excitotoxicity

Glutamate excitotoxicity is a secondary injury hallmark of TBI. 
Therefore, the larval glutamate insult injury model is a highly spe-
cific model that investigates this secondary injury pathway and may 
only provide therapeutic solutions targeting this pathway, as it does 
not cover other aspects of TBI pathology. Nevertheless, this model 
may provide a clear, concise, and in-depth understanding of TBI’s 
glutamate excitotoxicity injury mechanism and its subsequent out-
come. Besides, this injury model is a non-invasive model since the 
larvae can readily absorb glutamate acid and will not be injured me-
chanically. The secondary injury cascade following this injury model 
include axonal injury, cell death and synaptic dysfunction which de-
pends on a dose-severity relationship.104

In brief, early-stage larvae were prepared in a 96-well plate, one 
larva per well105 (Figure 4H). On the third-day post-fertilization, glu-
tamic acid was titrated in different concentrations (dose-severity 
relationship), and then diluted in DMSO. Next, a confocal micro-
scope was used to visualize the brain-specific effects and behav-
ioral assessment was performed via automated software that scans 
through the well plate.

The selected study in Table 1, showed survival curves for a 
dose-dependent response to excitotoxic injury and quantifiable 
locomotor deficit in the injured larval, which were similarly found 
in TBI mammalian models of glutamate excitotoxicity.105 The study 
also suggested the model's sensitivity to detect any changes in 
downstream intervention therapy strategies, providing great impli-
cations for future TBI treatment studies.

3.3.9  |  Larval stab lesion

This method induces a rapid neuroinflammatory and cellular death 
response similar to QA lesion but in the absence of excitotoxic 
agents, thus indicating this injury model to be purely mechanical. 
Moreover, unlike the brain mechanical lesion which requires the 
adult zebrafish brain to be exposed through surgical means, this lar-
val stab lesion can be performed in the intact larvae without any 
incision or surgery. However, this model more closely resembles the 
penetrating TBI as seen in certain clinical TBI cases.

In brief, zebrafish larvae were anesthetized and placed with the 
abdomen facing downward onto an agarose plate. Then, by using a 
micromanipulator to handle the needle at a 45° angle, the needle 
was inserted into the hindbrain or any other intended regions, until 

the desired depth was reached (Figure 4I). The larvae were then re-
leased into freshwater for recovery. The injury protocol ensures the 
survival of the injured zebrafish larvae. Alternatively, stab lesion in 
the larvae can also be achieved by piercing a pin to the optic tectum 
of the larvae at a 20–30o angle. This latter injury protocol was mainly 
used to investigate secondary neuronal cell death post-injury,106 
while the former was performed to study the brain region-specific 
neuroinflammatory response after injury.107

The study by Gan and his colleagues (Table 1) showed that the 
microglial activation and expression of neuroinflammatory cytokines 
such as IL-1β and IL-6 were increased immediately following the in-
jury, which supports previous studies on penetrating TBI in zebrafish 
and mice.108–110 Herzog's study showed that secondary cell death, 
caused by neuronal excitotoxicity was improved with increases in 
microglia phagocytosis.106 Both these larval stab lesion models may 
portray a more simple, quicker and inexpensive model to be used in 
understanding the diverse function of the neuroinflammatory-cell 
death response, especially in terms of the role of microglial after a 
brain injury.111–113

3.4  |  Mechanism and biomarkers involved 
in the non-mammalian animal model of Traumatic 
Brain Injury

Some regenerations signaling pathways in vivo for C. elegans on 
regulation of naturally occurring axon regeneration following TBI 
have been reported.114–116 Axonal regeneration is essential for the 
recovery process after TBI. One study previously done with APOE 
deficient mice/APOE mice results indicates that the Dab1-Cdc42 
pathway mediates ApoE-induced axonal regeneration following 
TBI.117 Promoting axon regeneration is one of the therapeutic ap-
proaches following TBI. However, the CNS regeneration in mam-
mals is still rudimentary compared to the Peripheral nervous system 
(PNS) and Central Nervous system (CNS) neurons in non-mammals 
such as roundworm, fruit fly and zebrafish, which able to regener-
ate after injuries.118 Recently, more research on the non-mammalian 
injury for regeneration models study provides tremendous oppor-
tunities to elucidate the signaling pathways that regulate naturally 
occurring axon regeneration.118

The innate immune system is highly conserved between flies and 
humans.119,120 The antimicrobial peptides (AMP) gene was upreg-
ulated in the HIT model in flies, showing innate immune response 
pathway's activation.39 Toll and Imd pathways are responsible for 
AMP transcriptional activation.119 Since the flie's toll pathway is 
analogous with mammalian toll-like receptor (TLR) and the immune 
deficiency (Imd) pathway is identical with mammalian TNF, this could 
help provide an opportunity to advance our understanding of this role 
in this fly model. Similarly, the dCHI model in flies showed increased 
differential expression of many AMPs, including Attacins, Cecropins 
and Diptericins, and Drosocin, Drosomycin, and Metchnikowin,55 
which all regulated by the Toll, Imd, and JAK-STAT pathways121 
and depleted after 7 days of the injury. The short duration of genes 
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upregulation is the same as findings in the mammalian model, where 
inflammatory gene spikes after TBI but dies down during subsequent 
days.122,123 Autophagy pathway or intracellular clearance was also 
reported in the TBI fly model where previously highlighted in TBI 
mammalian model.58,124–126 Atg8/MAP-LC3 family of protein is an 
essential biomarker in the autophagic pathway, and there was a 
significant increase of Atg8a-positive detected throughout the fly 
nervous system 24 h after mTBI.10 This study also showed increase 
of ubiquitinated protein and peaked at 12 h post injury10 which con-
sistent with studies in controlled cortical impact mice model where a 
block in autophagic flux caused a build-up of ubiquitinated proteins 
and p62/SQSTM 1.58

In the weight drop model of zebrafish, Gene Ontology (GO) dis-
covery showed differentially expressed genes (DEG) identified in the 
zebrafish model after 3 and 21-day post-injury.83 Response to cAMP, 
which critical in neuronal survival, is one of few significant GO clus-
ters found. Also seen is the presence of the mitogen-activated pro-
tein (MAP) signaling pathway where Jun N-terminal kinases (JNKs) 
within the MAP kinase family helps in JunB protein phosphoryla-
tion which is important in tissue regeneration of zebrafish.127 This 
event is the same as found in the mild fluid percussion TBI model 
in rats, the increase of Junb expression, ipsilateral to the injury site 
was previously reported.128,129 Next, Notch 1b which required for 
neurogenesis also seen upregulated after injury.83 Notch 1 signaling 
has shown to promote production of Neural progenitor cells (NPC) 
that migrated toward the damage site.130,131

Essential mature neuronal biomarkers such as MAP2a+b, par-
valbumin, SV2, and metabotropic glutamate receptors 2 (mGLU2) 
were also identified in the zebrafish TBI model,74 and these sug-
gested that newly generated neurons differ from the mature neu-
rons. On the other hand, in mammals, radial glial cells transform 
into multipolar astrocytes, which is no longer exist in the radial 
oriented cell.132 In mice, activated astrocytes become hypertro-
phic within few days, as it will upregulate to intermediate filament 
Glial fibrillary acidic protein GFAP, Nestin, and Vimentin as well 
as chondroitin sulfate proteoglycans, Tenascin C and other extra-
cellular matrix (ECM) components.133–135 One of the TBI models 
conducted in zebrafish proposed the importance of the specific 
glial environment for long-term neuronal survival.77 Besides that, 
small injury showed different when there is less, or almost no ra-
dial glial like cell surround the injury, which in contrast to strong 
agliosis which assemble around the stab wound injury in rodent 
telencephalon.77

The radial glial cell is known to have a strong ability to generate 
neurons.136–139 Increase of radial glial cells expression on GFAP-GFP 
after 3 days of injuries in zebrafish was seen. This event also simi-
larly found in adult neurons of the mouse brain after stab lesion133 
which suggested the conserved response on the GFAP expression 
to stab injury in mammalian and teleost. In injured zebrafish, the le-
sioned hemisphere showed olig2: EGFP positive cells at the lesion 
site. Transcription factor of Olig2 is expressed in mature oligoden-
drocyte and Oligodendrocytes and their progenitor cells (OPCs) in 
zebrafish and mouse.140–143 Olig 2-EGFP transgenic line acts as a 

reporter of Olig2 expression showed only a temporary effect in ze-
brafish. Indeed, the proliferation of Olig 2 expressing population of 
mature oligodendrocyte and OPC is relatively moderate after injury 
in zebrafish compared to in mammals, where OPC is highly reac-
tive in brain injury and promotes brain glial scar.144–147 Zebrafish do 
not exhibit continuous inflammation and do not have any astroglial 
scarring compared to in mammal CNS.77 This glial scarring was said 
to hinder the repair of brain cells in mammalian model as reviewed 
previously.133,134,148,149 Hence, the lack of later stage of inflamma-
tory response in zebrafish leads to the successful neuronal repair of 
these animal model. However, the damping inflammation process in 
zebrafish also remains unknown.

In mammals, brain injury stimulates cell proliferation and neuro-
genesis in the Subventricular zone (SVZ).150–153 While in zebrafish, 
Notch 1 plays a vital role in the proliferation and neurogenesis of 
zebrafish identified in the Ventricular zone of the zebrafish's injured 
hemisphere.130 The study identifies the subpopulation of her4.1 
expressing Radial glial progenitor cell as the main neurogenic pop-
ulation reacts to the lesion and as the primary source of newly gen-
erated neurons.74 In mice, Angiopoietin (Ang1) and Stromal-derived 
factor 2 (Sdf1) are responsible for regulating SVZ Neural progenitor 
cell migration in mice after stroke154 but not reported in adult zebraf-
ish. Prokineticin 2 (PROK2), a chemokine that guides the migration 
of SVZ-Derived NPC toward olfactory bulb in mammals155,156 is also 
found in zebrafish.157 PROK2 may become an essential biomarker 
for both constitutive and injury-induced adult neurogenesis in the 
zebrafish brain. Gata 3 expressed after the zebrafish brain injury 
and involved in the early role in zebrafish brain regeneration158 and 
Fibroblast Growth Pathway (FGF) signaling pathway may directly af-
fect the expression of Gata 3 after injury in zebrafish tissues.

Quinolinic Acid (QA) injury in zebrafish72 showed an increase 
in microglial reaction, NPC proliferation and damage repair. NPC 
radial glial cells reported generating beneficial neuronal subtypes 
such as neurons that give rise to the long-distance projection that 
bridges the synaptic connection with the contralesional hemisphere. 
QA direct action on glutamate receptors, also involved in mammals’ 
neurogenesis.159 Besides that, a study on transgenic fish in discov-
ered the new role of the sigma-1 receptor in modulating microglia 
responses to brain injury and propose new further investigation on 
this receptor to prevent further chronic neuroinflammation.160

3.5  |  Future direction of non-mammalian animal 
model in Traumatic Brain Injury research

Roundworm, fruit fly, and zebrafish been utilized as an animal model 
of traumatic brain injury are still new and not much research till re-
cently. Most of the reported studies showed several biomarkers, and 
underlying mechanisms for the establishment of a disease model. 
As a TBI animal model, Caenorhabditis elegans showed a reduction 
in mobility, paralysis, and morphological changes,27,34 which can 
help in TBI's future research, especially in the early phase a study. 
Those researches could benefit from these animal models where the 
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disease study can be done quickly. Indeed, a high amount of results 
can be produced within a specified period.

On the other hand, Drosophilia melanogaster can be the best can-
didate for the first screening test to test the important pathways that 
modulate recovery. Drosophila model showed a strong upregulated 
immune response shortly after TBI. Immune and stress response 
make up 157 out of 512 different glial genes.55 Simultaneously, genes 
for proteolysis and protein folding are the major portion (85/512) of 
these differentially expressed genes.55 Besides, sleep cycle impair-
ment after TBI has also been studied by using this closed-head TBI 
model where Nuclear Factor kappa B (NF-κB), Dopamine transporter 
(DAT), and Pale (ple) played a critical role in affecting this sleep cycle.

Danio rerio was reported to offer a wide range of opportunities 
to study inflammatory response and successful regeneration pro-
grams in the Central Nervous System.161 Thus, help in the search 
for potential therapeutic applications for TBI and neurodegenera-
tive disorders. Nevertheless, current technology developed a highly 
sophisticated imaging system used in zebrafish TBI studies.162 This 
helps to provide a detailed understanding of the brain after the in-
jury and can be further characterized.

Apart from that, the wound healing related pathway process re-
ported with the interaction between inflammation, neurogenesis, 
and angiogenesis has been characterized in this study.75 This system 
can provide a basis for analyzing high-throughput data, a promising 
way to discover TBI biomarkers. In addition to that, the non-mam-
malian model can provide an important biological basis for regener-
ation studies and can be used to test potential therapies that might 
enhance the regeneration process in the mammalian model.

Not to forget, the unique Danio rerio larvae, with undeveloped 
blood-brain barrier105,107 it can absorb neuroprotective drug directly 
and allow greater bioavailability in determining the drug effective-
ness. This model describes the secretion of the pro-inflammatory 
cytokine IL-1B, IL-6 by M1 type microglia, and anti-inflammatory 
factors include IL-4 and IL-10 by M2 type microglia.107 Hence, this 
model can use as an in vivo system tool to study the different func-
tions of activated microglia and for screening chemicals for CNS 
disorder-related diseases. Morphological changes such as axonal 
blebbing and fragmentation of degenerating axons can be seen in 
this animal model following the brain injury, which has been previ-
ously described.105

All the non-mammalian model has a great potential to expe-
dite the stream of drug discovery for the TBI treatment. Ongoing 
research of TBI with a non-mammalian model is often compared 
with the current established mammalian model. Both models are 
essential in TBI research, where non-mammalian helps in screen-
ing for the important gene expression involved, biomarkers, and 
mechanisms for TBI research due to its simple nervous system and 
highly reproducible. On the other hand, the mammalian TBI model 
is more advanced in its robust research background focusing on 
the mechanism and important biomarkers.117,163–168 In addition to 
that, non-mammalian research has not conducted any research on 
inducing stem cell for brain injury as been conducted previously 
in this study with mammalian model.169,170 Indeed, one of the 

study showed successful xenotransplantation of human iPSC-de-
rived NSCs and isogenic neural cell progenies in a mouse model.171 
Several of the limitations on mammalian model such as the sam-
ple size being often small and bear a high cost, often hindered the 
ongoing research. Hence, the non-mammalian model could be uti-
lized initially on the early phase of study. Genetic approaches are 
not the same for both mammalian and non-mammalian. So, it is 
not practical to perform large-scale screening on rodents only to 
identify the important signaling mammalian pathways. Hence, to 
demonstrate the pathways in non-mammalian models which also 
has the functions in non-mammalian model could be a great focus 
in the future studies. Nevertheless, both models contribute to a 
beneficial future of TBI research.

4  |  CONCLUSION

In summary, we believe this is the first review that summarizes and 
evaluates non-mammalian models of TBI while critically comparing 
them with mammalian models of TBI, in hopes to elucidate a better, 
cheaper, faster, and more efficient alternative TBI model that may fur-
ther advance current TBI research. Among the three species of non-
mammalian TBI model retrieved in this review, comprised of zebrafish, 
roundworm, and fruit fly, zebrafish is the one most frequent model 
used in showcasing a variety of injury conditions to mimic human TBI. 
Moreover, since both the larvae and adult zebrafish can be effectively 
sampled to inflict clinically representative TBI, whether penetrating 
or closed head injury, an endless possibility of TBI investigations such 
as aging effects, intervention studies, and time progression outcomes, 
can be performed with hassle-free. On the other hand, the round-
worm and fruit fly are mostly ideal for high-throughput TBI treatment 
screening studies. They may be limited in terms of pathophysiologi-
cal resemblance to human TBI, despite the similarities in some of the 
functional outcomes displayed post-injury when compared to mam-
malian TBI models and human TBI. Taken together, the non-mam-
malian TBI models provide a more simplistic approach to bridge the 
knowledge gaps within TBI research and may shorten the road to-
ward TBI outcome prevention and cure, by surpassing the limitations 
of mammalian models of TBI. Apart from that, these animal models 
could be used together with the mammalian model and help on the 
trial basis of research before moving to an in-depth investigation to 
find the novel mechanism and therapeutic approaches against TBI.
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