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Abstract

Motivation: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for
profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse
experiments with complex designs including biological replication. One question that can be asked from single cell
experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type propor-
tions are different between two or more experimental conditions. As well as gene expression changes, the relative
depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment.
However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly
account for different sources of variability are needed to confidently identify statistically significant shifts in cell type
composition between experimental conditions.

Results: We have developed propeller, a robust and flexible method that leverages biological replication to find stat-
istically significant differences in cell type proportions between groups. Using simulated cell type proportions data,
we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant
changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity.

Availability and implementation: The propeller method is publicly available in the open source speckle R package
(https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis
website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets
have been deposited at https://doi.org/10.5281/zenodo.7009042.

Contact: alicia.oshlack@petermac.org or phipson.b@wehi.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Single cell RNA-sequencing (scRNA-seq) technology has led to
breakthroughs in the discovery of novel cell types and enhanced our
understanding of the development of complex tissues. As the tech-
nology has matured it has become relatively straightforward to pro-
file the transcriptomes of hundreds of thousands of cells, resulting in
valuable insight into the composition of tissues.

While many of the first published single cell papers focussed on
defining the resident cell types in complex tissues (Bornstein et al.,
2018; Combes et al., 2019; Liu et al., 2018; Zeisel et al., 2015), the
field is now using this technology for complex experimental compar-
isons with biological replication (Bunis et al., 2021; Huang et al.,
2021; Ren et al., 2021; Sim et al., 2021). Experiments with different
conditions and multiple biological samples can be costly; however,
substantial savings can be made by pooling cells from multiple sam-
ples. If samples are genetically diverse, they can be demultiplexed
using genetic information (Huang et al., 2019; Xu et al., 2019). An
alternative approach is to use molecular cell multiplexing protocols,
such as the commercially available CellPlex from 10x Genomics.
Collectively, cell multiplexing makes designing larger scRNA-seq
experiments more feasible.

The first step in analysis for an scRNA-seq experiment with mul-
tiple experimental conditions and biological replicates is to identify
the cell types present in each sample. However, downstream analysis
requires sophisticated tools to address specific hypotheses about
how a perturbation affects the biological system. Two analysis tasks
are commonly performed following cell type identification in order
to understand the effect of the condition. One task is to find genes
that are differentially expressed between groups of samples, for
every cell type observed in the experiment, similar to the analysis of
bulk RNA-seq experiments (Crowell et al., 2020). However, a bene-
fit of scRNA-seq data is that we have additional information on the
composition of the samples. The relative change in abundance of a
cell type can be a consequence of normal development, disease, or
treatment. Due to technical as well as biological sources, the cell
type proportion estimates from single cell data can be highly vari-
able. The focus of this work is to find statistically significant differ-
ences in cell type proportions between groups of samples that
appropriately takes into account sample-to-sample variability.

Here, we present propeller, a robust and flexible linear
modelling-based solution to test for differences in cell type propor-
tions between experimental conditions. The propeller method lever-
ages biological replication to obtain measures of variability of cell
type proportion estimates and uses empirical Bayes to stabilize vari-
ance estimates by borrowing information across cell types. It is a
flexible approach that can be applied to complex experimental
designs with multiple factors. Using simulated data, we compared
the performance of commonly used statistical models for testing for
differences in cell type proportions in single cell data and show that
propeller performs well across a variety of experimental scenarios.
We applied propeller to three different single cell datasets on ageing,
human heart development and COVID-19 disease severity. Our pro-
peller method is publicly available in the speckle R package
(https://github.com/phipsonlab/speckle).

2 The propeller method

Propeller is a function in the speckle R package that uses cell level
annotation information to calculate sample level cell type propor-
tions, followed by data transformation and statistical testing for
each cell type. Propeller leverages biological replication to estimate
the high sample-to-sample variability in cell type counts often
observed in real single cell data (Fig. 1a, PBMC scRNA-seq data
from 12 healthy human donors). The variability in cell type propor-
tion estimates between samples can be large both due to technical
sources, such as variation in dissociation protocols, and due to valid
biological factors that contribute to variability. For example, blood
cell type composition is known to change with age (Tan et al.,
2017). Taking into account, sample-to-sample variability when ana-
lysing differences in cell type proportions is critical as observed cell

type variances are far greater than variances estimated under a bino-
mial or Poisson distribution, which can only account for sampling
variation (Fig. 1b, PBMC scRNA-seq dataset from 12 healthy
human donors).

The first step of propeller is to calculate the cell type proportions
for each sample. Propeller can directly derive the counts and calculate
the proportions from a Seurat or SingleCellExperiment object. This
results in a matrix of proportions where the rows are the cell types,
and the columns are the samples. The binomial distribution has the
statistical property that proportions close to zero and one have small
variance, and values close to 0.5 have large variance i.e. the variances
are heteroskedastic. To overcome this, we have implemented two
transformations in propeller: (i) arcsin square root transformation, and
(ii) logit transformation. The arcsin square root transformation has the
benefit that it will always produce a real value. If the logit transform-
ation is selected an offset of 0.5 is added to the raw cell type counts
matrix prior to transformation to avoid taking the log of zeroes.

Next, we test whether the transformed proportions for every cell
type are significantly different between two or more experimental
conditions using a linear modelling framework. If there are exactly
two groups, we perform moderated t-tests; if there are more than
two groups, we perform moderated ANOVA tests (Smyth, 2004).

These tests are moderated using an empirical Bayes framework,
allowing information to be borrowed across cell types to stabilize
the cell type-specific variance estimates. This is particularly effective
when the number of biological replicates is small and the number
of cell types is at least three (Efron and Morris, 1977), a common
situation in scRNA-seq experiments. The final step in propeller is
to calculate false discovery rates (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001) to account for testing across
multiple cell types. The output of propeller consists of condition-
specific proportions estimates, P-values and false discovery rates for
every cell type observed in the experiment. The statistical details for
propeller are described in Supplementary Material.

The minimal annotation information that propeller requires for
each cell is cluster/cell type, sample and group/condition. More com-
plex experimental designs can be accommodated using the propel-
ler.ttest and propeller.anova functions, which have the flexibility to
model additional covariates of interest, such as sex or age.

3 Performance using simulated datasets

3.1 Type I error control under null simulation scenario
Although it is clear from the PBMC scRNA-seq data that cell type
proportions estimates are over-dispersed (Fig. 1b), we wanted to more
thoroughly evaluate the performance of propeller as well as other stat-
istical methods that have commonly been used for testing differences
in proportions in other fields. Using simulated cell type proportions,
we compared the performance of nine different statistical models.

1. v2 test for differences in proportions.

2. Logistic binomial regression (special case of beta-binomial with

dispersion ¼0).

3. Poisson regression (special case of negative binomial with disper-

sion ¼0).

4. propeller with arcsin square root transformation of proportions,

denoted propeller(asin).

5. propeller with logit transformation of proportions, denoted

propeller(logit).

6. Beta-binomial regression on cell type counts.

7. Negative binomial regression on cell type counts.

8. Quasi-likelihood negative binomial regression on cell type

counts.

9. Centred log-ratio (CLR) transformation followed by linear re-

gression, denoted compositional data analysis (CODA).

The first three methods do not take into account sample-to-
sample variability, while the remaining six methods (4–9) do. The
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quasi-likelihood approach (Method 8) is described in the
Bioconductor book ‘Orchestrating single cell analysis with
Bioconductor’ (https://bioconductor.org/books/release/OSCA/). The
two variations of propeller model transformed proportions, while
the remaining statistical tests, with the exception of the CODA
method, model the cell type counts directly. Method 9 is an example
from the CODA field where the cell types are modelled relative to a
reference ‘cell type’. Here, the geometric mean of the cell types
forms the baseline as is commonly done in microbiome data analysis
(Quinn et al., 2019). The log-ratio of the counts to the geometric
mean is calculated and a linear model fitted with group as the ex-
planatory variable to obtain P-values. The implementation of the
nine methods is described in Supplementary Material.

We simulated cell type counts in a hierarchical manner under a sim-
ple null scenario where the cell type proportions do not differ between
two groups in order to determine whether the nine methods control the
Type I error rate. We simulated five cell types with proportions that
varied from rare to abundant (true proportions pi¼0.01, 0.02, 0.15,
0.34, 0.45). The sample proportions, pij, for cell type i and sample j,
were generated from a Beta distribution with parameters ai and bi,
which control how variable the proportions are. Larger values of ai

and bi result in a more precise distribution centred around the true
proportions, while smaller values result in a more diffuse prior
(Supplementary Fig. S1). We set ai¼10, and calculated the correspond-
ing bi for each cell type i from the following relationship derived from
properties of the Beta distribution:

bi ¼ a 1� pið Þ=pi

Cell type counts xij were then sampled from a binomial distribu-
tion with parameters nj and pij. The total number of cells, nj, per
sample j, were sampled from a negative binomial distribution with
mean 5000 and dispersion 20 to simulate variation in total cell num-
bers per sample observed in real data. The hierarchical model is fur-
ther described in Supplementary Material. We simulated 10 000
datasets and counted the number of times each of the five cell types
were statistically significant with P-value <0.05 for the nine differ-
ent statistical models. We also varied the number of samples per
group to determine the effect of sample size on the Type I error rate
(n ¼ 3, 5, 10, 20). Figure 2a shows the cell type proportions per
sample observed for an example simulated dataset under these
conditions.

Supplementary Table S1 shows the type I error rates for the nine
different methods for each of the five different cell types at a nomin-
al P-value cut-off of 0.05 when the number of samples per group is

five. The most striking observation is that the statistical tests
(Methods 1–3) that do not account for additional biological vari-
ability frequently find significant differences between the two groups
when there are none. As expected, it is clear that methods that ac-
count for this additional variability are required and Methods 1–3
are not further explored in this analysis.

For the methods that model sample-to-sample variability none
have perfect type I error rate control, although the observed rates
are generally close to 0.05 (Methods 4–9). Propeller(asin) tends to
be conservative for the most rare cell type, and permissive for more
abundant cell types whereas the opposite tends to be true for the
other tests, particularly for the negative binomial methods. These
results show that the type I error rate differs between different cell
types depending on how abundant the cell type is, and no method
perfectly controls the type I error rate for both rare and abundant
cell types.

Figure 2b summarizes the Type I error rates for different sample
sizes. As the number of samples in each group increases, the type I
error rate for all methods is closer to 0.05. For sample sizes of 10
and 20 per group, the arcsin square root transformation shows the
best type I error rate control for almost all cell type abundances,
however with smaller sample sizes (n¼3, 5), the logit transform
appears to better control the type I error rate. Across all sample sizes
there was a trend of increased Type I error rate for the more rare cell
types for propeller(logit), beta-binomial, negative binomial, quasi-
likelihood negative binomial and the CODA method, while propel-
ler(asin) tends to be conservative for the most rare cell type
(p¼0.01). It is not surprising that the beta-binomial model performs
favourably as this method most closely resembles the distributional
assumptions underlying the simulation.

3.2 Power to detect true differences in cell type

proportions in simulated data
Next, we expanded the simulation to include seven cell types, three of
which change proportions between the two groups by between 2 and 3-
fold, while the remaining four did not (Fig. 2c). The parameters ai and bi

of the beta distribution were estimated from real human heart single nu-
clei RNA-seq data (Fig. 3a) using the estimateBetaParamsFromCounts
function available in the speckle package. We simulated 1000 datasets
and evaluated the performance of the models by examining the propor-
tion of simulated datasets with P-value <0.05 for each of the seven cell
types for each of the six methods. The proportions of the three cell types
that are simulated to differ between the two groups range from very rare

Fig. 1. Exploring heterogeneity in cell type proportions estimated from PBMC scRNA-seq data. (a) Barplot showing high levels of variability of cell type proportion estimates

between 12 healthy PBMC scRNA-seq samples. (b) Mean–variance relationship for 27 cell types in 12 healthy PBMC scRNA-seq samples showing that cell type proportions

are over-dispersed compared to the variance estimated under a Binomial distribution. The plot is produced using the plotCellTypePropsMeanVar function in the speckle

package
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to quite abundant (baseline proportions in Group 1¼0.008, 0.183,
0.551). We repeated these simulations for sample sizes n¼3, 5, 10, 20.

At n¼5 samples per group, propeller(asin) detected the rare cell
type difference in only 52% of the simulated datasets, while the
other methods detected the rare cell type difference in 71–81% of
simulated datasets (Fig. 2d). However, propeller(asin) detected the
differences in the more abundant cell types in a larger percentage of
the simulated datasets compared to the other methods (82% and
74% of simulated datasets). The negative binomial methods
detected the difference in the most abundant cell type in <50% of
the simulated datasets. The CODA method had relatively poor per-
formance for the more abundant cell types compared to the propel-
ler methods and the beta-binomial model. The most consistent
performing models across cell type abundances were propeller(logit)
and the beta-binomial model. In terms of the cell types that did not
change between the two groups, we noted that propeller(asin) gener-
ally had the best false discovery rate control and CODA had the
worst. Heatmaps for sample sizes n¼3, 10 and 20 are shown in
Supplementary Figure S2.

Figure 2e shows the mean area under the receiver operating
curve (AUC) for the six methods at the four different sample sizes
(n¼3, 5, 10, 20). As sample size increases, all methods show an im-
provement in performance. With at least 10 samples in each group,

all methods except CODA have an AUC above 98%. In general,
propeller(asin), propeller(logit) and the Beta-binomial method have
the highest AUC at each of the four sample sizes.

3.3 Extreme case: varying numbers of cell types
While the simulations above examine Type I error control and
power to detect true positives with 5 and 7 cell types, respectively,
we wanted to examine the performance of the methods in the ex-
treme case when there are only 2 cell types present in the dataset,
compared to when there are 20. Here, we focussed on n¼5 and sim-
ulating cell types with true differences between two groups.

The scenario when only two cell types are present in the data is
interesting from the perspective that if one cell type changes in pro-
portion, the other cell type will also naturally change. In this scen-
ario, we set the Group 1 true proportions as p1i¼0.4, 0.6; and
Group 2 true proportions as p2i¼0.2, 0.8 (Supplementary Fig. S3a).
Hence, cell type 1 is halved in Group 2 compared to Group 1, and
cell type 2 increases by 33.3%. In this scenario, all the methods
detected the changes in the two cell types in the majority of the
simulated datasets (Supplementary Fig. S3b). There was a slight de-
crease in power for the negative binomial methods for the more
abundant cell type.

Fig. 2. Simulation results. (a) Cell type proportions for one simulated dataset with no abundance differences between Group 1 (samples S1–S5) and Group 2 (samples S6–S10).

(b) Type I error rate at a ¼ 0.05 for sample sizes n¼ 3, 5, 10, 20 for the six methods. A total of 1000 datasets with five cell types that do not change in abundance between two

groups were simulated, varying the sample size. For each of the cell types, the proportion of simulated datasets with P-value <0.05 was calculated when testing for cell type

proportion differences for each of the six models. (c) True cell type proportions for Groups 1 and 2. Three cell types that range in abundance are simulated to vary by 2–3-fold

(denoted by asterisks). The remaining four cell types do not differ. (d) Heatmap showing the proportions of 1000 simulated datasets with P-value <0.05 when testing for cell

type proportion differences between two groups. True positives are denoted by an asterisk. For the true positives, a large value indicates greater power to detect significant cell

type differences (proportion significant is high). For true negatives, entries without the # symbol indicates good false discovery rate control with proportion significant <0.05,

# indicates proportion significant between 0.05 and 0.1 and ## indicates poorest control with the proportion significant >0.1. (e) Heatmap showing the mean AUC for each of

the six methods for all sample sizes across 1000 simulated datasets. Higher AUC indicates a method has both good power to detect true positives as well as good false discovery

rate control
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For the scenario with 20 cell types, we used cell type proportion
estimates from the 12 healthy human PBMC scRNA-seq dataset as
our true baseline proportions. We modified 8 of the 20 cell types to
be different between the two groups (Supplementary Fig. S4a). The
cell types that differed in abundance between the two groups ranged
from rare to abundant. The heatmap in Supplementary Figure S4b
shows the proportion of significant tests across the 1000 simulated
datasets for each cell type and each method. In this scenario with a
larger number of cell types, the negative binomial methods have
similar performance compared to the other methods. Cell types with
larger log-fold changes are detected as statistically significant in the
majority of simulated datasets by all methods.

Supplementary Table S2 shows the recall, precision and F1 score
for each method averaged across the 1000 simulated datasets. In this
scenario, the CODA method is able to detect more true differences in
cell type proportions compared to any of the other methods, at the ex-
pense of detecting the most false positives. In general, the propeller
methods have high precision indicating that not many false discoveries
are reported. The negative binomial methods perform better in this
scenario, and the beta-binomial model has the second highest F1 score
with a good balance between precision and recall. Propeller(logit) has
the highest precision and CODA has the highest recall.

4 Application to real single cell datasets

One important feature of propeller is that complex experimental
designs can be modelled by using a design matrix that takes account of
multiple factors. In order to demonstrate the types of experimental
designs that can be accommodated, we applied propeller(logit) to three
different scRNA-seq datasets that varied in terms of the experimental
design and the number of samples and cell types in each dataset:

1. Nine human heart biopsy samples across development (foetal,

young and adult), with eight broad cell types annotated (Sim

et al., 2021). We modelled development as a continuous variable

and sex as a categorical variable.

2. A total of 20 PBMC samples across young and old male and fe-

male samples with 24 cell types annotated (Huang et al., 2021).

We modelled age and sex as categorical variables.

3. A total of 13 bronchoalveolar lavage fluid immune cell samples

across three groups (healthy controls, moderate and severe COVID-

19 infection) with 10 cell types annotated (Liao et al., 2020). We

modelled disease status as a categorical variable and performed an

ANOVA to find cell type differences between the three groups.

Figure 3(a–c) shows the cell type proportion estimates for
each sample for the three different datasets. The cell type propor-
tions are highly variable between individuals across all datasets.
Across healthy human heart development, we detected significant
changes in the abundances of immune, erythroid, cardiomyocyte
and fibroblast cells (Supplementary Fig. S5). In the original ana-
lysis, propeller(logit) was applied as an ANOVA test, ignoring
sex. While the conclusions are not markedly different, the order
of significant cell types has changed with immune cells the most
significant cell type when modelling development as a continuous
variable. The immune and erythroid cell type changes across de-
velopment form a type of positive control and it is encouraging
that they are the most significant cell types. As noted in the initial
paper (Sim et al., 2021), immune cells increase throughout devel-
opment, as would be expected as the foetus has not been exposed
to many pathogens, while an adult would have a larger and more
diverse repertoire of immune cells. With the erythroid cells, only
foetal red blood cells are nucleated, and hence they are captured
with the nuclei protocol in foetal samples and absent in young
and adult samples. An interesting finding in this study was that
the relative abundance of cardiomyocytes declines with age
(Fig. 3d), while fibroblasts increase across development
(Supplementary Fig. S6).

Fig. 3. Applying propeller to three scRNA-seq datasets. (a) Barplot showing cell type proportions for nine samples in a human heart development snRNA-seq dataset. f, foetal;

y, young; a, adult. (b) Barplot showing cell type proportions for 20 PBMC samples that differ in terms of their age (Y/O) and sex (M/F). (c) Barplot showing cell type propor-

tions for 13 samples in a COVID-19 study. HC, healthy control; M, moderate COVID-19 infection; S, severe COVID-19 infection. (d) Treating developmental stage as a con-

tinuous variable, the cardiomyocyte populations show a relative decline across development in human heart samples. (e) There is a statistically significant difference in the

proportions of CD8 naive cells between young and old PBMC samples, taking sex into account. (f) Neutrophils are statistically significantly different between healthy control,

moderate and severe COVID-19 bronchoalveolar lavage samples
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For the ageing PBMC dataset, we detected statistically significant
differences in CD8 naive and CD16 cells between young and old
samples, while controlling for sex, at a false discovery rate threshold
of 0.05. CD8 naive cells were significantly enriched in the young
samples (Fig. 3e), and CD16 cells were significantly depleted in the
young samples compared to old (Supplementary Fig. S6). While
the CD8 naive result was reported in the initial paper, we detected a
significant change in abundance of CD16 cells between young and
old samples that was not reported in the original analysis (Huang
et al., 2021).

For the COVID-19 dataset, we found four cell types to have sig-
nificant changes in abundance between the three groups when we
applied propeller(logit) (Supplementary Fig. S7). We found that neu-
trophils were the most significantly different between healthy con-
trols and moderate and severe bronchoalveolar lavage samples from
COVID-19 patients (Fig. 3f), and this was not reported as statistical-
ly significant in the original analysis (Liao et al., 2020). Plasma,
pDC and NK cells also showed significant changes in abundance.
Upon closer inspection, it appeared that the significant result for
Plasma was driven by one sample in the severe COVID-19 group
(Supplementary Fig. S7). When we re-analysed the data with propel-
ler(asin), this cell type was no longer significant, while neutrophils,
pDC and NK cells were still statistically significant. This indicates
that propeller(logit) may be sensitive to outlier samples and suggests
that propeller(asin) is a more robust method to use when outliers are
present in the data. Compared to the results from the original ana-
lysis, we detected two additional cell types, neutrophils and NK
cells, that significantly changed in abundance between healthy con-
trols, moderate and severe COVID-19 patients.

5 Discussion

In this article, we present propeller, a new method for testing for dif-
ferences in cell type proportions from single cell data. It takes ac-
count of sample-to-sample variability, which is large due to both
technical and biological sources. The propeller function itself inter-
operates with Seurat and SingleCellExperiment class objects, and
the propeller.ttest and propeller.anova functions have the ability to
model complex experimental designs. In order to work specifically
with the features of single cell data, which often have extreme cell
type proportions, we have implemented propeller with two different
transformations: the arcsin square root transformation and the logit
transformation. Through simulation studies, we found propeller(lo-
git) has superior performance in terms of power to detect changes in
cell type proportions, as well as good false discovery rate control.
Through analysis of real datasets, we found that propeller(logit)
may be sensitive to outlier samples, while propeller(asin) is not,
which suggests that propeller(asin) is a good alternative in this scen-
ario. A recent comparison of statistical methods for performing cell
type composition analysis of single cell data found that propeller(a-
sin) and Dirichlet regression had the best performance across a var-
iety of scenarios (Simmons, 2022). The propeller methods have the
ability to handle zeros and ones in the data, which are not uncom-
mon in cell type proportion estimates from single cell data. Zero val-
ues need to be carefully dealt with when using CODA methods. For
the simulation studies, we replaced zeroes with 0.5 prior to CLR
transformation. Another factor to consider when using a CODA
framework is the choice of reference cell type, and all results need to
be interpreted relative to the reference cell type, which can make in-
terpretation of the output more challenging.

In our simulation studies, we explored the effect of the number
of cell types on the performance of the methods. For datasets with
fewer cell types, the negative binomial methods and the CODA
method show decreased performance compared to beta-binomial
and propeller methods. As the number of cell types increases to 20,
the performance of negative binomial and CODA methods improve
to be comparable to the other methods. We also explored the effect
of sample size and baseline abundance of the cell type on the per-
formance of the methods. For small sample sizes the differences

between the methods are more pronounced, with propeller(logit)
and beta-binomial showing the best overall performance. As the
sample size increases beyond 10 samples per group, all methods
show good power and false discovery rate control, with the excep-
tion of the CODA method, which has increased false discovery rates
for all cell types with increasing sample size. We also found that at
smaller sample sizes, propeller(asin) had less power to detect the
difference in the most rare cell type, while the negative binomial
methods had less power to detect differences in the most abundant
cell types.

We applied propeller to the analysis of three different single
cell datasets that differed in terms of tissue, number of cell types,
sample size and experimental conditions. We found significant
biological differences in abundance, including some cell types
that had not been previously reported in three different studies:
across healthy human heart development, comparing blood from
young and old patients, and in lung fluid from individuals with
severe covid versus moderate and healthy controls. All our ana-
lysis is available via a workflowr (Blischak et al., 2019) website
(https://phipsonlab.github.io/propeller-paper-analysis/), with the
original source code available on github (https://github.com/phip
sonlab/propeller-paper-analysis/tree/master). The propeller meth-
ods are available in the speckle R package (https://github.com/
phipsonlab/speckle).
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