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Abstract 

Background:  Not only glycolysis but also lncRNAs play a significant role in the growth, proliferation, invasion and 
metastasis of of ovarian cancer (OC). However, researches about glycolysis -related lncRNAs (GRLs) remain unclear in 
OC. Herein, we first constructed a GRL-based risk model for patients with OC.

Methods:  The processed RNA sequencing (RNA-seq) profiles with clinicopathological data were downloaded from 
TCGA and glycolysis-related genes (GRGs) were obtained from MSigDB. Pearson correlation coefficient between 
glycolysis-related genes (GRGs) and annotated lncRNAs (|r| > 0.4 and p < 0.05) were calculated to identify GRLs. After 
screening prognostic GRLs, a risk model based on five GRLs was constructed using Univariate and Cox regression. 
The identified risk model was validated by two validation sets. Further, the differences in clinicopathology, biological 
function, hypoxia score, immune microenvironment, immune checkpoint, immune checkpoint blockade, chemo-
therapy drug sensitivity, N6-methyladenosine (m6A) regulators, and ferroptosis-related genes between risk groups 
were explored by abundant algorithms. Finally, we established networks based on co-expression, ceRNA, cis and trans 
interaction.

Results:  A total of 535 GRLs were gained and 35 GRLs with significant prognostic value were identified. The prognos-
tic signature containing five GRLs was constructed and validated and can predict prognosis. The nomogram proved 
the accuracy of the model for predicting prognosis. After computing hypoxia score of each sample by ssGSEA, we 
found patients with higher risk scores exhibited higher hypoxia score and high hypoxia score was a risk factor. It was 
revealed that a total of 21 microenvironment cells (such as Central memory CD4 T cell, Neutrophil, Regulatory T cell 
and so on) and Stromal score had significant differences between the two groups. Four immune checkpoint genes 
(CD274, LAG3, VTCN1, and CD47) showed disparate expression levels in the two groups. Besides, 16 m6A regulators 
and 126 ferroptosis-related genes were expressed higher in the low-risk group. GSEA revealed that the risk groups 
were associated with tumor-related pathways. The two risk groups were confirmed to be sensitive to several chemo-
therapeutic agents and patients in the low-risk group were more sensitive to ICB therapy. The networks based on 
co-expression, ceRNA, cis and trans interaction provided insights into the regulatory mechanisms of GRLs.

Conclusions:  Our identified and validated risk model based on five GRLs is an independent prognostic factor for 
OC patients. Through comprehensive analyses, findings of our study uncovered potential biomarker and therapeutic 
target for the risk model based on the GRLs.
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Introduction
Ovarian cancer (OC) is a gynecological tumor with high 
morbidity and mortality and about 150,000 women die 
of OC each year [1]. The occurrence and development 
of OC is a multi-system, multi-step cellular biochemical 
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process, which is regulated by a variety of cytokines and 
signaling pathways [2]. Due to the lack of typical clinical 
symptoms in the early stages of OC, 75% of OC patients 
are diagnosed at an advanced stage, and more than 70% 
of patients relapse after treatment [3]. Therefore, how to 
diagnose early, effectively treat and improve the progno-
sis of OC patients is an urgent problem to be solved.

Tumor cells are mainly metabolized by glycolysis 
regardless of the presence of oxygen. Large amounts of 
glucose are consumed with the production of lactic acid. 
This phenomenon is called aerobic glycolysis or Warburg 
effect [4]. Long non-coding RNA (lncRNA) is defined as a 
large class of non- protein-coding, regulatory RNAs with 
molecules longer than 200 nucleotides, which play key 
roles in tumorigenesis and progression [5, 6]. In recent 
years, more and more studies have shown that lncRNA 
plays a key regulatory role in tumor metabolism and 
is involved in glucose metabolism pathway [7, 8]. For 
instance, lncRNA ANRIL up-regulates the expression 
of glucose transporter 1(GLUT1) and LDHA, thereby 
increasing glucose uptake and promoting the progression 
of nasopharyngeal carcinoma [9]. LINC00092 directly 
binds to PFKFB2 to enhance glycolysis and ultimately 
promote tumor genesis and development [10]. In bladder 
cancer, lncRNA UCA1 is overexpressed and promotes 
glycolysis by upregulation of hexokinase 2 (HK2), and 
also promotes aerobic glycolysis [11]. However, lncRNAs 
involved in the glycolysis reprogramming of OC remain 
unclear.

Therefore, in our study, we found five glycolysis-related 
lncRNAs (GRLs) with significant prognostic value 
from TCGA dataset. A GRL-signature with prognostic 
value was developed. In addition, we identified differ-
ences in enrichment pathways, immune microenviron-
ment, immune checkpoints, m6A regulatory factors, 
and ferroptosis-related genes between risk groups. The 
networks based on co-expression, ceRNA, cis and trans 
interaction provided insights into the regulatory mecha-
nisms of GRLs.

Material and methods
Data downloading and pretreatment
We downloaded the clinical data with RNA sequencing 
profiles of OC patients from TCGA dataset [12]. The 
Ensemble expression matrix was transformed into Gene 
Symbol expression matrix and compared it with the posi-
tion of lncRNA chromosome in GENCODE database to 
identify lncRNAs [13]. A total of 274 glycolysis-related 
genes (GRGs) were obtained from MSigDB database [14]. 
We screened differentially expressed GRGs and anno-
tated lncRNAs using limma package (P < 0.05, |logFC| > 1) 
[15]. Pearson correlation coefficients between differential 

GRGs and lncRNAs were computed to filtrate GRLs 
(|r| > 0.4, P < 0.05) using cor function of R.

Development of the signature
After screening prognostic GRLs through Univariate Cox 
regression (P < 0.05) [16], the LASSO Cox regression [17] 
from glmnet package of R [18] and 20 times cross-valida-
tion analysis was employed to filtrate optimal combina-
tion of GRL markers. A risk score model for OC patients 
was constructed based on following formula:

In the risk score (RS) formula, βlncRNA meant the 
regression coefficient of each lncRNA calculated in the 
multivariate Cox regression analysis and ExplncRNA repre-
sented the expression value of each lncRNA in the sam-
ple. Whereafter, the RS of each OC patient was calculated 
and the calculated median RS was used as the critical 
value to further divided the OC patients into high-risk 
and low-risk groups (low-risk group<median, high-risk 
group ≥ median). Furthermore, in order to verify the 
accuracy of the signature in predicting the prognosis, all 
samples (total set, TS) were randomly and evenly divided 
into two validation sets (VS1 and VS2).

We used the timeROC package in the R language to 
draw ROC curves to evaluate the predictive ability to 
predict 1, 2, 3, and 5 years of survival. Besides, a visual 
nomogram was constructed and verified by the calibra-
tion curve to determine the accuracy of the risk model 
for serving as an independent prognostic factor.

Characteristics and application of the signature
To explore the relationship and degree of correlation 
between potential GRGs and biological pathways in OC, 
biofunctional analysis was performed on potential GRGs 
using DAVID [19, 20].

Considering that hypoxic microenvironment is closely 
related to aerobic glycolysis of OC, we downloaded a col-
lection of hypoxia-related genes (HRGs), HALLMARK 
HYPOXIA, from MSigDB. The enrichment fraction of 
hypoxia pathway in different samples was calculated 
based on ssGSEA arithmetic from GSVA of R to obtain 
hypoxia scores [21]. Simultaneously, the expression levels 
of immune checkpoint genes (CD274, CD47, HAVCR2, 
LAG3, SIRPA, TNFRSF4 and VTCN1), m6A regula-
tors [22], and ferroptosis-related genes (FRGs) [23] were 
extracted to contrast their expression differences in risk 
groups by intergroup T test.

The immune microenvironment is also closely related 
to the occurrence and development of OC. According 
to the expression data of the OC samples, the immune 
and stromal scores were estimated by ESTIMATE to 

Risk score =
∑

βlncRNA × ExplncRNA
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represent the presence of stroma and immune cells 
[24]. Based on ssGSEA [25], the enrichment fraction of 
28 immune cells was calculated to represent the relative 
abundance of each TME-infiltrated cell in OC samples. 
Moreover, three algorithms CIBERSORT [26, 27], MCP-
counter [28], and xCell [29], were wielded to compare the 
difference in the proportion of various immune cells in 
different risk groups.

In order to explore the relevant regulatory mechanism 
of this risk prediction model, we established networks 
based on co-expression, ceRNA, cis and trans interac-
tion. GRG-GRL co-expression (|r| > 0.4, P < 0.05) net-
work was constructed and visualized by Cytoscape [30]. 
The targeted glycolysis-related mRNAs by corresponding 
miRNAs were speculated by miRWalk [31]. Further, we 
synthesized the results of six commonly used databases 
(miRWalk, Microt4, miRanda, miRDB, RNA22 and Tar-
getscan) to obtain the miRNA-GRG relationship pair if 
the predicted miRNA-GRG relationship pair appeared 

in ≥5 databases. The miRNAs targeted by correspond-
ing GRLs of the risk model were speculated by miranda 
(v3.3a, Score > =140, Energy<= − 20) [32]. GRLs and 
GRGs regulated by the same miRNA with positive co-
expression relationship were defined as ceRNAs mutu-
ally. Based on previous literature, we predicted cis [33] 
and trans [34] interaction between GRLs and GRGs.

Moreover, the potential response to immune check-
point blockade (ICB) was predicted with TIDE algorithm 
[35]. We extracted chemotherapy drugs from GDSC 
database [36] and evaluated the IC50 level by using 
pRRophetic [37].

Statistical analysis
R packages (v4.0.2) and GraphPad Prism (v8.0) were used 
for statistical analysis. T test was used for inter-group 
comparison. Pearson correlation analysis was conducted 
to analyze the correlation between GRGs and lncRNAs. 
Univariate and multivariate Cox regression analysis was 

Fig. 1  Flow diagram of our study
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conducted to analyze the related factors affecting the 
overall survival of OC patients. P < 0.05 was considered 
statistically significant.

Results
Figure 1 exhibited the flowchart we created for our entire 
study.

Differential and enrichment analysis
A total of 116 differential GRGs (Fig.  2A) and 1145 
exegetical lncRNAs (Fig.  2B) were identified. In addi-
tion, 62 GO BP and 33 KEGG pathways were enriched 
based on the 116 GRGs (Additional file 1: Table S1). The 
enrichment pathways were ranked according to p value, 
and the top 20 was selected for display (Fig. 2C-D). The 
result showed that most of these differential GRGs were 
enriched in metabolic pathways. In addition, the identi-
fied GRGs were associated with several important bio-
logical processes in tumor genesis and development 
observably, such as, response to hypoxia, AMPK signal-
ing pathway, HIF-1 signaling pathway, and so on. This 
further proves that glycolysis is closely related to tumor 
hypoxic microenvironment.

Construction and validation of the risk model based 
on GRLs
Univariate Cox regression and K–M survival analy-
sis was performed on 535 GRLs acquired from Pear-
son correlation analysis (|r| > 0.4, p < 0.05) to excavate 
GRLs with significant prognosis (P < 0.05). A prognos-
tic GRL-signature was constructed according to the 
LASSO Cox analysis of 35 prognostic GRLs obtained 
and a total of five GRLs were selected to build the risk 
model (Table  1). The results showed that all the five 
GRLs were protective factors with HR < 1 (Fig.  3A). A 
heatmap of the associations between the expression 
levels of the five GRLs and clinical features illustrated 
that the expression of the expressions of the five GRLs 
decreased with increasing risk scores (Fig.  3B). The 
K–M survival curves confirmed that higher expression 
of them were associated with better OS of OC patients 
(Fig. 3C-G).

The λ selection diagram was shown in Fig.  4A-
B. The OC patients were divided into two risk sub-
groups based on the mean of RSs. The K–M survival 
curves revealed that OS of the high-risk group was 
markedly lower than that of the low-risk group in TS 

Fig. 2  Differential and enrichment analysis. A, B Volcano map of differentially expressed mRNAs (A) and lncRNAs (B). Red triangle: up regulated; 
blue square: down regulated. C GO analysis. The color scale represented p value and the histogram size indicated count. D KEGG analysis. The color 
scale represented p value and the histogram size indicated count
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(Fig.  4C), VS1 (Fig.  4D), VS2 (Fig.  4E), which indi-
cated the accuracy of the risk model in predicting sur-
vival status. The time-dependent ROC curve proved 
that the risk assessment model was relatively stable in 
predicting 1-year, 2-year, 3-year and 5-year survival 
for OC patients (The AUC for survival was over 0.6, 
Fig. 4F-H).

The univariate and multivariate Cox regression 
analysis of clinical features and the risk model dem-
onstrated that “tumor residual disease” and risk model 
was an independent prognostic factor for OC patients 
(Fig.  5A-B). A nomogram was further constructed 
based on “tumor residual disease” and risk model 
(Fig. 5C). The calibration curve (the closer it was to 45 
degrees or the gray lines in the graph, the better the 
fitting effect) was drawn to prove the accuracy of the 
model (Fig. 5D).

In conclusion, our risk model was a stable, independent 
prognostic factor for OC.

Functional pathways of the risk groups
Functional pathway enrichment analysis based on GSVA 
algorithm showed that a total of 66 pathways exhibited 
significant differences between the two risk subgroups 
(Additional  file  2: Table  S2). The KEGG pathways were 
ranked according to the p value, and the top ten were 
selected for display (Fig. 6A). According to GSEA enrich-
ment analysis, four pathways were enriched in the high-
risk group (Fig.  6B), and six pathways were enriched in 
the low-risk group (Fig. 6C).

Hypoxia score analysis
Considering that the aerobic glycolysis of tumor is closely 
related to its hypoxic microenvironment, the hypoxia 
enrichment score of each sample was calculated. Interest-
ingly, we found that patients in the high-risk group had a 
higher hypoxia score (Fig. 7A). According to the median 
of hypoxia scores, the OC patients were divided into two 
subgroups. The K–M survival curves revealed that OS of 
the patients with high hypoxia score was markedly lower 
(Fig.  7B), indicating that high hypoxia score and high-
risk score were both risk factors (Fig.  7C). Between the 
two risk groups, a total of 76 differential hypoxia-related 
genes were received (Additional file 3: Table S3) and the 
top 20 were displayed in Fig. 7D.

Table 1  The coefficients of the five GRLs

GRL coef logFC

AC133644.2 −0.149267499 4.214519614

CTD-2396E7.11 −0.250907132 6.5602714

CTD-3065 J16.9 −0.235361863 1.732399016

LINC00240 −0.227486983 1.732645895

TMEM254-AS1 −0.2997883 −1.568258405

Fig. 3  Features of the five GRLs. A Forest plot of the prognostic ability of the nine optimal GRLs. All the five GRLs were protective factors with HR < 1. 
B Heatmap of the associations between the expression levels of the five GRLs and clinical features. C-G The K-M survival curves of the five optimal 
GRLs. TMEM254 − AS1 (C), CTD − 2396E7.11 (D), LINC00240 (E), CTD − 3065 J16.9 (F), and AC133644.2 (G)
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Immunity microenvironment and checkpoint analyses
We assessed immune status by applying five algorithms 
mentioned in the Methods section, which was shown 
after merging the five algorithms in the heat map (Addi-
tional file 4: Figure S1). Further, Wilcoxon was utilized 
to compare the significance of each cell between the two 
groups. Results showed that a total of 21 microenviron-
ment cells and Stromal score emerged remarkable dif-
ferences (Fig. 8A).

Immunosuppressive checkpoint inhibitors play a 
biological role by inhibiting the immunosuppressive 

signal pathway in the immune system. In view of 
this, in order to further explore the clinical applica-
tion of the risk model, we compared the difference 
in seven checkpoint genes between the two risk 
groups. The expression distribution box diagram of 
the seven immune checkpoint genes (CD274, CD47, 
HAVCR2, LAG3, SIRPA, TNFRSF4, and VTCN1) 
between the two risk groups was shown in Fig.  8B. 
The results showed that CD274, LAG3, VTCN1, and 
CD47 had a lower expression in the high-risk group. 
The TIDE score was correlated closely with response 

Fig. 4  Construction and validation of the risk model. A LASSO Cox analysis. B λ selection diagram. The two dotted lines indicated two particular 
values of λ. The left side was λmin and the right side was λ1se. The λmin was selected to build the model for accuracy in our study. C-E The K-M survival 
curves of total (C) and validation sets (D, E). F-H Time-dependent ROC curve analysis of total (F) and validation sets (G, H)
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to immune checkpoint blockade (ICB). In Fig.  8C, 
OC patients in low-risk group exhibited lower TIDE 
scores than those in high-risk group, indicating that 
OC patients with lower RSs were more sensitive to 
ICB therapy.

m6A and ferroptosis analyses
The expression levels of m6A regulators and FRGs 
between the two risk groups were also compared. A 
total of 20 m6A regulators were matched, and as can be 
seen, except for FTO, IGF2BP2, WTAP, and ZC3H13, 
the expression levels of the remaining 16 m6A regulators 
were significantly higher in the low-risk group (Fig. 8D). 
A total of 126 FRGs were matched and showed signifi-
cant differences between the high and low-risk groups 
(Additional file 5: Table S4). The top20 genes ranked by 
the difference multiple were shown in Fig. 8E. It can be 
seen that all the genes had low expression in the high-risk 
group.

Sensitivity of chemotherapy drug
In light of the significance of chemotherapy in the treat-
ment of OC, we quantified the response ability of OC 
patients with different risk scores to 137 chemotherapeu-
tic drugs. We compared IC50 values for nine commonly 
used chemotherapeutic agents in two risk groups (Fig. 9). 
A lower IC50 value indicated that this group of patients 
was more sensitive to the drug. Our data showed that 
the IC50 levels of Rucaparib (Fig. 9A) were significantly 
higher in the low-risk group than that in high-risk group. 
Inversely, the IC50 levels of Paclitaxel (Fig. 9B), Gemcit-
abine (Fig. 9C), Veliparib (Fig. 9D), Vinblastine (Fig. 9E), 
and Vinorelbine (Fig.  9F) were significantly lower in 
low-risk group than that in high-risk group, indicat-
ing that the OC patients in the low-risk group were 
more sensitive to these drugs. However, the sensitivity 
of the two risk groups to Bleomycin (Fig. 9G), Cisplatin 
(Fig. 9H), and Docetaxel (Fig. 9I) did not reach significant 
difference.

Fig. 5  Nomogram construction. A The Univariate analysis of risk model and clinical features. B The Multivariate analysis of risk model and clinical 
features. C The Nomogram model based on risk model and clinical features. D The calibration plots of the nomogram. The closer it was to 45 
degrees or the gray lines in the graph, the better the fitting effect
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Network analyses
In order to explore the relevant regulatory mechanism 
of this risk prediction model, we established networks 
based on co-expression, ceRNA, cis and trans interac-
tion. A total of 3524 GRG-GRL co-expression relation 
pairs were obtained ((|r| > 0.4, p < 0.05) (Additional file 6: 
Table S5). Only 35 GRLs with significant prognosis and 
the corresponding co-expression pair network were 
selected to fabricate the GRG-GRL co-expression net-
work (Fig.  10A). A total of 59 GRL-miRNA-GRG rela-
tionship pairs were obtained, including four GRLs, 48 
miRNAs, and nine GRGs (Additional  file  7: Table  S6, 
Fig.  10B). The nine GRGs included: COL5A1, ELF3, 
ENO3, NT5E, PGP, PHKA2, SLC25A10, TGFBI, and 
VCAN. The networks based on the cis and trans inter-
action were displayed in Fig.  10C-D. Interestingly, we 
found that p53 may regulate GRLs and GRGs through 
trans interactions. The regulatory relationships revealed 
by these networks may provide a direction for exploring 
the molecular mechanism of the GRLs.

Discussion
The fate of tumor cells is directly related to their energy 
metabolism [38]. Tumor cells prefer glycolysis as an 
inefficient metabolic mode, which provides new ideas 
and methods for clinical treatment of tumors [39]. 
The reasons are as follows [40]: glycolysis can provide 
the energy needed for tumor cell proliferation; It can 
maintain a low pH tumor microenvironment, which is 
conducive to tumor cell proliferation, drug resistance, 
invasion and metastasis; A large number of nucleic acid 
precursors can be produced in preparation for prolif-
eration. For ovarian cancer and other tumors with high 
proliferation, invasion, metastasis and chemotherapy 
resistance, it is of great significance to explore the regu-
lation of its glycolytic pathway. The aim of studying the 
glycolysis pathway of OC is to develop ideal targeted 
drugs. However, the mechanism of action of some drugs 
targeting the glycolytic pathway of OC is still not clear, 
so the in-depth study of their molecular mechanism is 
still of great significance.

Fig. 6  Differences in functional pathway between the risk groups. A Top10 KEGG Pathway GSVA enrichment score heat map. B-C The GSEA of KEGG 
pathway in the two risk groups. Significant enrichment in the high-risk group (B); Significant enrichment in the low-risk group (C)
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As is known to all that lncRNAs have been proved to 
play an important role in the occurrence and develop-
ment of tumors. In recent years, lncRNAs have been 
reported to regulate the energy metabolism of tumors 
and thus affect the malignant behavior of tumors, 
which also partially reveals the molecular mechanism 
of glycolysis reprogramming. For example, lncRNA 
AGPG increases the stability of PFKFB3 by inhibiting 
ubiquitination at Lys302 and subsequent proteaso-
mal-dependent degradation of PFKFB3 and activates 
glycolytic flux, causing metabolic reprogramming in 
esophageal cancer cells [41]. In addition, PFKFB3 can 
also be phosphorylated by lncRNA YIYA, increasing 
the conversion of fructuce-6-phosphate to fructuce-2, 
6-Bisphosphate, and promoting the reprogramming 

and growth of glucose metabolism in breast cancer 
[42]. However, researches of GRLs are still scarce in 
OC.

In order to verify the importance of glycolysis-related 
lncRNAs (GRLs) in ovarian cancer progress, GRL-
related prognostic and diagnostic model were developed. 
The gene expression level of 535 GRLs were in investi-
gated in OC and normal tissues. The significance of these 
GRLs related to survival rates were then studied and 35 
GRLs were discovered significantly prognostic. In our 
study, we identified and validated a signature containing 
five GRLs with prognostic value. A total of 21 microen-
vironment cells, four immune checkpoint genes (CD274, 
LAG3, VTCN1, and CD47), 16 m6A regulators, and 126 
FRGs showed different levels between the two groups. 

Fig. 7  Hypoxia score analysis. A Hypoxia scores between high and low-risk groups. B The K–M survival curves of OC patients with high or low 
hypoxia score. C The K–M survival curves of four subgroups based on risk score and hypoxia score. D Top20 hypoxia-related gene expression 
distribution box diagram of the difference multiple between the high and low risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(See figure on next page.)
Fig. 8  Immune and gene analysis. A Heatmap of immune microenvironment revealed that a total of 21 immune cells and stromal score had 
significant differences between the two risk groups. B Expression of seven immune checkpoint genes between high and low-risk group. CD274, 
LAG3, VTCN1, and CD47 had a lower expression in the high-risk group. C TIDE scores in the low-risk group were lower than those in the high-risk 
group. D The expression of 20 m6A regulators between high and low-risk groups. E The expression of top20 ferroptosis-related genes between high 
and low-risk groups. Data are shown as means ± S.D. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 8  (See legend on previous page.)
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It has been reported that the hypoxic and acidic micro-
environment induced by tumor glycolysis can cause 
metabolization-mediated T cell dysfunction, which 
may be one of the mechanisms of tumor cell metabolic 
reprogramming mediated immune escape [43, 44]. It has 
also been found glycolysis of tumors can induce tumor 
immunosuppression and immune escape [45]. Therefore, 
tumor immunotherapy strategies based on metabolic 

regulation can improve the effectiveness of immunother-
apy [45]. Many studies have found that m6A regulatory 
factors can regulate the expression of enzymes related 
to the glucose metabolism pathway, thus affecting the 
glycolysis of tumors [46–48]. All these provide a refer-
ence for us to study the specific mechanism of glycolysis 
in tumor. The occurrence and development of malig-
nant tumors is sophisticated and we hope to explore the 

Fig. 9  Sensitivity of chemotherapy drugs. A-I Difference in the estimated IC50 levels of Rucaparib (A), Paclitaxel (B), Gemcitabine (C), Veliparib (D), 
Vinblastine (E), Vinorelbine (F), Bleomycin (G), Cisplatin (H), and Docetaxel (I). Data are shown as means ± S.D. ns: not significant, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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molecular mechanism of glycolysis (via m6A modifica-
tion, ferroptosis or immune) to promote the efficacy of 
immunotherapy with further research.

Our study still has some limitations. Firstly, due to 
the limited number of OC samples that can annotate 
lncRNA expression, more patients with homologous 
information were needed to incorporate into study and 
prove the credibility of our study. Secondly, we explored 
the functions of these five lncRNAs only through bioin-
formatics analysis, and experimental data were needed 
to support these conclusions. Despite these limitations, 
our study used two validation sets, ROC, and nomo-
gram to demonstrate the effectiveness of the risk model 
for prognostic prediction.

Conclusions
In summary, our identified and validated risk model 
based on five glycolysis -related lncRNAs is an independ-
ent prognostic factor for OC patients. Through compre-
hensive analyses, the GRL-model provides insights into 
clinical applications for OC.
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