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ABSTRACT Normal mode analysis (NMA) has received much attention as a direct approach to extract the collective motions of
macromolecules. However, the stringent requirement of computational resources by classical all-atom NMA limits the size of the
macromolecules to which the method is normally applied. We implemented a novel coarse-grained normal mode approach based
on partitioning the all-atom Hessian matrix into relevant and nonrelevant parts. It is interesting to note that, using classical all-atom
NMA results as a reference, we found that this method generates more accurate results than do other coarse-grained approaches,
including elastic network model and block normal mode approaches. Moreover, this new method is effective in incorporating the
energetic contributions from the nonrelevant atoms, including surface water molecules, into the coarse-grained protein motions.
The importance of such improvements is demonstrated by the effect of surface water to shift vibrational modes to higher fre-
quencies and by an increase in overlap of the coarse-grained eigenvector space (the motion directions) with that obtained from
molecular dynamics simulations of solvated protein in a water box. These results not only confirm the quality of our method but also
point out the importance of incorporating surface structural water in studying protein dynamics.

INTRODUCTION

One major goal of studies of protein structure-function re-

lationships is to identify their macroscopic correlated mo-

tions, and how these motions change in response to various

external perturbations, such as ligand-binding. A variety of

experimental approaches, including x-ray crystallography,

NMR spectroscopy, and single-molecule biophysical tech-

niques, have provided insights into macroscopic protein

motions by monitoring the structural alterations of the same

protein under different conditions. On the other hand, theo-

retical studies, such as molecular dynamics (MD) simulations

and normal mode analysis (NMA), can also provide valuable

information about internal protein motions (1,2).

Standard MD simulations sample the conformational space

of a protein using the definitions for atomic interactions from

various force fields and usually include explicitly treated

water to reproduce solvent effects (3,4). Correlated protein

motions can then be extracted from the MD simulations

through diagonalizing the covariance matrix obtained from a

section of the MD trajectory. This is also referred to as es-

sential dynamics (5), principal component analysis (PCA)

(6), or quasiharmonic analysis (7,8), due to the complex and

anharmonic nature of protein dynamics. However, the size of

the system, especially with explicitly treated water molecules,

has provided a great computational challenge, generally

limiting the timescale of MD simulations for large macro-

molecules to the nanosecond range, significantly shorter than

the biologically relevant timescale of conformational changes

that may require milliseconds or longer. Therefore, inefficient

sampling is still a significant obstacle to extracting mean-

ingful correlated motions from MD simulations (9,10).

Classical all-atom normal mode analysis (AANM) offers

the ability to overcome some of the computational cost of

MD simulations. AANM makes the simplifying assumption

that protein motions can be described by harmonic motions

around a local minimum on the protein energy surface.

Starting with an initial protein structure, standard AANM

requires an extensive minimization of the system’s potential

energy followed by the calculation of the Hessian matrix,

whose 3N 3 3N (N ¼ the number of atoms) elements rep-

resent the second derivative of the potential energy function

along the Cartesian coordinates. Diagonalization of the mass-

weighted Hessian matrix can then be used to generate the

eigenvectors and eigenvalues of the matrix, which provide,

respectively, information about the directions of the various

correlated motions within the protein and their amplitudes at

a given frequency (11–14).

However, the application of AANM to biological macro-

molecules has been limited by the requirements of physical

memory to store the all-atom Hessian matrix and the signif-

icant CPU time to diagonalize the very large matrix. There-

fore, in practice, AANM is normally applied to protein

systems containing at most a few hundred residues, in most

cases without explicitly treated water molecules. However,

since solvent has important and complex interactions with the

solute molecule, the explicit treatment of solvents is thought

to be essential to faithfully reproduce protein dynamics. For

MD simulations, it has been a standard practice to simulate a

protein molecule in a box filled with explicitly treated water
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molecules and use periodic boundary conditions. However,

performing AANM on such a system to extract protein mo-

tions is usually beyond the capabilities of currently available

computational hardware and software.

To date, there have been only a few published AANM

studies involving explicitly treated water molecules within a

distance of several Angstroms of the protein surface (15–17).

These studies showed that incorporating surface water is

helpful to reproduce experimental observations, including

the B-factors determined by x-ray crystallography. However,

given the scarcity of these studies, novel techniques, with the

ability to efficiently incorporate solvent effects and provide a

complete survey of the vibrational spectrum, are still needed

to improve the efficiency of AANM for large systems.

Technically, even though the storage of a Hessian matrix

has become less of an obstacle due to the introduction of

sparse matrix techniques, the diagonalization of the all-atom

matrix is still a challenge and new algorithms are being con-

tinuously added to various linear algebra packages. These

include the method of diagonalization in a mixed basis

(18,19) implemented in CHARMM (20) and the iterative

Lanczos/Arnoldi factorization method (21) implemented in

GROMACS (22), two widely used simulation packages.

Nevertheless, these iterative numerical methods are still very

time consuming and can only yield a small fraction of the

total eigenvectors, usually those corresponding to the lowest

vibrational frequencies.

Fortunately, the low-frequency vibrational modes are

closely related to large-amplitude correlated protein motions

with minimum energy costs, which usually reflect the con-

formational changes relevant to protein function (1,23).

Indeed, the collective motions represented by these eigen-

vectors are in good agreement with independent experi-

mental measurements (24–26). However, pinpointing the

most functionally relevant individual mode is not a trivial

task. In addition, it has been suggested that a combination of

modes is required for a reasonable mapping of the correlated

motions (1,13,27). Moreover, recent studies showed that the

modes of higher frequencies are also important, because

energy input from external perturbations can shift the dis-

tribution of different modes to higher frequencies (13,28).

Thus, a complete survey of the eigenvector space and cor-

responding eigenvalues is important for various theoretical

applications, such as the calculation of thermodynamic

configuration entropy and heat capacity.

As an alternative to classical AANM, coarse-grained ap-

proaches have been pursued to reduce the size of the system

and improve computational efficiency (14,29–31). The block

normal mode method (BNM) is an effective coarse-grained

NMA approach that treats proteins as a system of rigid blocks

(32–34). However, BNM still relies on a complex all-atom

representation and starts from the same all-atom Hessian

matrix as AANM. An important breakthrough came with the

introduction of the elastic network model (ENM), which

simplifies the complex atomic interactions to potential energy

functions with only a single parameter (1 kcal/mol/Å2) for

C-a atoms, thus bypassing the time-consuming energy mini-

mization steps (35,36). ENM (or isotropic Gaussian network

model) reflects the intrinsic protein dynamics embedded in

the overall molecular topology and effectively reproduces

certain aspects of the atomic fluctuations determined by

NMR and x-ray crystallography (37–39). The corresponding

model used in NMA is referred to as the anisotropic network

model (ANM) (40). Despite the dramatic simplifications,

ENM is widely applied to large macromolecules and as-

semblies beyond the reach of traditional methods (41–45).

However, there is a trade-off between accuracy and speed

in these coarse-grained methods. Much effort has gone into

comparing results from these approximate methods with the

results of classical AANM, the parent method, or the results

of MD simulations, as a reference (32,33,42,46). Based on

the degree of similarity between the low-frequency eigen-

vectors of AANM and the corresponding eigenvectors of

coarse-grained methods, BNM has been found to produce

more accurate results than ENM (32,33,45). This is not sur-

prising because BNM starts from an extensively energy-

minimized system described by an all-atom force field and

then projects the all-atom Hessian matrix to the space of

predefined blocks. In the limit, this method allocates only one

residue in each block, providing the highest possible reso-

lution in the implementation of the BNM method (however,

at the greatest computational cost). Such an approach is im-

plemented in the most recent version of CHARMM. None-

theless, even BNM results show significant deviations from

the AANM approach. Moreover, no coarse-grained method

is able to incorporate the contributions from explicitly treated

water molecules.

Here we implemented a novel coarse-grained normal mode

method (CGNM) based on a partition scheme of the all-atom

Hessian matrix to extract the correlated motions in the sub-

space of C-a atoms. We carried out our initial analysis on the

120-amino-acid cyclic nucleotide-binding domain (CNBD)

and adjacent upstream 90-amino-acid cytoplasmic C-linker

region from the HCN2 hyperpolarization-activated cyclic

nucleotide-regulated cation channel (47). High resolution

x-ray crystallography has shown that in the presence of cyclic

nucleotides, this isolated soluble protein domain forms a

fourfold symmetric tetrameric assembly with one cyclic nu-

cleotide bound in the CNBD of each of the four subunits (48).

In this study, we report that CGNM provides a more ac-

curate description of the motions of the HCN2 CNBD, as

well as that of four other proteins, compared to two other

coarse-grained methods, ENM and BNM, based on the de-

gree of similarity of the results from the three coarse-grained

approaches with the results of a full AANM analysis. It is

important to note that we found that CGNM also allowed us

to incorporate explicitly treated surface water molecules into

protein motions projected in the subspace of the relevant

atoms (C-a atoms in this study). Furthermore, a comparison

of our CGNM results containing a layer of surface water with
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MD results on the same protein in a water-filled box dem-

onstrates the importance of incorporating such surface struc-

tural water in studying protein dynamics.

METHODS

Classical AANM and coarse-grained
CGNM analyses

We used a representative snapshot from MD simulations based on the x-ray

crystal structure of the HCN2 channel C-terminus protein (PDB ID 1Q5O)

(48) as the starting structure for the NMA described here. Briefly, the MD

simulations, which we described in detail elsewhere (49), were performed as

follows. We used the GROMOS96 force field from the GROMACS package

(22,50). The whole system contains four subunits and each subunit contains

8636 protein atoms, 4 cAMP molecules, 23,654 water molecules, and 12

chloride ions to balance the charge in the system. For the bound ligand,

cAMP, we used the topology generated by the PRODRG server and

the partial charges defined in the GROMOS96 force field (50). We used the

flexible SP3 water model in the simulation (51). The distance between the

protein and each side of the rectangle box was set at 10 Å. The particle mesh

Ewald method (52), with a cutoff distance of 10 Å, was used for the elec-

trostatic potential energy. Before MD simulations, we applied basic energy

minimization steps (steepest descent (SD) and conjugate gradient (CG)) to

optimize the starting system and remove any nonphysical contacts. During

the first 500 ps of the MD simulation, the positions of the heavy atoms in the

protein were fixed so that the system, especially the explicit water molecules,

can be further optimized. After these steps, we carried out a normal MD

simulation with a time step of 2 fs and collected the trajectory every 0.5 ps.

To carry out the normal mode calculations based on the all-atom force

fields, we first performed an extensive energy minimization to ensure that the

starting structure represents a local minimum on the energy surface. To

achieve this, we applied SD and CG followed by the limited-memory

Broyden-Fletcher-Goldfarb-Shanno method (22) at double precision nu-

merical accuracy to the representative snapshot structure from the MD

simulations obtained above. During these energy minimization steps, the

electrostatic energy was described by a switch function with the distance for

normal treatment set at 15 Å and the cut-off distance set at 18 Å (53).

The key step in the analysis was then to calculate the Hessian matrix for

the entire system, containing the second derivatives of the potential energy

functions (@2V=@xi@xj). The matrix was then partitioned into four sections to

extract the C-a components according to the equation

Hall ¼
Hxx Hxy

Hyx Hyy

����
����; (1)

Hxx9 ¼ Hxx � Hxy 3 H
�1

yy 3 Hyx: (2)

Here, Hxx, Hyy, Hxy, and Hyx submatrices contain the elements representing

the interactions of, respectively, relevant to relevant atoms, nonrelevant to

nonrelevant atoms, relevant to nonrelevant atoms, and nonrelevant to rele-

vant atoms. In the CGNM method, the energetic contributions of all inter-

actions with and between nonrelevant atoms (the non-C-a atoms here) are

incorporated into a simplified Hessian matrix for the relevant-atom subspace,

H9xx, using Eq. 2. The theoretical basis for deriving the C-a atom motions

based on the atomic fluctuations from classical AANM was published by

Berendsen and colleagues (54). A similar equation was used to extract the

effective force constant matrix for C-a atoms (55) and discussed in the

GROMACS discussion board (www.gromacs.org) in 2005 for the purpose of

comparing AANM and MD-based PCA in the C-a subspace. Moreover, a

recent study by Eom et al. (56) used a very similar method to obtain a coarse-

grained approximation to ENM. After basic matrix manipulations, we found

that our partitioning approach (Eqs. 1 and 2) is identical to that of Eom et al.

The major difference between our study and that of Eom et al. is that we have

applied a coarse-grained approximation to classical NMA based on all-atom

force fields, whereas Eom et al. aimed to improve the efficiency of ENM

(which they referred to as the Gaussian network model).

To sort the Hessian into relevant and nonrelevant parts, we first converted

the sparsely-stored mass-weighted Hessian matrix into a double precision

ASCII file. We then generated an index file in which the indices for all C-a

atoms (relevant atoms) were arranged at the beginning followed by non-C-a

atoms. Each entry in the sparse Hessian matrix was read into the program and

allocated to a new position, using the index file as a key for sorting. The C-a

component (xx part) was stored in a dense matrix format. The symmetrical xy

and yx parts were stored in a coordinate format for a sparse matrix. Non-C-a

components (yy) were stored in a row-major format for a sparse matrix. We

used a direct solving routine from the PARDISO package (57) and standard

LAPACK and BLAS routines for matrix calculations.

Based on the eigenvectors and the corresponding eigenvalues, the fol-

lowing equation was used to calculate the mean-square fluctuation (MSF)

(Å2):

ÆDX2

kæ ¼ kBT

mk

�+
i

Y
2

ki

-2

i

; (3)

where k is the atom index, i is the eigenvector index, mk is the atom mass, and

v is vibrational frequency.

The following equation was used to calculate the configurational entropy

based on the eigenvalues from ENM, CGNM, or PCA (58,59):

Svib ¼ kB � +
3N

i¼7

a

e
a � 1

� ln 1� 1

e
a

� �� �

a ¼ h � -i

2p � kBT
; (4)

where h is Planck’s constant, kB is Boltzmann’s constant, and v is the

vibrational frequency.

Normal mode analysis based on elastic network
model (ENM)

C-a atom coordinates from the energy minimized structures were directly

used in the NMA based on the potential energy function defined by the elastic

network model (ENM or anisotropic network model (ANM)) (40). For ENM,

we used the default settings of the force constant (1 kcal/mol/Å2) and cutoff

distance (13 Å).

Block normal mode analysis

The same all-atom Hessian matrix was projected onto a subspace of rigid

blocks, each of which contained a single residue for the protein or a single

cAMP molecule for the bound ligand, to pursue the highest resolution pos-

sible with this method. The degrees of freedom equal six times the number of

blocks. The Fortran code of DIAGRTB (v2.52) was used in this research

with a modification of the size of the array, LRWORK, from 32,000,000 to

200,000,000, so that larger systems could be accommodated (32,33).

PCA based on MD simulations

We used g_covar from GROMACS to perform PCA on a section of the MD

trajectory. Overall rotational and translational motions were removed by

fitting the protein structure of each time frame to a reference structure

(starting frame). For the MD simulations at low temperatures, we reduced the

system temperature with a simulated annealing protocol and then collected

the MD trajectories after a 200-ps equilibration at the corresponding tem-

perature. For each PCA, we used a 2-ns-long MD trajectory containing 4000

frames. The eigenvalue outputs from the PCA analysis represent the vibra-

tional amplitude and were converted into the square of angular velocity by

the equation

Coarse-Grained Normal Mode Approach 3463
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-2

i ¼
kBT

ÆDX
2

i æ � mk

: (5)

The anharmonic factor for each eigenvector from PCA was calculated by the

equation

a
2

i ¼
ÆDX

2

i æ
ÆDX

2

i æhar ¼
-har

i

-i

� �2

¼

1

-2

i

+
3N�6

j¼1

Mij �Mij

-2

j

; (6)

where i is the index for PCA eigenvectors, j is the index for NMA

eigenvectors, ðDX2
i Þ

har
is the harmonic mean-square fluctuation as described

by the NMA eigenvectors, and Mij is the dot product between the ith PCA

eigenvector and jth NMA eigenvector (60).

Alignment of correlated coordinate systems

The reference structures from two eigenvector systems were first aligned to

the mass center of the molecule. A rotation matrix was then calculated based

on two aligned reference structures. The second set of eigenvectors was

rotated by the equation

Vklm9 ¼ +
3

n¼1

Rmn � Vkln; (7)

where k is the eigenvector index, l is the atom index, and m and n are the

indices of xyz dimension (12). The following parameters for the overlap

analysis, including dot product (Eq. 8), spanning coefficient (Eq. 9) (33,46),

and cumulative overlap factor (COF) (Eq. 10) (54), were calculated based on

these aligned eigenvector sets.

jMijj ¼
���� +

N

m¼1

+
3

n¼1

V1imn � V2jmn

����; (8)

SPANi#100 ¼ +
100

j¼1

ðMijÞ2; (9)

COFX ¼
+
X

k¼1

+
k

i¼1

+
k

j¼1

Mij �Mij

X
: (10)

Unit conversion among different
simulation packages

AANM, CGNM, and BNM use the same mass-weighted Hessian matrix;

therefore, the corresponding orthogonal eigenvector output should still be

mass-weighted. However, the default output of eigenvectors is not mass-

weighted in the GROMACS program and not strictly orthogonal. We

modified the source code of GROMACS to generate mass-weighted or-

thogonal eigenvectors for AANM analysis. We converted the GROMACS

eigenvalues (v2
G; based on the mass-weighted Hessian matrix, in units of kJ/

mol/nm2/amu) into the square of angular velocity (in units of s�2) by mul-

tiplying the Gromacs eigenvalues by the conversion factor of 10�24, based on

the relation

kJ

mol � nm
2 � amu

¼ 10
3
3 J

6:022 3 10
23

3 10
�18

3 m
2
3 1:66 3 10

�27
3 kg

¼ 10
24

3 s
�2
: (11)

The following equation was used for calculating the MSF (Å2):

ÆDX
2

kæ¼ kBT �+
i

Y
2

ki

mk �-2 ¼
1:38310

�23
J3k

�1
3300k

1331:66310
�27

kg
�+

i

Y
2

ki

-2

¼ 19:18310
4
3m

2
3s

�2

10
24

s
�2 �+

i

Y
2

ki

-2

G

;

¼ 19:18310
�20

3m
2 �+

i

Y
2

ki

-2

G

¼ 19:183Å
2

�+
i

Y
2

ki

-2

G

(12)

where v2
G is the eigenvalue of the Gromacs unit, k is the atom index, and i is

the eigenvector index.

Since we compared the results of different methods in the subspace of C-a

atoms, mass-weighting will not affect the eigenvector results of ENM.

However, a mass factor is needed for the calculation of vibrational fre-

quencies and atomic fluctuation amplitudes. To our knowledge, there is no

standard method for converting the units to compare the ENM results directly

with other calculations (e.g., AANM, BNM, etc.) without scaling. Here, we

tentatively added a mass factor corresponding to the mass of C-a atom so that

the angular velocity in units of s�1 and MSF in units of Å2 can be generated

using a force constant of 1 kcal/mol/Å2. The eigenvalues were converted into

the square of the angular velocity by multiplying by the factor

kcal

mol � Å
2

3133amu

¼ 10
3
34:1843J

6:022310
23

310
�20

3m
2
31331:66310

�27
kg

¼ 0:69483kg3s
�2

1331:66310
�27

kg
¼ 3:22310

25
3s

�2
: (13)

The eigenvalue output from PCA analysis (default GROMACS in units of

nm2; no mass weighting; C-a only) was converted into the square of angular

velocity by the equation

-2¼ kBT

ÆDX
2æ3mass

¼ 1:38310
�23

J3k
�1

33003k

nm
2
3133amu

¼ 4:14310
�21

3J

10
�18

3m
2
31331:66310

�27
3kg

¼ 0:192310
24

3s
�2
: (14)

The experimental B-factor obtained through x-ray crystallography can be

directly converted to atomic fluctuation (MSF, in Å2) using the equation (61)

MSF¼ 3

83p
2 Bfactor: (15)

RESULTS

Comparison of AANM with coarse-grained ENM,
BNM, and CGNM approaches

Our goal in this study was to develop a coarse-grained ap-

proximation to classical all-atom normal mode (AANM)

analysis (11,12). We have implemented a novel coarse-

grained normal mode analysis (CGNM) that decreases the

computational cost associated with AANM by partitioning
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the all-atom Hessian matrix containing the second derivative

of the potential energy function into relevant and nonrelevant

components, here focusing on the C-a atoms (see Methods,

Eq. 2). To assess the accuracy of our method, we first com-

pared the results of AANM, the standard for these compari-

sons, with those of CGNM, as well as with results from two

other coarse-grained approaches, ENM and BNM (32,40).

As ENM and BNM treat proteins in a vacuum in the absence

of water, we first compared the four methods under these

dehydrated conditions. In the following section, we consider

the effects on CGNM results of adding surface water.

As NMA is based on a harmonic approximation of the

protein energy surface near an ideally global minimum, it first

requires an extensive minimization of the potential energy of

the starting protein structure. Here we used a representative

structure of the HCN2 C-terminus protein obtained from a

20-ns-long MD trajectory based on the original crystal

structure (48). This procedure allows the protein structure to

be efficiently equilibrated in the same force field used by

subsequent NMA (GROMOS96) (50), as reasonably long

MD simulations should optimize the loop conformations and

allow for small-scale rearrangement of secondary structures

(62,63).

We first removed all water molecules from the represen-

tative MD snapshot structure. After an extensive minimiza-

tion of the system, the final structure containing only the

protein and cAMP atoms was used to generate the all-atom

Hessian matrix, which was then iteratively diagonalized to

produce the AANM result, providing the reference for

comparison with the coarse-grained methods. Due to the

limitation of computational resources, only a small fraction

of the total eigenvectors and corresponding eigenvalues were

calculated (2000, or 8% of 26,232). All technical details are

given in Methods and Table 1. Briefly, ENM starts from the

C-a atom coordinates and generates a complete set of or-

thogonal eigenvectors. BNM and CGNM methods started

from the same all-atom Hessian matrix used by AANM.

Whereas BNM simplifies the calculation through projecting

the all-atom Hessian matrix into predefined rigid blocks,

CGNM relies on a matrix-partitioning scheme to integrate the

energetic contributions from non-C-a atoms into the motions

of C-a atoms. Since the eigenvector outputs of BNM are in

the all-atom space, they were projected to the C-a atom

subspace for comparison purposes. This was followed by a

normalization step that makes each eigenvector unitary (Vi �
Vi

T ¼ 1) but not strictly orthogonal (Vi � Vj ¼ 0, i 6¼ j). The

eigenvector outputs of CGNM are naturally orthogonal in

the C-a subspace and thus were directly used in the overlap

analysis.

The results of ENM, BNM, and CGNM were compared to

the results of AANM in terms of the overlap of the resulting

eigenvectors, representing the direction of correlated motion,

and eigenvalues, representing the amplitude or the frequency

of each motion. Three different methods were used to check

the overlap between the eigenvectors from AANM versus a

given coarse-grained method. First, a direct view of overlap

was obtained from a plot of the inner product between each

pair of eigenvectors (Eq. 8). Such plots confirm previous

studies that BNM generates results closer to those of AANM

than does ENM; this is shown by the tighter clustering of

points near the ideal diagonal relationship for the BNM

versus AANM plot (33,46) (Fig. 1, A and B). It is important to

note that CGNM provides an even better match (tighter di-

agonal clustering) with the AANM results than does BNM

(Fig. 1 C). Second, we quantified the overlap between two

sets of eigenvectors using the spanning coefficient (Eq. 9),

representing the overlap between each AANM eigenvector

with a group of eigenvectors from each coarse-grained

analysis (33,45,54). The nearly straight line of the spanning

coefficient curve of CGNM up to a frequency of 10 cm�1

indicated that the 70 or so lowest-frequency AANM eigen-

vectors can be almost completely mapped by the first 100

eigenvectors of CGNM (Fig. 2 A). However, this close

mapping only extends as far as the first ;10 or ;15 AANM

eigenvectors for ENM or BNM, respectively (Fig. 2 A).

A potential bias of using spanning coefficients is that an

arbitrary number (100 here) of eigenvectors needs to be

predefined, because the spanning coefficient involving all

eigenvectors is theoretically equal to 1. This makes the

spanning coefficient less meaningful when comparing sys-

tems of different dimensions of freedom. To circumvent this

difficulty, we calculated COF, a factor for the overlap be-

tween two pools of eigenvectors as a function of pool size

(54) (Eq. 10, Fig. 2 B). Consistent with the other methods of

TABLE 1 Comparison of parameters used in different NMA approaches

AANM ENM BNM CGNM

Residues 804 804 804 804

Atoms 8636 804 8636 8636

Starting Hessian matrix size 25,9082 24122 25,9082 25,9082

Working Hessian matrix size 25,9082 24122 48242 24122

Practical/theoretical eigenvector set 2000/25,908 2412/2412 4824/4824 2412/2412

Eigenvector dimension 25,908 2412 25,908 2412

C-a only component extraction Yes No Yes No

Orthogonality of C-a component No, but normalized Yes No, but normalized Yes

CPU time (3.4 Ghz Xeon, sequential implementation) ;67 h ;1 h ;5 h ;7 h

Peak physical memory (Mbyte) ;1577 44 ;1400 ;1900

Coarse-Grained Normal Mode Approach 3465
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comparison, the COF results show that CGNM significantly

outperforms the other two methods: the space represented by

the first 100 eigenvectors from AANM overlaps 95% of that

of CGNM versus 85% of BNM and only 65% of ENM.

Based on the results shown above, it is clear that the

CGNM method generates a more accurate set of eigenvectors

than does BNM or ENM. Next, we checked the accuracy of

different coarse-grained methods through calculating the

atomic fluctuations based on the eigenvalues and eigenvec-

tors of the Hessian matrices, still using the results from

AANM as a reference. MSF or root mean-square fluctuation

(RMSF) was used to provide a direct measure of the atomic

vibrational amplitude. Both MSF and RMSF values can be

used to compare computational results with experimental mea-

sures of motion, such as B-factors (see Methods, Eq.15).

To gain insight into atomic fluctuations we first plotted the

eigenvalues from individual coarse-grained methods against

the corresponding values from AANM (Fig. 2 C). Over a

large range of eigenvalues, there is a nearly linear relation-

ship between the results of AANM and those of CGNM or

BNM, suggesting a close relationship. In contrast, such ENM

results did not show a close agreement with those of AANM.

Next, we used the eigenvalues and the eigenvectors of the

vibrational modes to calculate the atomic fluctuations for

each atom (Eq. 3) (Fig. 2 D). As predicted from the eigen-

values, the ENM fluctuation results (blue circles) deviate

significantly from the other results. Both the CGNM (red
circles) and BNM results (green circles) are in good agree-

ment with the results from AANM on a residue-by-residue

basis. Based on the correlation coefficient R values, the

CGNM results (0.996) show a slightly better agreement with

AANM compared to BNM (0.969). In contrast, both CGNM

and BNM correlations are significantly better than that of

ENM (0.838). To exclude possible errors introduced by the

extraction of C-a components and the normalization step asso-

ciated with AANM and BNM, we performed independent

calculations using the original all-atom eigenvectors, which

yielded identical results (Supplementary Material, Fig. S1).

NMA results incorporating a layer of explicit
water on the protein surface

Next, we expanded CGNM to incorporate the effect of ex-

plicitly treated surface water molecules on protein dynamics,

an area that to date has not been addressed by other coarse-

grained normal mode methods and is computationally ex-

pensive for classical AANM. Previous experimental studies

showed that the thickness of the surface structural water layer

ranged from 3 Å for lysozyme, determined by x-ray and

neutron scattering (64,65), to 5 Å for lactose, determined by

terahertz spectroscopy (66). Here, we treated the case of a

4-Å-thick layer of explicit water on the protein surface, a

compromise that enables the calculations to stay within the

limits of currently available computational resources (Fig. 3,

A and B). The all-atom Hessian matrix used in the CGNM

calculations incorporated the interactions among all protein

atoms, cAMP ligands, and explicitly treated water molecules.

The corresponding hydration level is 0.56 (water mass/pro-

tein mass) and the system is of significant size (8636 protein

atoms, 108 cAMP atoms, and 8817 water atoms). As a result,

FIGURE 1 Grayscale plot showing the absolute value of

the dot product between each pair of eigenvectors. (A) Gray

scale plot showing the absolute value of the dot product

between the eigenvectors from ENM analyses (x axis)

versus AANM analyses (y axis). The quality of correspon-

dence between eigenvectors is indicated by the darkness of

the symbol and its proximity to the diagonal. (B) Results for

BNM (x) versus AANM (y). (C) Results for CGNM (x)

versus AANM (y).
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we could solve for ,0.5% (250) of a total of over 52,683

AANM eigenvectors and eigenvalues using local computa-

tional resources. The BNM method could not be tested under

these conditions because it does not currently include a

method for allocating surface water molecules to specific

blocks.

Inclusion of surface water led to a significant difference in

AANM results compared to those obtained using AANM in

the absence of water (Fig. 3, C and D). It was not surprising

that AANM results with water also diverged from those ob-

tained with CGNM or ENM in the absence of water. We were

impressed that CGNM results in the presence of surface

water showed a good agreement with those obtained using

AANM in the presence of surface water, with an increased

overlap of eigenvectors indicated by a twofold increase in

spanning coefficients (;80%) compared to values obtained

with the other methods in the absence of water (;40% (Fig. 3

C)). Improvement was also observed in the larger COF

values with CGNM (;93%) versus those with the other

methods (;75% using the first 100 eigenvectors (Fig. 3 D)).

Using AANM with surface water results as a standard, we

next checked the accuracy of the RMSF values for each C-a

atom using ENM, BNM, or CGNM (Fig. 4). CGNM with

water (red curve) faithfully reproduced the pattern of the

corresponding AANM results (black curve, Fig. 4 A). The

shift in absolute amplitude is due to the different number of

eigenvectors used (2406, or 99.7%, for CGNM; 244 modes,

or 0.5%, for AANM). The striking similarity is reflected in

the high R-factor of the CGNM data versus the AANM data

(0.925 (Fig. 4 D, left)), which is much greater than that for

ENM (0.780) and slightly greater than BNM (0.915, limited

to calculations without water).

The effect of solvent molecules on protein dynamics is an

important issue that has been addressed by experimental and

computational approaches. Previous studies using AANM

revealed that inclusion of surface water dampened the am-

plitude of atomic fluctuations (16,67). We found a similar

effect of surface water using CGNM, in which the average

fluctuations of C-a atoms with surface water (0.11 Å2) is

significantly smaller than that of protein alone (0.16 Å2),

providing further support for the ability of CGNM to incor-

porate surface water in protein dynamics.

Are the CGNM results with a 4-Å layer of surface water

molecules comparable to results based on MD simulations, in

which the protein is fully embedded in a 102 3 102 3 81 Å3

box filled with both surface and bulk water (Fig. 3 A)? MD

simulations of the protein at 300 K did a reasonably good job

of reproducing the absolute amplitude and overall pattern of

RMSF values from x-ray crystallographic B-factors (Fig. 4

B). However, the RMSF values from MD simulations at 300

K are approximately three times larger than the CGNM re-

sults (Fig. 4 A). Moreover, the R factor between MD results

and CGNM results with surface water is only 0.70 (Fig. 4 E).

This deviation is likely caused by the contribution of random,

diffusive motions that are included in the MD simulations but

are ignored by the harmonic treatment of motions in all NMA

approaches.

Since diffusive motions are greater at higher temperatures,

we examined the ability of NMA to more accurately corre-

spond to MD simulation results at lower temperatures. We

FIGURE 2 Quantification of the sim-

ilarity of results between AANM and

three coarse-grained NMA methods. (A)

Spanning coefficients for each eigenvec-

tor of AANM analysis were calculated

based on the first 100 eigenvectors of

ENM (blue), BNM (green), and CGNM

(red). The index for AANM eigenvector

was converted to vibrational frequency.

(B) COF of eigenvectors from AANM

versus coarse-grained methods. (C)

Cross plots of eigenvalues from coarse-

grained versus AANM results. (D) Cross

plot of MSF values from coarse-grained

versus AANM results for each C-a atom.

The linear equation Y ¼ A 1 B 3 X was

used to fit comparisons between different

methods. CGNM: B ¼ 1.04, R ¼ 0.996;

BNM: B ¼ 0.37, R ¼ 0.969; and ENM:

B ¼ 1.36, R ¼ 0.838, where R is the

correlation coefficient.
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first collected MD trajectories at 120 K and 180 K, respec-

tively. The RMSF based on the MD simulation at 120 K was

much smaller than that at 300 K; however, the convergence

with CGNM results was not improved (0.69) (Fig. 4 B). In-

terestingly, the agreement between CGNM and MD simu-

lation results at 180 K was much improved, in terms of both

the absolute value of fluctuations and overall pattern, with the

R-factor increased to 0.85 with a slope factor of 0.82 (Fig. 4

C). These results indicate that at certain low temperatures

(180 K), the atomic fluctuations can be largely accounted for

by harmonic motions involving the protein plus surface water

but do not necessarily involve the bulk solvent that is also

present in the MD simulations.

Comparing MD simulations with CGNM, with and
without water, at different temperatures

To further examine the effect of surface water on protein

dynamics, the distribution of vibrational-mode frequencies

was plotted for both CGNM and MD simulations at the three

different temperatures. Previous studies have shown that ex-

plicit water has a complex influence on protein dynamics,

including temperature-dependent frictional dampening and

temperature-independent shifting of the vibrational modes to

higher frequencies (68–70). However, it is not clear whether

these effects are due to an interaction of the protein with sur-

face structural water versus an interaction that also requires the

presence of bulk solvent (71). Here, using CGNM, we find that

surface water alone is sufficient to shift fluctuations to higher

frequencies (Fig. 5 A), an effect that is observed at all three

temperatures, thus confirming its temperature-independent

character. It is most likely that this effect represents a static

interaction of a cagelike structure formed by the interaction of

surface water with exposed residues on the protein surface

(65).

To isolate the potential influence of the anharmonic, dif-

fusive protein motions captured by MD simulations but not

by CGNM, we compared the frequency distributions of vi-

brational modes between CGNM with 4 Å surface water

and the MD simulations with bulk solvent (;10 Å from

protein surface plus periodic boundary condition). The dis-

tribution of vibrational modes from MD simulations at low

temperatures (180 K and 120 K) was quite similar to those

from CGNM with water (Fig. 5 B). However, MD simula-

tions, but not CGNM, revealed a significant shift to lower

frequencies upon raising the temperature to 300 K. This is in

good agreement with previous studies suggesting that the

shift to low frequencies is related to the anharmonic nature of

protein dynamics (Fig. 5 C) and that the contributions from

bulk solvent are more prominent at high temperatures (300

K) and for low-frequency modes (69,70).

As a final test of the various NMA approaches, we com-

pared the orthogonal sets of eigenvectors in the subspace of

C-a atoms derived from the three coarse-grained methods

FIGURE 3 Spanning coefficient and

cumulative overlap factor curves for

different NMA methods with and with-

out surface water molecules. (A) In the

MD simulation system, the tetrameric

HCN2 CNBD/C-linker domain was put

in the center of a box containing explic-

itly treated water (n ¼ 23,658; red
lines). (B) Energy-minimized structure

of protein with a surface layer of explic-

itly treated water molecules (n ¼ 2939).

(C) Spanning coefficient for each

AANM (with water) eigenvector was

calculated using the first 100 eigenvec-

tors of CGNM with water (black),

AANM without water (gray), CGNM

(protein only, red), and ENM (protein

only, blue). (D) COF curves showing

the overlap between two pools of eigen-

vectors as a function of the number of

eigenvectors involved.
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(ENM, BNM, and CGNM) versus the eigenvectors based on

PCA of MD simulation trajectories (Fig. 5 D). At 300 K, the

COF curves show a poor overlap between the eigenvectors at

frequencies ,25 cm�1 from the MD simulations versus those

obtained from all three NMA methods. At increasing fre-

quencies, there is a gradual increase in the overlap of the

NMA results with the PCA modes, consistent with the

idea that frequencies .40–50 cm�1 correspond to more

‘‘harmonic’’ protein vibrations (60).

Does the use of CGNM with a layer of water molecules on

the protein surface make any significant difference in the

overlap of eigenvectors with MD simulations? Careful ex-

amination of the COF curve suggests that indeed the results

from CGNM with water are slightly but consistently better

FIGURE 4 Comparison of RMSF

values from various NMA approaches,

MD simulations, and values converted

from crystallographic B-factors. (A, top)

Secondary structure along the primary

sequence of a single subunit. (A, bottom)

Comparison of RMSF values based on

the first 244 of 52,683 eigenvectors

from AANM with surface water (black

line) with RMSF values based on the

complete set of eigenvectors (2406)

from CGNM with surface water (red

line). The RMSF values for ENM (blue)

and BNM (green) are also shown for

comparison purposes. (B) Comparison

of RMSF values converted from crys-

tallographic B-factors (black line) with

values determined from MD trajectories

(orange) collected at 300 K (triangles),

180 K (circles), and 120 K (inverted

triangles). (C) RMSF values from

CGNM with water (red) are in good

agreement with those from MD simula-

tions at 180 K (orange). (D) Cross plots

of RMSF results based on AANM with

surface water versus RMSF results from

ENM (blue), BNM (green), and CGNM

(red). Results were fit with the linear

equation Y¼ A 1 B 3 X, where R is the

correlation coefficient: ENM: B ¼ 1.91,

R ¼ 0.780; BNM: B ¼ 1.20, R ¼ 0.915;

CGNM: B ¼ 0.84, R ¼ 0.925. (E) Cross

plots of RMSF results based on CGNM

with surface water and RMSF results

based on MD simulations at different

temperatures. Linear least-squares fit

results: 300 K: B ¼ 5.33, R ¼ 0.70;

180 K: B ¼ 0.82, R ¼ 0.85; 120 K: B ¼
0.30, R ¼ 0.69).
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than the CGNM results without water at 300�K. An even

greater improvement in overlap with the MD simulations was

observed when using CGNM with water at lower tempera-

tures (180 K (Fig. 5 E) and 120 K (Fig. 5 F)). The increased

overlap between CGNM with surface water and the MD

simulations at the two lower temperatures (but especially at

120 K) suggests not only that CGNM is able to incorporate, at

least partially, the contributions from explicit surface water,

but also that surface water makes a significant contribution to

protein vibrational modes with frequencies .50 cm�1.

DISCUSSION

In this article, we implemented a matrix-partitioning scheme

to extract the C-a components from the all-atom Hessian

matrix, thus providing a novel coarse-grained NMA ap-

proach, which we termed CGNM. This method generated

more accurate results than did other coarse-grained NMA

methods, including ENM and BNM, based on a comparison

with results obtained using classical AANM. However,

CGNM retained the benefits of a great reduction in compu-

tational cost with the two other coarse-grained approaches.

The flexibility in partitioning the all-atom Hessian matrix into

relevant versus nonrelevant groups makes it straightforward

to scale the scope of analysis, for example, from C-a atoms

only to inclusion of all backbone atoms, depending on the

size of the system and the available computational resources.

In this manner, we were able to model the contributions from

explicitly treated surface water to protein motion, which is

beyond the reach of other coarse-grained NMA methods.

Thus, the CGNM method represents a novel coarse-grained

NMA approach that can be used to obtain more accurate

results for systems of significant size.

Multiple lines of evidence indicate that CGNM produces

more accurate results than ENM or BNM, using AANM re-

sults as a reference. Overlap plots and spanning coefficients

FIGURE 5 Effects of solvent on pro-

tein dynamics determined by CGNM

and MD approaches. (A) Distributions

of the vibrational mode densities for

CGNM without water (open symbols)

and CGNM with water (solid symbols)

at three temperatures, 300 K (triangles),

180 K (open circles), and 120 K (in-

verted triangles). (B) Distributions of

the vibrational mode densities for MD

simulations at 300 K (triangles), 180 K

(circles), and 120 K (inverted triangles).

All plots are shown in brown to be

consistent with Fig. 4. (C) Anharmonic

factor for the PCA modes from MD

simulations at 300 K based on harmonic

CGNM modes without (black) or with

(blue) surface water. (D) COF curves

showing the overlap between the eigen-

vectors from MD simulations at 300 K

and CGNM with water (red solid line),

CGNM without water (red dashed line),

BNM (green), or ENM (blue). (E) COF

results showing the overlap between

MD results and CGNM, BNM, and

ENM results at 180 K. (F) COF results

showing the overlap between MD re-

sults and CGNM, BNM, and ENM re-

sults at 120 K.
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clearly show that CGNM outperformed the other coarse-

grained methods for the first 100 or so individual eigenvec-

tors, which are of great functional significance because they

represent the directions of protein conformational changes

with highest amplitude, slowest frequency, and least ener-

getic cost. COF, which has the advantage of representing the

overlap of two groups of eigenvectors, confirmed that CGNM

more closely reproduces classical AANM results than do

ENM or BNM methods. We also confirmed that CGNM

outperforms ENM or BNM on dozens of other proteins, with a

range in size from 200 to 1300 amino acids (results of four

other sample proteins are shown in Figs. S2 and S3).

A comparison of eigenvalues and related atomic fluctua-

tions among different NMA methods also revealed differ-

ences among the three coarse-grained methods. ENM

generated a surprisingly good match to the AANM results

given the dramatic simplifications in its potential energy

functions. However, the results from BNM and CGNM were

in much better agreement with the AANM results compared

to ENM, indicating that the detailed chemical information

embedded in the all-atom Hessian matrix used for AANM,

BNM, and CGNM makes an important contribution. These

results are in good agreement with a recent comprehensive

comparison among NMA approaches of different complexity

(41). Moreover, CGNM performed slightly better than BNM,

as shown by the correlation coefficient (R) between their

MSF values and the values obtained by AANM.

Why does CGNM yield more accurate results than BNM,

even though both methods are derived from the same

all-atom Hessian matrix? BNM is rooted in the rotation-

translation block model, which projects the all-atom Hessian

matrix into a subspace of rigid blocks. Even though BNM

fully takes into account the coupled motions between dif-

ferent blocks, the method ignores the small high-frequency

vibrations related to the intrinsic flexibility within each block

(72). Moreover, during analysis, the intermediate BNM re-

sults in the subspace of rigid blocks must be projected first

back onto the space for all atoms and then onto the subspace

of C-a atoms. However, the center of mass for each block is

different from the position of the C-a atoms and varies

among different amino acid residues. In contrast, CGNM is

based on partitioning the all-atom Hessian matrix through a

simple but theoretically rigorous scheme, which is then used

to derive the motions for the C-a atoms (55). The fact that

CGNM implicitly incorporates energetic contributions from

non-C-a atoms into C-a atoms may contribute to the greater

accuracy of this method.

A key advantage of CGNM is its ability to incorporate the

detailed chemical information imbedded in the protein

structure, including explicitly treated structural water mole-

cules on the protein surface. For most MD applications, it has

been relatively standard to treat solvent molecules explicitly,

which is required to reproduce the electrical and dynamic

properties of solvents (70,73–76). Indeed, experimental and

theoretical studies have found that the surface water mole-

cules within a radial distance of 3–5 Å from the protein

surface have very different physical-chemical properties

from those in bulk solvent and play important roles in

modulating protein motions. For example, the experimental

observation that the density of the first hydration shell is

;5% higher than that of bulk water has been successfully

reproduced by MD simulations (65,77,78). Ideally, classical

AANM should be performed on the same protein-water

system used in MD simulations. However, the size of the

system limits the AANM method so that bulk solvent and

surface water must often be omitted for proteins of significant

size. Here, we applied CGNM to systems containing a layer

of explicitly treated water molecules and found that it not

only reproduced results based on classical AANM with ex-

plicit surface water, but also helped delineate some features

of complex solvent effects.

The choice of a surface water layer of 4 Å in this study

represents a balance that places a modest demand on com-

putational resources but is consistent with experimental ob-

servations on protein surface water thickness, ranging from 3

Å for lysozyme (64,65) to 5 Å for lactose (66). We found that

CGNM, which is based on a harmonic approximation to the

energy surface, in the presence of surface water is able to

reproduce MD results for atomic fluctuations of a fully sol-

vated protein at 180 K. Interestingly, this temperature (180

K) is near the glass-transition point where diffusion starts to

contribute significantly more to protein dynamics than does

harmonic vibration (17,71,79–81). Moreover, spectroscopic

experiments on bovine serum albumin showed that there is a

significant dynamic change (glass transition) at around 170 K

to 180 K, which might be due to formation of a rigid structure

formed by water molecules covering the protein surface

(79,82). These results corroborate this study, in which only

the surface water is treated explicitly.

However, it is noticeable that even though CGNM results

with water show an improved match with the atomic fluc-

tuations from MD simulations compared to CGNM results on

the dehydrated protein, the results from CGNM differ in

important respects from those obtained using MD simula-

tions or from experimentally determined crystallographic

B-factors. This might be due to the complex nature of the

protein energy surface and complex interactions between

protein and solvent. The good agreement between the B-

factors and the MD results at 300 K confirms the advantages

of MD, a method that does not involve a harmonic approx-

imation of the protein energy surface and explicitly treats all

water molecules (Fig. 4 B).

The CGNM results are successful in reproducing previous

observations that solvation increases protein vibrational fre-

quencies and point to the role of surface water in this phe-

nomenon (24,69,83). Moreover, these effects are likely to

reflect temperature-independent interactions in which surface

water molecules serve to fill in protein surface irregularities

and stabilize polar side chains, forming a cagelike structure

around the protein surface (83). In contrast, a comparison of

Coarse-Grained Normal Mode Approach 3471

Biophysical Journal 94(9) 3461–3474



CGNM with surface water to MD simulations including bulk

water indicate that bulk water molecules behave more like

free water, acting to decrease the vibrational frequency of

protein dynamics in a temperature-dependent manner (70). A

recent experimental study of the influence of hydration on

protein dynamics gives direct support to our results. Qua-

sielastic neutron and light-scattering experiments show that

adding an initial hydration layer (h � 0.2) increases the fast

vibrational modes. Interestingly, further increasing the hy-

dration level (h . 0.2) significantly activates slower pro-

cesses (78). Therefore, these experimental observations are in

good agreement with our simulation results showing the

different contributions of solvent molecules to protein dy-

namics (70,84,85).

The poor overlap in the eigenvectors from various NMA

approaches (no water or surface water only) with the MD

simulation results (surface water and bulk water), especially

for the low-frequency modes (25 cm�1), is not surprising. A

previous study using a jump-among-minima model, which

divides protein motions into intra-substate motions and inter-

substate jumps based on a multiple local minima model of the

energy surface, generated a much better overlap with MD

results than does NMA (86). Moreover, a mixture of har-

monic NMA plus diffusive Brownian dynamics has been

proven to be effective in reproducing the results of MD

simulations and experimental observations (55,87). These

studies suggest that the harmonic approximation of the pro-

tein energy surface and the neglect of solvent limits the

ability of NMA approaches, including AANM, BNM, and

CGNM, to reproduce the directionality of intrinsic anhar-

monic protein dynamics in the native state (54,84). However,

for modes beyond 25 cm�1, there is a gradual increase in the

fidelity of CGNM and BNM, especially for CGNM with a

layer of surface water. It is interesting that this frequency

region is the same spectrum covered by terahertz absorption

spectroscopy (1 THz¼ 33 cm�1), where experimental results

showed that solvation tends to enhance protein dynamics

(88–90). Therefore, CGNM provides a convenient tool for

modeling the contributions of surface water into protein dy-

namics at these higher frequencies. In principle, CGNM

could be expanded to incorporate the effect of bulk solvent

molecules in conjunction with other methods, such as the

Langevin Model (71).

Thus far, the results presented for the HCN2 CNBD are for

the cyclic-nucleotide bound state of the protein. However, we

obtained similar results for the unliganded protein, using a

representative snapshot from a 20-ns-long MD simulation

with cAMP removed as the starting structure (Fig. S4–S6).

One theoretical application of a complete set of eigenvectors

and eigenvalues from NMA is the estimation of the config-

urational entropy (58,59). Taking advantage of the CGNM

results for the unliganded protein versus the cAMP-bound

protein in the subspace of C-a atoms, we estimated the en-

tropy change of C-a atoms upon cAMP binding to be�127.8

J/mol without water or �174.3 J/mol with surface water

(Table 2). Both values should be smaller than the estimate

involving all atoms. However, the direction of the changes

from the two independent calculations is consistent with

previous MD results and the concept that ligand binding for

hydrophilic or charged ligands (cAMP carries a negative

charge) usually involves a reduction in the configurational

entropy of the protein (91–93). Further improvements of the

computational routine will focus on reducing the memory

cost and use of more efficient routines for sparse matrix

manipulation. With advances in computational algorithms,

more memory-efficient and high-performance (sequential or

parallel) routines could further improve this method and thus

widen its application to more complex systems.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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