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ABSTRACT: There are few enantioconvergent reactions in which
racemic substrates bearing multiple stereochemical features are
converted into products with high levels of diastereo- and
enantiocontrol. Here, we disclose a process for the highly enantio-
and diastereoselective syntheses of medium ring lactams via an
intramolecular counterion-directed C-alkylation reaction. The
treatment of racemic biaryl anilides that exist as a complex mixture
of enantiomers and diastereoisomeric conformers by virtue of
multiple axes of restricted rotation with a quinidine-derived ammonium salt under basic conditions affords medium ring lactams
bearing elements of both axial and point chirality via an enolate-driven configurational relaxation process. Thermal equilibration of
the syn- and anti-product diasteroisomers has demonstrated that the barriers to bowl inversion are >124 kJ mol-1. We propose that
the chiral ammonium salt differentiates between a complex and rapidly equilibrating mixture of enolate and rotational isomers,
ultimately leading to highly enantioselective alkylative ring closure. This dynamic and enantioconvergent process offers an
operationally simple approach to the synthesis of valuable chiral medium ring lactams for which there are few catalytic and
enantioselective approaches.

■ INTRODUCTION
Enantioconvergent catalytic reactions are those in which a
racemic starting material is converted directly into an
enantioenriched product. There are numerous examples of
such transformations that convert racemic substrates bearing a
single stereochemical element into the products with high
levels of enantiocontrol.1,2 However, there are relatively few
examples in which racemic substrates bearing multiple
stereochemical features are converted into complex products
with diastereo- and enantiocontrol. Zhou and co-workers have
demonstrated that a racemic and diastereoisomeric mixture of
α,α′-substituted cyclopentanones can be hydrogenated to a
single product with high e.r. and d.r. in the presence of a chiral
ruthenium complex (Figure 1a).3 Zhao and co-workers
employed a chiral iridium complex in conjunction with a
chiral phosphoric acid catalyst to enable a hydrogen borrowing
protocol for the dynamic enantioselective amination of an
isomeric mixture of secondary alcohols with almost complete
stereocontrol.4 Kalek and Fu5 have shown a chiral nickel
catalyst can enable enantioconvergent sp3−sp3 cross coupling
from two racemic coupling partners (Figure 1b),6 and Jiang
and co-workers have demonstrated enantioselective photo-
redox radical−radical coupling.7 We were interested in whether
we could apply an enantioconvergent approach to the synthesis
of biaryls bearing restricted rotation about the aryl−aryl axis.
With the recognition of the increasing importance of the field
of axial chirality, there has been an explosion of interest in
enantioselective methods for the synthesis of these mole-
cules.8−12 However, few of these methods are applicable to the

synthesis of biaryls that are embedded in rings, despite these
motifs being observed in potent bioactive natural products and
medicinally relevant compounds.13−16

This may reflect the inherent challenges of constructing
rotationally restricted biaryls, coupled with the difficulties of
forming medium ring compounds with their transannular, large
angle, and torsional strain.17−21 In addition, while progress has
been made in the enantioselective synthesis of medium ring
heterocycles,22−25 there are few enantioselective catalytic
methods for the synthesis of medium ring biaryl com-
pounds.26−28 We reasoned that a conceptually interesting
approach to this class of compounds would be via the base
mediated ring-closing C-alkylation of biaryl anilides (Figure
1c). This poses a number of challenges, as anilides are known
to possess significant barriers to rotation about the N-aryl bond
when appropriately substituted.29−31 In addition, the potential
for restricted rotation about the biaryl and amide bonds means
that these materials exist as a complex mixture of enantiomers
and diastereoisomeric conformers. Curran and co-workers33

have elegantly demonstrated that the barrier to rotation of
anilides is very significantly reduced upon enolate formation32
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due to an increased facility for nitrogen pyramidalization in the
cross conjugated amide enolate. We postulated that
exploitation of this effect could enable rapid conformational
and enolate equilibration of our substrates prior to ring closure

and that a chiral counterion could differentiate between
members of this dynamic ensemble, leading to an enantio-
convergent ring closure with control of the axial and point
chirality elements. We have previously demonstrated that a
chiral counterion is able to differentiate between equilibrating
anions in enantioselective O-alkylation reactions,34 and this
tenet extends that observation.35

■ RESULTS AND DISCUSSION
A model anilide substrate 1 was constructed in a five-step
procedure from N-methyl iodoaniline that included a
palladium mediated cross coupling of 2-hydroxybenzene
boronic acid hemiester with palladium acetate, N-acylation to
introduce the β-keto amide functionality and transformation of
a primary alcohol into a bromide leaving group (see
Supporting Information p 9). Model substrate 1 is point chiral
and racemic and exists as a complex mixture of rotameric
forms, as demonstrated by 1H NMR spectroscopy. With a
model substrate in hand, we commenced our investigations of
the cyclization reaction by examining the base catalyzed C-
alkylation process (Table 1). When the substrate was stirred
with stoichiometric LiHMDS at RT, a single diastereoisomer
of (racemic) product 2 was produced in 66% yield. In contrast,
we observed that treatment with tetrabutylammonium
ammonium bromide and KOH led to an effective cyclization
but favored a different diastereoisomer (d.r. 4:1). This change
in diastereoselectivity is likely a consequence of deprotonation
and cyclization being faster than conformational equilibration
in the presence of stoichiometric LiHMDS, so the diaster-
eoselectivity more closely reflects the geometry attained from
the kinetic and irreversible deprotonation. In contrast, with a
reversible equilibrium deprotonation in the presence of the
ammonium salt, equilibration may be faster than cyclization,

Figure 1. Enantioconvergent syntheses from substrates bearing
multiple stereochemical features. (a) Enantioconvergent catalysis via
stereomutation. (b) Enantioconvergent catalysis via stereoablation.
(c) This work: A counterion mediated approach to enantioenriched
dibenzolactams via an enantioconvergent C-alkylation.

Table 1. Optimization of the Ring Closing Reactiona

entry catalyst base solvent substrate yield (%)b d.r.c e.r.d

1 LiHMDS THF 1 66 <1:20
2 Bu4NBr KOH (aq.) toluene 1 78 4:1
3 3 K3PO4 (aq.) toluene 1 11 75:25 73:27
4 3 Cs2CO3 (aq.) toluene 1 29 85:15 90:10
5 4 Cs2CO3 (aq.) toluene 1 19 95:5 92:8
6 4 Cs2CO3 (aq.) benzene 1 18 93:7 92:8
7 4 Cs2CO3 (aq.) Et2O 1 10 88:12 90:10
8 4 Cs2CO3 (aq.) TBME 1 11 91:9 91:9
9 4 Cs2CO3 (aq.) CPME 1 25 95:5 92:8
10 4 KOH (aq.) CPME 1 >99 95:5 90:10
11 4 KOH (aq.) CPME 5 92 92:8 93:7
12 6 KOH (aq.) CPME 5 86 95:5 93:7
13 7 KOH (aq.) CPME 5 90 94:6 93:7
14 8 KOH (aq.) CPME 5 92 97:3 97:3

aReaction conditions: substrate 1/5 (0.05 mmol, 1.0 equiv), catalyst (0.1 equiv), and base (50% w/w aq.) in 1 mL of solvent stirred for 12−17 h at
23 °C. CPME = cyclopentyl methyl ether; TBME = tert-butylmethyl ether. bYields determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as internal standard. ce.r. of major diastereoisomer determined by stationary phase HPLC. dd.r. determined by 1H NMR
spectroscopy.
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and so, the diastereoselectivity reflects the relative rates of
cyclization of the (rotameric) transition states, leading to
different diastereoisomers.
Subsequently, we turned our attention to the enantiose-

lective process and were pleased to observe that treatment with
N-benzylquinidinium chloride 3 in the presence of potassium
phosphate affected the desired cyclization, albeit in poor yield
and selectivity (Table 1, entry 3). A change to cesium
carbonate as base (entry 4) led to an encouraging increase in
selectivity (85:15 d.r.; 90:10 e.r.) with a modest 29% yield.
Selectivity was further improved with the exploration of a
different N-benzylic group in 4 at the expense of yield. The
exploration of a range of different solvents with catalyst 4 was

mostly ineffective (entries 5−9), but a switch to potassium
hydroxide in cyclopentyl methyl ether led to a striking increase
in yield (to >99%) without significantly compromising
selectivity (95:5 d.r.; 90:10 e.r., entry 10). At this stage, we
probed how the leaving group could also affect reaction
efficacy, recognizing that the relative rates of the ring closure
and the interconversion of the rotameric forms of the substrate
could have an impact on selectivity.
The change from a bromide leaving group to a

methanesulfonate in 5 lead to a small increase in
enantioselectivity (to 93:7 e.r., entry 11), and hence, we
subsequently explored how the nature of the N-pendant group
on the catalyst could influence enantioselectivity with a focus

Table 2. Scope of Enantioconvergent Ring Closing Reactiona

aReaction conditions: substrate (0.1 mmol), catalyst 8 (0.1 mmol), KOH (50% aq. (w/w) 0.4 mmol), CPME (2 mL), 12−17 h, 23 °C. Yields are
for isolated and purified material. The e.r. of the major diastereoisomer was determined by chiral stationary phase HPLC. The d.r. was determined
by 1H NMR spectroscopy. bThe e.r. and structure shown are for the minor diastereoisomer (the e.r. for the major diastereoisomer = 44:56).
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on this substrate. We observed that changing from N-3,4,5-
trifluorobenzyl (in 4) to N-3,5-difluorobenzyl (in 6) led to an
incremental increase in diastereoselectivity (to 95:5 d.r.), and
the application of catalysts with a free phenolic group (as in 7)
gave very similar results (entries 11−13).
Finally, we observed that catalyst 8 in which the quinoline

was functionalized with an O-diphenylmethyl group led to a
further increase in selectivity (to 97:3 e.r. and 97:3 d.r., entry
14). In all cases, the minor diastereoisomer was produced in a
significantly lower e.r. The absolute configuration of 2 was
unambiguously determined by X-ray crystallography (see
CCDC 2071682 for the crystal data).We were confident we
had discovered the best catalyst for this transformation, and
hence, we explored the substrate scope by initially examining
the substitution on the aryl ring distal to the lactam nitrogen
(Table 2). Electron-donating groups such as 4-methyl and 4-
methoxy were well tolerated, and enantioenriched lactams 9
and 10 were obtained in excellent yields and selectivities (9:
95.5:4.5 e.r. and 93:7 d.r.; 10: 95.5:4.5 e.r. and 95:5 d.r).
Substrates with halogens in this position, such as fluorine and
chlorine, were also transformed smoothly and selectively into
the desired lactam products 11 (98:2 e.r.; 98:2 d.r.) and 12
(97.5:2.5 e.r.; 96:4 d.r.). Substituents in the 5-position such as
fluorine and bromine have minimal impact on the broad, high
selectivity observed; the corresponding medium ring products
13 (97.5:2.5 e.r.; 96:4 d.r.) and 14 (97:3 e.r.; 97:3 d.r.) were
isolated in good yields with excellent e.r. and d.r. We also
observed good stereocontrol with the cyclization of a substrate
bearing fluorine in the 3-position of the distal arene chain to
afford product 15 (95.5:4.5 e.r.; 92:8 d.r.). We next examined
the impact of the introduction of substituents on the arene
proximal to the lactam nitrogen and were able to demonstrate
that both electron-rich and electron-deficient groups were well
tolerated. In general, the yield and stereoselectivity of the
cyclization was insensitive to the identity of the substituent in
the 4′-position. We observed that electron-rich substituents
including methoxy (16, 98:2 e.r.; 97:3 d.r.; 86% yield) and
methyl (17, 97.5:2.5 e.r.; 97:3 d.r.; 74% yield) were tolerated
with high stereoselectivity and yields. Substrates containing

fluorine (18, 98.5:1.5 e.r.; 94:6 d.r.; 90% yield) or chlorine (19,
97:3 e.r.; 92:8 d.r.; 98% yield) also led to successful and
selective cyclizations. The cyclization is tolerant of substitution
in the 5′-position; trifluoromethoxy 20 (98:2 e.r.; 93:7 d.r.;
63% yield), methyl 21 (95.5:4.5 e.r.; 97:3 d.r.; 95% yield),
fluorine 22 (97:3 e.r.; 86:14 d.r.; 84% yield), and chlorine 23
(97.5:2.5 e.r.; 93:7 d.r.; 99% yield) containing-substrates were
all successfully transformed in this catalytic transformation
with high levels of enantio- and diastereoselectivity. The
introduction of strong conjugating 5′-electron withdrawing
groups such as nitro and cyano was also investigated;
substrates containing these groups cyclized in moderate yields
and high levels of enantioselectivity to afford 24 (37:63 d.r.;
55% yield; 97.5:2.5 e.r. for minor diastereoisomer; 44:56 e.r.
for major diastereoisomer) and 25 (70:30 d.r.; 62% yield;
96.5:3.5 e.r. for major diastereoisomer). These substrates also
cyclized with significantly diminished d.r., which may reflect
modulation of the starting substrate rotational barriers. It has
been demonstrated that conjugating electron withdrawing
groups para to the nitrogen increase the barriers to N−C
rotation in axially chiral anilines.36,37 In anilides, para-electron
withdrawing groups have been shown to reduce the barrier to
amide N−CO rotation very significantly.38,39 In 24, the barrier
to N−Ar rotation is likely to be much higher than in a
compound such as 2. This is a consequence of ground state
stabilization through delocalization of the (anilide) nitrogen
with the conjugating nitro group. This will have an impact on
the N−Ar rotational barrier in the reactive enolate
intermediate that will likely slow down conformational
relaxation relative to the rate of ring closure, resulting in the
lower observed diastereoselectivity. Additionally, the installa-
tion of substituents on both aryl rings is also possible: 26 (99:1
e.r., 95:5 d.r., and 77% yield) and 27 (98.5:1.5 e.r., 95:5 d.r.,
and 86% yield) were obtained successfully with excellent
stereoselectivities and good yields.
The configurational stability of the related dibenzolactam

compounds35 has been demonstrated by Natsugari and co-
workers,41 and hence, we were confident that the products of
our cyclization would be unlikely to change relative or absolute

Figure 2. Conformation and configuration of dibenzolactam products. (A) Structures of anti-2 (CCDC 2071682) and syn-2 (CCDC 2071683)
determined by X-ray diffraction. (B) Stereochemical relationships between all isomers of cyclic products; dotted lines indicate processes that do not
occur under thermal conditions. (C) Chiral stationary phase HPLC traces: (i) enantioenriched products from a chiral catalyst mediated reaction (t
= 0), 98:2 d.r. (anti/syn), 99:1 e.r. (anti), and 54:46 e.r. (syn); (ii) ratio of isomers after thermal equilibration (270 min at 363 K), 15:85 d.r. (anti/
syn), 96.5:3.5 e.r. (anti), and 96.5:3.5 e.r. (syn).
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configuration under the reaction conditions. This is consistent
with the observation that there was no change in e.r. or d.r. for
2 in toluene solution at 298 K for several weeks. The X-ray
crystal structure (Figure 2A) of anti-2 demonstrates that the
biaryl lactam adopts a deep bowl-like arrangement in which the
two aryl rings are twisted out of conjugation (torsion angle of
59°) and the N-methyl amide populates an E-configuration.
The smaller C7 methyl group occupies a pseudoaxial position
with the methyl ester substituent in an equatorial arrangement.
The X-ray crystal structure of syn-2 is relatively similar with the
torsion between the aryl rings being slightly larger (62.8°). The
amide is also E-configured by virtue of the overall bowl
geometry, which is slightly twisted from an optimal boat
conformation, likely to minimize eclipsing strain between the
two sp3 carbons in the ring. Although 2 is, in principle, a two-
axis system by virtue of the N-aryl and biaryl−biaryl bonds, we
anticipated that inversion of the bowl shape of the eight
membered ring would occur via a concerted process; this is
consistent with the mechanism proposed for a related system
by a detailed computational study.40 We assumed that the all-
carbon quaternary stereocenter adjacent to the lactam carbonyl
would be invariant under thermal conditions, which precludes
the enantiomerization processes pictured (Figure 2B). Thus,
we anticipated that we would observe the (independent)
interconversion of two pairs of diastereoisomers under thermal
equilibration.
To probe the magnitude of the barriers to rotation, we

heated an enantio- and diastereoenriched m-xylene solution of
2 (starting composition: 98:2 d.r. (anti/syn); 99:1 e.r. (anti);
56:44 e.r. (syn)) to 90 °C and followed the thermal
interconversion of these compounds over time with chiral
stationary phase HPLC.42−44 The 98:2 (anti/syn) ratio of
diastereoisomers was converted to an equilibrium mixture of
15:85 (anti/syn) in 270 min, and from this, we can calculate
the barriers to bowl inversion to be ΔG363 K

‡ = 124.1 kJ mol−1
(for the anti- to syn-conversion) and ΔG363 K

‡ = 129.8 kJ mol−1
(for the syn- to anti-conversion).45 This appears to be broadly
consistent with our original observation; barriers of this
magnitude mean that interconversion at room temperature is

practically nonexistent. The syn-isomer in which the methyl
group populates a pseudoequatorial position is the most stable,
which is also consistent with other observations of the relative
size of a methyl ester vs a methyl group.46 A consequence of
this equilibration is an increase in the population of syn-2 (and
a decrease in that of anti-2); while this is reflected in the
diastereoisomeric ratio above, syn-2 is also enantiomeric with
ent-syn-2, which means that the e.r. of the syn-isomer increases
from 54:46 to 96.5:3.5 (Figure 2C). As the total
enantioselectivity in the system remains constant throughout
the equilibration process, we observe a compensatory decrease
in the e.r. of anti-2 from the 99:1 starting point to the same
enantiomeric ratio of 96.5:3.5.
To gain some insight into the mechanism of this

enantioselective transformation, we probed the rotameric
preferences of a model system 28 and the cyclization precursor
mesylate 30 (Figure 3). Model compound 28 incorporates a
diagnostic para-fluoro substituent on the biaryl ring but does
not possess the activated ortho-hydroxymethyl substituent
needed for cyclization. 28 has 4 signals in the proton
decoupled 19F NMR spectrum, consistent with the anticipated
slow rotation of the N-aryl and the amide N−CO bonds. Of
the four rotameric species, two existed with very low
population (>20:1) and were barely visible in the 19F
spectrum, suggestive of high energy barriers to reach these
conformational states. The NOE studies performed at 253 K
where interconversion between the rotamers could not be
detected indicated the two major species correlated with
conformers in which the amide C�O was anti- to the aryl
ring,47,48 and hence, the minor forms are anticipated to
correspond to the carbonyl being syn to the aryl group. We
employed variable temperature 19F 1D selective exchange
spectroscopy (EXSY) NMR experiments to estimate the
barrier to rotation of the N-aryl bond as 79.6 kJ mol−1 (see
Supporting Information p 73 for details); this corresponds to a
half-life of approximately 11 s at 298 K.
Upon formation of the enolate of 29 with stoichiometric

LiHMDS, the spectrum simplifies to a single signal at −118
ppm. Low temperature 19F NMR experiments did not lead to

Figure 3. Proposed mechanism of enantioconvergent ring closure. (A) Partial proton-decoupled 19F NMR spectra of (i) model substrate 28
showing 4 peaks; (ii) model lithium enolate 29 derived from 28 demonstrating how the rotational profile changes upon deprotonation; (iii)
cyclization precursor 30 showing 8 peaks. (B) Proposed mechanism of equilibrium enolate-driven configurational relaxation to enable rapid
conformational exchange and subsequent counterion-mediated enantioselective cyclization.
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decoalesence of the signal at temperatures as low as 223 K,
indicating a very substantial decrease of the barriers to
interconversion. The real system is significantly more complex:
there are 8 signals in the proton decoupled 19F NMR of
mesylate 30 consistent with the presence of 8 isomers (plus
their mirror images); this is what would be expected from the
restricted rotation about three bonds (N-aryl, aryl−aryl, and
the amide N−CO) plus the presence of the stereogenic center.
The complexity of this system made accurate determination of
all of three rotational energy barriers intractable. A relatively
low-energy interconversion could be monitored by 2D 19F
EXSY experiments carried out at 253−303 K that indicated
barriers ΔG298

‡ to be in the range of 63−69 kJ mol−1. This is
likely to be the aryl−aryl rotation with the increase in this
specific barrier in 30 vs 28, a consequence of the introduction
of the ortho-substituent on the biaryl system. This ortho-
substitution is likely to also increase the barrier of the N-aryl
rotation, but higher temperature studies via 19F NMR to probe
this presented a complex pattern of peak broadening without
complete signal coalescence at temperatures up to 358 K. This
suggests that the remaining two interconversion processes are
of much higher energy, although precise barriers could not be
determined (see Supporting Information p 77 for details).
From these data, we are able to suggest a plausible

mechanism for the cyclization reaction (Figure 3B). The
mesylate 5 exists as a racemic mixture of enantiomers and
enantiomeric conformers. In the presence of base and the
ammonium salt, reversible deprotonation of the 1,3-dicarbonyl
ablates the stereogenic center; formation of this enolate
disrupts the conjugation in the amide, enabling pyramidaliza-
tion of the aniline nitrogen and lowering the barrier to rotation
about the N-aryl bond very significantly, leading to rapid and
reversible configurational and conformational equilibration
under the reaction conditions. We postulate that the chiral
ammonium counterion is able to select from this rapidly
equilibrating ensemble to enable highly diastereo- and
enantioselective cyclization, leading to the observed medium
ring products.

■ CONCLUSION
We have demonstrated that the highly enantio- and
diastereoselective synthesis of axially chiral medium rings can
be accomplished through an enantioconvergent counterion
mediated cyclization. In this stereodynamic process, the
formation of an enolate enables rapid interconversion of
multiple isomeric forms of the starting substrate, between
which the chiral counterion differentiates in the cyclization
step. This process offers a general approach to ring-constrained
biaryls and will likely find an application in materials and
medicinal chemistry.
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