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Abstract
Many mathematical models describe the Corona virus disease 2019 (COVID-19) outbreak; however, they require advance

mathematical skills. The need for this study is to determine the diffusion of the COVID-19 vaccine in humans. To this end,

we first establish a Pythagorean fuzzy partial fractional differential equation using the Pythagorean fuzzy integral trans-

forms to express the effects of COVID-19 vaccination on humans under the generalized Hukuhara partial differential

conditions. We extract the analytical solution of the Pythagorean fuzzy partial fractional differential equation using the

Pythagorean fuzzy Laplace transform under the generalized Hukuhara partial differential and the Pythagorean fuzzy

Fourier transform using the Caputo generalized Hukuhara partial differential. Moreover, we present some essential pos-

tulates and results related to the Pythagorean fuzzy Laplace transform and the Pythagorean fuzzy Fourier transform.

Furthermore, we develop the solution procedure to extract the solution of the Pythagorean fuzzy partial fractional dif-

ferential equation. To grasp the considered approach, a mathematical model for the diffusion of the COVID-19 vaccination

in the human body is provided and analyzed the behavior to visualize and support the proposed model. Our proposed

method is efficient and has a great worth to discuss the bio-mathematical models in various fields of science and medicines.

Keywords Partial fractional differential equation � COVID-19 vaccination � Pythagorean fuzzy integral transforms �
Caputo generalized Hukuhara partial differentiability

1 Introduction

Zadeh (1965) first proposed the idea of fuzzy set that

helped the researchers to easily describe the vague infor-

mation very clearly by a mathematical phenomena. Fuzzy

set theory was examined by many scholars and they

acquired a lot of achievements in different fields. In some

areas, fuzzy sets were unable to deal uncertainty effec-

tively, because they are associated to only the grade of

appreciation or membership, and therefore, the grade of

rejection or non-membership was neglected. To tackle this

drawback in fuzzy sets, Atanassov (1986) gave the concept

of Intuitionistic fuzzy set (IFS). IFS is associated to each

element of the universe, taking into account both mem-

bership and non-membership values whose sum is less than

or equal to 1. As a result, IFS can tackle uncertainty more

precisely and effectively than fuzzy set. IFS handles a

variety of practical issues. Moreover, in many real life

applications, the sum of membership and non-membership

values satisfying the parameters provided by experts may

be greater than one, but the sum of the squares of their

membership and non-membership degrees is less than or

equal to one. Yager (2013a, b) gave the concept of the

Pythagorean fuzzy sets (PFSs) in 2013 to bridge this gap.

He gave a situation to illustrate this condition: an expert

says his support for an object’s membership is
ffiffi

3
p

2
and his

support for non-membership is 1
2
: It is easy to see that

ffiffi

3
p

2
þ 1

2
� 1: Consequently, IFSs cannot explain this situa-

tion. On the other hand, PFSs took appropriate attention,

because ð
ffiffi

3
p

2
Þ2 þ ð1

2
Þ2 � 1: Clearly, PFS handles issues more

efficiently than IFS in simulating vagueness in real-world

decision-making problems. Some researchers (Naz et al.
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2018; Peng and Selvachandran 2019; Akram et al. 2019;

Ezadi and Allahviranloo 2020; Akram and Ali 2020; Asif

et al. 2020; Akram and Khan 2021; Akram and Shahzadi

2021; Peng and Luo 2021; Rahman 2022; Akram et al.

2022a, b) have used the concept of PFSs in various prob-

lems to get satisfactory results.

Fuzzy sets have many applications in the dynamical

models that contain vague parameters instead of random-

ness. These models have made a route to describe the fuzzy

differential equations (FDEs). They gained a remarkable

attention due to their applications in the area of mathe-

matics and related branches, such as artificial intelligence,

diffusion processes, medical sciences and much more.

Chang and Zadeh (1972) first introduced the idea of fuzzy

derivative in 1972. The idea established by Chang and

Zadeh was followed up by Dubios and Prade (1982) and

they applied the theory of extension principle. FDE first

discussed by Kaleva (1987) using Puri-Relescue Hukuhara

derivative (H-derivative). Seikkala (1987) established the

idea of the fuzzy derivative that was the generalization of

H-derivative (Bede and Gal 2005) that was developed on

the base of Hukuhara difference (H-difference) (Stefanini

and Bede 2013). Song and Wu (2000) studied about FDEs,

and they established the modification of the main conse-

quences of Kaleva (1987). The derivative of a fuzzy-valued

function (FVF) can be determined using H-differentiabil-

ity. Bede and Gal (2005) had introduced the generalized

Hukuhara differentiability (gH-differentiability) of FVFs

based on gH-difference. Later, it was proved that gH-dif-

ferentiability had more accuracy than H-differentiability.

Therefore, fuzzy derivatives of FVFs were determined

using gH-differentiability. Fractional calculus and frac-

tional differential equations are upcoming stars in the

modern era to deal many problems in both theoretical and

applied science. They are concerned in the modeling of

many physical and chemical processes Baleanu et al. 2012.

A wide range of publications have been made to test the

efficiency of the solutions of fractional differential equa-

tions. Kilbas et al. (2006) gave a valuable work on the

theory and applications of fractional differential equations.

A wide range of important contributions on FDEs in the

fuzzy environment have been published by many

researchers. Furthermore, several articles have been pub-

lished discussing the solution of the fuzzy fractional dif-

ferential equations (FFDEs). Agarwal et al. (2010) studied

the analytical solution of fractional order differential

equations with vagueness. Ahmad et al. (2021) discussed

the computational approach of fuzzy fractional non-di-

mensional Fisher equation. (Allahviranloo et al. 2012,

2015), Allahviranloo et al. (2021) studied the fuzzy solu-

tion of fractional differential equations under gH-differ-

entiability and generalized Caputo derivative. Ezadi and

Allahviranloo (2020) used the artificial neural method to

solve fuzzy fractional initial value problem under gH-dif-

ferentiability. Khakrangin et al. (2021) gave the numerical

solution of FFDE by haar wavelet. A valuable work on the

fuzzy fractional wave equation was done by Melliani et al.

(2021). Vu and Hoa (2019) solved uncertain fractional

differential equations on a time scale under the concept of

granular differentiability. The existence and uniqueness of

a fuzzy solution to FFDE was established in Arshad and

Lupulescu (2011). Salahshour et al. (2012) introduced

some fractional theoretical concepts, such as Riemann-

Liouville fractional differentiability and caputo H-differ-

entiability for FVF. In Allahviranloo and Ahmadi (2010),

Salahshour and Allahviranloo (2013), Salahshour and

Allahviranloo (2013), FDEs were solved using the fuzzy

Laplace transform. These publications outlined the fuzzy

derivative of a FVF using the core idea of H-differentia-

bility or strongly generalized differentiability. However,

the FDEs demonstrated by these differentiability concepts

do not have a unique solution. For this purpose, Allahvi-

ranloo et al. (2014) postulated the gH-Caputo fractional

derivative of a FVF and demonstrated the existence and

uniqueness of the solution for fuzzy initial value problem

(FIVP) with a fuzzy initial condition. The delay fractional

differential equations were investigated in Hoa (2015), Van

Hoa (2015). Podlubny (1998) discussed the fractional

derivatives, the methodology to extract the solution of

FDEs and their applications.

Viet Long et al. (2017) investigated fuzzy partial frac-

tional differential equations (FPFDEs). Based on gH-dif-

ferentiability for fuzzy multivariate functions, they

established the idea of fuzzy fractional integral and Caputo

partial differentiability. FPFDEs are capable of modeling a

wide range of natural phenomena in various sciences. In

biological medicine, FPFDEs have been used to design the

emergence of diseases and the proliferation of cancer cells

and many other issues. However, our understanding of

FPFDEs is limited. Fuzzy integral transforms such as the

fuzzy Laplace transform (FLT) (Allahviranloo and Ahmadi

2010) and the fuzzy Fourier transform (FFT) (Gouyandeha

et al. (2017)) are very efficient techniques to solve FPFDEs

of fuzzy multivariable functions. Akram et al. (2022a)

introduced the concepts of generalized Hukuhara fractional

Caputo derivative of Pythagorean fuzzy valued function

(PFVF) and the Pythagorean fuzzy Laplace transform

(PFLT) to solve Pythagorean fuzzy fractional differential

equations (PFFDEs). Akram et al. (2022a) studied the

analytical solution of fourth-order FDE using the FLT.

Akram et al. (2022a) discussed the fuzzy fractional Lan-

gevin differential equations in Caputo’s derivative sense.

This research article includes the concept of generalized

Hukuhara partial differentiability ([gH - p] differentiabil-

ity) and the Pythagorean fuzzy Fourier transform (PFFT) of

PFVF to solve Pythagorean fuzzy partial fractional
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differential equation (PFPFDE). We investigate the

Pythagorean fuzzy solution of the PFPFDEs with triangular

Pythagorean fuzzy initial conditions in terms of triangular

Pythagorean fuzzy numbers (TPFNs) under [gH - p] dif-

ferentiability using the Pythagorean fuzzy integral trans-

forms. Then, we present some important theorems, such as

the PFLT and the PFFT of the triangular Pythagorean

fuzzy-valued function (TPFVF) with fractional-order

derivative of order 0\.� 2, Pythagorean fuzzy convolu-

tion theorem under type of [gH - p] differentiability. Fur-

thermore, we prove a theorem to solve the PFPFDE.

Finally, the Pythagorean fuzzy solution of the PFPFDE as a

mathematical model for the diffusion of COVID-19 vac-

cination in the human body is obtained. The COVID-19

disease was discovered in January 2020 by the Wuhan

Health Commission of China (Maxmen (2021)). The

World Health Organization (WHO) declared a global

public health emergency. This COVID-19 was declared a

global pandemic a few weeks later. It was difficult for

health departments to mange the newly emerged COVID-

19 pandemic at first. The fastly spreading disease

encounters a significant task for academic institutions and

the industries in developing the effective drug treatments

and vaccination. For this, a lot of drugs have been tested on

COVID-19 patients. As a result, scientists invented that

these medicines have a little bit effect on the whole mor-

tality. At the end, scientists discovered vaccines to control

the attack of COVID-19 virus on the human body.

A brief summary of the contents is now as given. In

Sect. 2, some preliminary concepts related to TPFNs and

gH-differentiability are expressed. Section 3 presents some

new theorems related to Pythagorean fuzzy calculus. Sec-

tion 4 contains the PFLT, the PFFT and some new theo-

rems and lemmas are proved for the Pythagorean fuzzy

integral transforms. In Sect. 5, the Pythagorean fuzzy

fundamental solution of the PFPFDE with triangular

Pythagorean fuzzy initial conditions is obtained using the

Pythagorean fuzzy integral transforms and it is followed up

by solving several examples. Section 6 presents the

Pythagorean fuzzy fundamental solution of the Pythagor-

ean fuzzy partial fractional mathematical model for the

diffusion of COVID-19 vaccination in the human body and

some related examples with figures. Finally, conclusions

are drawn in Sect. 7.

2 Preliminaries

In this section, we review some fundamental definitions of

fuzzy operations in the Pythagorean fuzzy environment.

Suppose that RT denotes the set of TPFNs in the space of

PFS RP. The TPFN u 2 RT is denoted by a triplet

u ¼ ðu1; u2; u3; ~u1; u2; ~u3Þ; ð1Þ

where ~u1 � u1 � u2 � u3 � ~u3.

Definition 1 (Ullah et al. (2020)) A PFS RP in X is an

object of the form

RP ¼ f\m; lutðmÞ; luf ðmÞ[ : m 2 Xg;

where lut : X ! ½0; 1� and luf : X ! ½0; 1� denote the

degree of membership and non-membership, respectively,

of the element m 2 X with the constraint

l2utðmÞ þ l2uf ðmÞ� 1. Furthermore, the term m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðl2utðmÞ þ l2utðmÞÞ
q

is expressed as the hesitancy

degree.

Definition 2 (Mondal and Roy (2015)) A Pythagorean

fuzzy number (PFN) u ¼ ðut; uf Þ is a non-empty subset of

X with the rule of membership grade lut : X ! ½0; 1� and
non-membership grade luf : X ! ½0; 1�. Firmly, u is con-

vex, that is,

lutðnmþ ð1�nÞm1Þ� min
�

lutðmÞ; lutðm1Þ
�

;

8n;m;m1 with n 2 ½0; 1� and m;m1 2 X

and concave, that is

luf ðnmþ ð1�nÞm1Þ� max
�

luf ðmÞ; luf ðm1Þ
�

;

8n;m;m1 with n 2 ½0; 1� and m;m1 2 X:

Also u is normal, because there exists m 2 X such that

lut ¼ 1 and luf ¼ 0.

Definition 3 (Mondal et al. (2019)) A TPFN u is a subset

of PFN in R with the following membership and non-

membership functions:

lutðmÞ ¼

m� u1
u2 � u1

; u1 �m� u2;

u3 �m

u3 � u2
; u2 �m� u3;

0 ; elsewhere

8

>

>

>

<

>

>

>

:

and

luf ðmÞ

¼

u2 �m

u2 � ~u1
; ~u1 �m� u2;

m� u2
~u3 � u2

; u2 �m� ~u3;

1 ; elsewhere;

8

>

>

>

<

>

>

>

:

where ~u1 � u1 � u2 � u3 � ~u3 and a TPFN is denoted by

u ¼ ðu1; u2; u3; ~u1; u2; ~u3Þ.

Definition 4 (Bede and Stefanini (2013)) The gH-differ-

ence of two TPFNs u; v 2 RT is the TPFN w, if exists, such

that
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u�gH v ¼ w ,
u ¼ v� w

or v ¼ u� ð�1Þw:

�

The condition for the existence of w ¼ u�gH v 2 RT is

given in Bede and Stefanini (2013).

Remark 1 For two TPFNs u ¼ ðu1; u2; u3; ~u1; u2; ~u3Þ and

v ¼ ðv1; v2; v3; ~v1; v2; ~v3Þ, we have the following results

regarding the gH-difference of u and v.

1.

u�gH v ¼ w ,
w ¼ ðu1 � v1; u2 � v2; u3 � v3; ~u1 � ~v1; u2 � v2; ~u3 � ~v3Þ

or w ¼ ðu3 � v3; u2 � v2; u1 � v1; ~u3 � ~v3; u2 � v2; ~u1 � ~v1Þ:
:

(

2. We assume that u�gH v 2 RT throughout this

manuscript.

3. The following results are easy to prove:

(i) u� ð�1Þv ¼ ðu1 þ v3; u2 þ v2; u3
þv1; ~u1 þ ~v3; u2 þ v2; ~u3 þ ~v1Þ, such that u�
ð�1Þv is a TPFN.

(ii) �gHu ¼ ð�1Þu, such that ð�1Þu is a TPFN.

( iii) �gHð�1Þu ¼ u.

(iv) u�gH ð�1Þv 6¼ u� v.

Assume that D 	 R2 and I ¼ ½a; b� 	 R. Suppose that

CPðDÞ denotes the space of continuous PFVFs on D and

LPðDÞ denotes the space of Lebesgue integrable PFVFs

defined on D. Throughout this manuscript, we suppose that

@ðhÞ 2 CPðIÞ \ LPðIÞ and Kðu; hÞ 2 CPðDÞ \ LPðDÞ are

two TPFVFs. The TPFVF @ðhÞ has the following

representation:

@ðhÞ ¼
�

@1ðhÞ;@2ðhÞ;@3ðhÞ; ~@1ðhÞ;@2ðhÞ; ~@3ðhÞ
�

: ð2Þ

The TPFVF Kðu; hÞ in two variables is expressed as:

Kðu; hÞ ¼
�

K1ðu; hÞ;K2ðu; hÞ;K3ðu; hÞ; ~K1ðu; hÞ;K2ðu; hÞ; ~K3ðu; hÞ
�

:

ð3Þ

Definition 5 (Akram et al. (2022a)) The TPFVF @ðhÞ is

said to be gH-differentiable at h0 2 I if there exists

@0
gHðh0Þ 2 RT , such that for every � positive, the expression

@ðh0 þ �Þ �gH @ðh0Þ exists and the following constraint is

satisfied:

@0

gHðh0Þ ¼ lim
�&0

@ðh0 þ �Þ �gH @ðh0Þ
�

:

Using results in Akram et al. (2022a), we define the

following definitions of first and second gH-differentia-

bility of TPFVF @ðhÞ.

Definition 6 Let @ðhÞ 2 CPðIÞ \ LPðIÞ be a TPFVF. Then,
the first and second gH-differentiability of @ðhÞ is defined
as follows:

1. @ðhÞ is said to be first gH-differentiable (½ðıÞ � gH�-
differentiable) if 8 h 2 I, the following expression

defines a TPFN.

@0

ðıÞgHðhÞ :¼ @0

gHðhÞ

¼
�

@0

1ðhÞ;@
0

2ðhÞ;@
0

3ðhÞ; ~@0

1ðhÞ;@
0

2ðhÞ; ~@0

3ðhÞ
�

:

2. @ðhÞ is said to be second gH-differentiable

(½ðııÞ � gH�-differentiable) if 8 h 2 I, the following

expression defines a TPFN.

@0

ðııÞgHðhÞ :¼ @0

gHðhÞ

¼
�

@0

3ðhÞ;@
0

2ðhÞ;@
0

1ðhÞ; ~@0

3ðhÞ;@
0

2ðhÞ; ~@0

1ðhÞ
�

:

Using Definition 6, the second-order derivative of

TPFVF @ðhÞ is defined by the following definintion:

Definition 7 Let @ðhÞ 2 CPðIÞ \ LPðIÞ be a TPFVF and

@0
gHðhÞ be gH-differentiable PFVF. If the type of gH-dif-

ferentiability of @ðhÞ and @0
gHðhÞ are same, then @0

gHðhÞ is
½ðıÞ � gH�-differentiable and is defined as:

@00

ðıÞgHðhÞ :¼ @00

gHðhÞ

¼
�

@00

1ðhÞ;@
00

2ðhÞ;@
00

3ðhÞ; ~@00

1ðhÞ;@
00

2ðhÞ; ~@00

3ðhÞ
�

:

If the type of gH-differentiability of @ðhÞ and @0
gHðhÞ are

different, then @0
gHðhÞ is ½ðııÞ � gH�-differentiable and is

defined as:

@00

ðııÞgHðhÞ :¼ @00

gHðhÞ

¼
�

@00

3ðhÞ;@
00

2ðhÞ;@
00

1ðhÞ; ~@00

3ðhÞ;@
00

2ðhÞ; ~@00

1ðhÞ
�

:

Definition 8 (Akram et al. 2022a) Let

@ðhÞ 2 CPðIÞ \ LPðIÞ. Then, the generalized Hukuhara

fractional Caputo derivative (CF½gH��differentiable for

short) of PFVF @ðhÞ of order . 2 C, Reð.Þ� 0 is defined

as:

C
gHD

.

aþ
@ðhÞ ¼ 1

Cðn� .Þ

Z h

a

ðh� sÞn�.�1@ðnÞðsÞds; for h[ a; ð4Þ

where n is the natural number, such that n� 1�Reð.Þ\n.
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In particular, if . 2 ð0; 1Þ and a ¼ 0 then Equ. (4) takes the

following representation:

C
gHD

.

0þ
@ðhÞ ¼ 1

Cð1� .Þ

Z h

0

@0ðsÞds
ðh� sÞ. ; for h[ 0: ð5Þ

Definition 9 Let @ðhÞ be CF ½gH��differentiable, then @ðhÞ
is:

(i) CF½ðıÞ � gH��differentiable if 8 h 2 I

C
ðıÞ:gHD

.

aþ
@ðhÞ

¼
�

CD
.
aþ@1ðhÞ;CD

.
aþ@2ðhÞ;CD

.
aþ@3ðhÞ;CD

.
aþ

~@1ðhÞ;

CD
.
aþ@2ðhÞ;CD

.
aþ

~@3ðhÞ
�

; 8.2ð0;1Þ:

(ii) CF½ðııÞ � gH��differentiable if 8 h 2 I

C
ðııÞ:gHD

.

aþ
@ðhÞ

¼
�

CD
.
aþ@3ðhÞ; CD

.
aþ@2ðhÞ; CD

.
aþ@1ðhÞ; CD

.
aþ

~@3ðhÞ;

CD
.
aþ@2ðhÞ; CD

.
aþ

~@1ðhÞ
�

; 8. 2 ð0; 1Þ:

Definition 10 (Povstenko (2015)) The Mittag-Leffler

function in one variable is one of the major functions used

in this manuscript and it has the following representation:

E.ðzÞ ¼
X

1

k¼0

zk

Cð.k þ 1Þ :

Other important function is the Minardi function defined as

follows:

Mð.; zÞ ¼ Wð�.; 1� .;�zÞ ¼
X

1

j¼0

ð�1Þ jz j
j!C½�.jþ ð1� .Þ� ;

where Wð.;b; zÞ is the Wright function.

3 Pythagorean fuzzy calculus

Definition 11 A TPFVF Kðu; hÞ having no switching point
onD 	 R2 is said to be first or second partial differentiable

with respect to u such that:

(i) ½ðıÞ � p��differentiable with respect to u at ðu; hÞ 2
D if

oKðu; hÞ
ou

¼
�

oK1ðu; hÞ
ou

;
oK2ðu; hÞ

ou
;

oK3ðu; hÞ
ou

;
o ~K1ðu; hÞ

ou
;
oK2ðu; hÞ

ou
;
o ~K3ðu; hÞ

ou

�

:

(ii) ½ðııÞ � p��differentiable with respect to u at

ðu; hÞ 2 D if

oKðu; hÞ
ou

¼
�

oK3ðu; hÞ
ou

;
oK2ðu; hÞ

ou
;
oK1ðu; hÞ

ou
;

o ~K3ðu; hÞ
ou

;
oK2ðu; hÞ

ou
;
o ~K1ðu; hÞ

ou

�

:

Furthermore, if
oKðu; hÞ

ou
is [gH � p]-differentiable with

respect to u at ðu; hÞ 2 D having no switching point on D

and

(i) If the type of [gH � p]-differentiability of both

Kðu; hÞ and
oKðu; hÞ

ou
are same, then

oKðu; hÞ
ou

is

[ðıÞ � p]-differentiable with respect to u and

o2Kðu; hÞ
ou2

¼
�

o2K1ðu; hÞ
ou2

;
o2K2ðu; hÞ

ou2
;
o2K3ðu; hÞ

ou2
;

o2 ~K1ðu; hÞ
ou2

;
o2K2ðu; hÞ

ou2
;
o2 ~K3ðu; hÞ

ou2

�

:

(ii) If the type of [gH � p]-differentiability of both

Kðu; hÞ and oKðu; hÞ
ou

are different, then
oKðu; hÞ

ou
is

[ðııÞ � p]-differentiable with respect to u and

o2Kðu; hÞ
ou2

¼
�

o2K3ðu; hÞ
ou2

;
o2K2ðu; hÞ

ou2
;
o2K1ðu; hÞ

ou2
;

o2 ~K3ðu; hÞ
ou2

;
o2K2ðu; hÞ

ou2
;
o2 ~K1ðu; hÞ

ou2

�

:

Remark 2 Assume that @ðhÞ is a TPFVF defined on I, such

that the type of gH�differentiability remains unchanged

8h 2 I, then
Z b

a

@ðhÞdh ¼
�

minf
Z b

a

@1ðhÞdh;
Z b

a

@3ðhÞdhg;
Z b

a

@2ðhÞdh;maxf
Z b

a

@1ðhÞdh;
Z b

a

@3ðhÞdh;

minf
Z b

a

~@1ðhÞdh;
Z b

a

~@3ðhÞdhg;
Z b

a

@2ðhÞdh;maxf
Z b

a

~@1ðhÞdh;
Z b

a

~@3ðhÞdhg
�

:

Consider a TPFVF
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@ðhÞ ¼
�

� 2:3e�h;�1:2e�h; 3e�h;�3e�h;�1:2e�h; 4e�h
	

:

Then
Z

�

� 2:3e�h;�1:2e�h; 3e�h;�3e�h;�1:2e�h; 4e�h
	

dh

¼
�

� 3e�h; 1:2e�h; 2:3e�h;�4e�h; 1:2e�h; 3e�h
	

:

Theorem 1 Let @ : I ! RT be a TPFVF without any

switching point in the interval I. Then, the fundamental

theorem of calculus in the Pythagorean fuzzy context is

given by:

1.
R b
a @

0

ðıÞ�gHðhÞdh ¼ @ðbÞ � @ðaÞ; if @ðhÞ is ½ðıÞ � gH�-
differentiable.

2.
R b

a @
0

ðııÞ�gHðhÞdh ¼ ð�1Þ@ðaÞ � ð�1Þ@ðbÞ; if @ðhÞ is

½ðııÞ � gH�-differentiable.

Recently, Chalco-Canoa et al. studied the gH�deriva-

tive for the product of a real-valued differentiable function

and gH�differentiable interval valued functions (Chalco-

Canoa et al. 2019). We extend these results for TPFVFs in

the following.

Theorem 2 Suppose that @ : I ! RT is a TPFVF on I,

such that the type of gH�differentiability remains unal-

tered on the closed interval I and [ðhÞ is a monotonic real -

valued continuous differentiable function in I. Then,

according to the type of gH�differentiability of @ðhÞ and
monotonicity of [ðhÞ, we have following cases:

Case 1. If @ðhÞ is ½ðıÞ � gH��differentiable and

(i) [ðhÞ is a positive and increasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðıÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�

0

ðıÞ:gH

¼ [
0 ðhÞ 
 @ðhÞ � [ðhÞ 
 @0

ðıÞ:gHðhÞ:

Furthermore
Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh

¼ [ðbÞ 
 @ðbÞ � [ðaÞ 
 @ðaÞ�gH
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

(ii) [ðhÞ is a positive and decreasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðıÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�0

ðıÞ:gH

¼ [ðhÞ 
 @0

ðıÞ:gHðhÞ � ð�[
0 ðhÞÞ 
 @ðhÞ;

such that the H-difference exists.

Furthermore
Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh

¼ [ðbÞ 
 @ðbÞ � [ðaÞ 
 @ðaÞ�
Z b

a

ð�[
0 ðhÞÞ 
 @ðhÞdh:

(iii) [ðhÞ is a negative and increasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðııÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�

0

ðııÞ:gH

¼ [ðhÞ 
 @0

ðıÞ:gHðhÞ � ð�[
0 ðhÞÞ 
 @ðhÞ;

given that H-difference exists.

Moreover
Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh

¼ ð�[ðaÞÞ 
 @ðaÞ � ð�[ðbÞÞ 
 @ðbÞ�

ð�1Þ
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

(iv) [ðhÞ is a negative and decreasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðııÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�

0

ðııÞ:gH

¼ [
0 ðhÞ 
 @ðhÞ � [ðhÞ 
 @0

ðıÞ:gHðhÞ;

provided that H-difference exists.

Moreover
Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh

¼ �ð[ðaÞÞ 
 @ðaÞ � ð�[ðbÞÞ 
 @ðbÞ�gH
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

Case 2. If @ðhÞ is ½ðııÞ � gH��differentiable and

(i) [ðhÞ is a positive and increasing function

8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðııÞ � gH��differentiable and
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�

[ðhÞ 
 @ðhÞ
�0

ðııÞ:gH

¼ [ðhÞ 
 @0

ðııÞ:gHðhÞ � ð�1Þ[0 ðhÞ 
 @ðhÞ;

given that H-difference exists.

Furthermore
Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh

¼ ð�[ðaÞÞ 
 @ðaÞ � ð�[ðbÞÞ 
 @ðbÞ�

ð�1Þ
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

(ii) [ðhÞ is a positive and decreasing function
8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðııÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�

0

ðııÞ:gH

¼ [ðhÞ 
 @0

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @ðhÞ:

Furthermore
Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh ¼ ð�[ðaÞÞ 
 @ðaÞ�

ð�[ðbÞÞ 
 @ðbÞ �gH

Z b

a

[
0 ðhÞ 
 @ðhÞdh:

(iii) [ðhÞ is a negative and increasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðıÞ � gH��differentiable and

�

[ðhÞ 
 @ðhÞ
�

0

ðıÞ:gH

¼ [
0 ðhÞ 
 @ðhÞ � [ðhÞ 
 @0

ðııÞ:gHðhÞ:

Moreover
Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh ¼ [ðbÞ 
 @ðbÞ�

[ðaÞ 
 @ðaÞ �gH

Z b

a

[
0 ðhÞ 
 @ðhÞdh:

(iv) [ðhÞ is a negative and decreasing func-

tion 8h 2 I, then [ðhÞ 
 @ðhÞ is

½ðıÞ � gH��differentiable and

�

[ðhÞ
@ðhÞ
�

0

ðıÞ:gH

¼ [ðhÞ
@0

ðııÞ:gHðhÞ�ð�1Þ[0 ðhÞ
@ðhÞ;

such that H-difference exists and

Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh

¼ [ðbÞ 
 @ðbÞ � [ðaÞ 
 @ðaÞ�

ð�1Þ
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

Proof We prove only Case 1(ii) and Case 2(ii).

According to the supposition of Case 1(ii), @ðhÞ is

½ðıÞ � gH��differentiable and [ðhÞ is a positive and

decreasing function 8h 2 I. Then, [ðhÞ[ 0 and [
0 ðhÞ\0,

[ðhÞ 
 @0

ðıÞ:gHðhÞ � ð�[
0 ðhÞÞ 
 @ðhÞ

¼ [ðhÞ 

�

@0

1ðhÞ;@
0

2ðhÞ;@
0

3ðhÞ; ~@0

1ðhÞ;@
0

2ðhÞ; ~@0

3ðhÞ
�

� ð�1Þ[0 ðhÞ 

�

@1ðhÞ;@2ðhÞ;@3ðhÞ; ~@1ðhÞ;@2ðhÞ; ~@3ðhÞ
�

;

¼
�

[ðhÞ@0

1ðhÞ; [ðhÞ@
0

2ðhÞ; [ðhÞ@
0

3ðhÞ; [ðhÞ ~@0

1ðhÞ; [ðhÞ@
0

2ðhÞ; [ðhÞ ~@
0

3ðhÞ
�

� ð�1Þ
�

[
0 ðhÞ@3ðhÞ; [

0 ðhÞ@2ðhÞ; [
0 ðhÞ@1ðhÞ; [

0 ðhÞ ~@3ðhÞ; [
0 ðhÞ@2ðhÞ; [

0 ðhÞ ~@1ðhÞ
�

;

¼
�

[ðhÞ@0

1ðhÞ; [ðhÞ@
0

2ðhÞ; [ðhÞ@
0

3ðhÞ; [ðhÞ ~@0

1ðhÞ; [ðhÞ@
0

2ðhÞ; [ðhÞ ~@
0

3ðhÞ
�

�
�

� [
0 ðhÞ@1ðhÞ;�[

0 ðhÞ@2ðhÞ;�[
0 ðhÞ@3ðhÞ;�[

0 ðhÞ ~@1ðhÞ;

� [
0 ðhÞ@2ðhÞ;�[

0 ðhÞ ~@3ðhÞ
�

;

[ðhÞ 
 @0

ðıÞ:gHðhÞ � ð�[
0 ðhÞÞ 
 @ðhÞ ¼

�

[ðhÞ 
 @ðhÞ
	
0

ðıÞ:gH :

Thus, [ðhÞ 
 @ðhÞ is ½ðıÞ � gH�-differentiable. We obtain

the following equation.

�

[ðhÞ 
 @ðhÞ
	
0

ðıÞ:gH ¼ [ðhÞ 
 @0

ðıÞ:gHðhÞ � ð�[
0 ðhÞÞ 
 @ðhÞ:

ð6Þ

Taking integral on both side of Equ. (6), we have:

Z b

a

�

[ðhÞ 
 @ðhÞ
	
0

ðıÞ:gHdh ¼
Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh�
Z b

a

ð�[
0 ðhÞÞ 
 @ðhÞdh:

Hence Theorem 1 implies that:

Z b

a

[ðhÞ 
 @0

ðıÞ:gHðhÞdh ¼ [ðbÞ 
 @ðbÞ � [ðaÞ 
 @ðaÞ�
Z b

a

ð�[
0 ðhÞÞ 
 @ðhÞdh:

This completes the proof. The remaining cases can be

proved in the same way.

Now, according to the supposition of Case 2(ii), @ðhÞ is
½ðııÞ � gH��differentiable and [ðhÞ is a positive and

decreasing function 8h 2 I. Then, [ðhÞ[ 0 and [
0 ðhÞ\0,
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[ðhÞ
@0

ðııÞ:gHðhÞ�[
0 ðhÞ
@ðhÞ

¼[ðhÞ

�

@0

3ðhÞ;@
0

2ðhÞ;@
0

1ðhÞ; ~@
0

3ðhÞ;@
0

2ðhÞ; ~@
0

1ðhÞ
�

�[
0 ðhÞ


�

@1ðhÞ;@2ðhÞ;@3ðhÞ; ~@1ðhÞ;@2ðhÞ; ~@3ðhÞ
�

;

¼
�

[ðhÞ@0

3ðhÞ;[ðhÞ@
0

2ðhÞ;[ðhÞ@
0

1ðhÞ;[ðhÞ ~@
0

3ðhÞ;[ðhÞ@
0

2ðhÞ;[ðhÞ ~@0

1ðhÞ
�

�
�

[
0 ðhÞ@3ðhÞ;[

0 ðhÞ@2ðhÞ;[
0 ðhÞ@1ðhÞ;[

0 ðhÞ ~@3ðhÞ;[
0 ðhÞ@2ðhÞ;[

0 ðhÞ ~@1ðhÞ
�

;

[ðhÞ
@0

ðııÞ:gHðhÞ�[
0 ðhÞ
@ðhÞ¼

�

[ðhÞ
@ðhÞ
	
0

ðııÞ:gH :

Thus [ðhÞ
@ðhÞ is ½ðııÞ�gH�-differentiable. Moreover, we

obtain the following equation.

�

[ðhÞ 
 @ðhÞ
	
0

ðııÞ:gH ¼ [ðhÞ 
 @0

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @ðhÞ:

ð7Þ

Taking integral on both side of Equ. (7), we have:

Z b

a

�

[ðhÞ 
 @ðhÞ
	
0

ðııÞ:gHdh

¼
Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh�
Z b

a

[
0 ðhÞ 
 @ðhÞdh:

From Theorem 1, it follows that:

Z b

a

[ðhÞ 
 @0

ðııÞ:gHðhÞdh

¼ ð�[ðaÞÞ 
 @ðaÞ � ð�[ðbÞÞ 
 @ðbÞ �gH

Z b

a

[
0 ðhÞ 
 @ðhÞdh:

This completes the proof. The remaining cases can be

proved in the similar manner. h

Theorem 3 Let @ðhÞ and @0ðhÞ be gH�differentiable

TPFVFs having no switching point on the closed interval I

and [ðhÞ be real-valued continuous differentiable function,

such that [ðhÞ[ 0 and [
0 ðhÞ\0, 8h 2 I. Then, we have the

following results:

1. If @ðhÞ and @0ðhÞ are ½ðıÞ � gH��differentiable then

[ðhÞ 
 @0ðhÞ is ½ðıÞ � gH��differentiable and

�

[ðhÞ 
 @0ðhÞ
�

0

ðıÞ:gH

¼ [ðhÞ 
 @00

ðıÞ:gHðhÞ � ð�1Þ[0 ðhÞ 
 @0

ðıÞ:gHðhÞ;

with the constraint that H-difference exists.

Furthermore
Z b

a

[ðhÞ 
 @00

ðıÞ:gHðhÞdh

¼ [ðbÞ 
 @0

gHðbÞ � [ðaÞ 
 @0

gHðaÞ � ð�1Þ
Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

2. If @ðhÞ and @0ðhÞ are ½ðııÞ � gH��differentiable then

[ðhÞ 
 @0ðhÞ is ½ðıÞ � gH��differentiable and

�

[ðhÞ 
 @0ðhÞ
�

0

ðıÞ:gH

¼ [ðhÞ 
 @00

ðıÞ:gHðhÞ � [
0 ðhÞ 
 @0

ðııÞ:gHðhÞ:

Moreover
Z b

a

[ðhÞ 
 @00

ðıÞ:gHðhÞdh

¼ [ðbÞ 
 @0

gHðbÞ � [ðaÞ 
 @0

gHðaÞ�gH

Z b

a

[
0 ðhÞ 
 @0

ðııÞ:gHðhÞdh:

3. If @ðhÞ is ½ðıÞ � gH��differentiable and @0ðhÞ is

½ðııÞ � gH��differentiable then [ðhÞ 
 @0ðhÞ is

½ðııÞ � gH��differentiable and

�

[ðhÞ 
 @0ðhÞ
�

0

ðııÞ:gH

¼ [ðhÞ 
 @00

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @0

ðıÞ:gHðhÞ

and
Z b

a

[ðhÞ 
 @00

ðııÞ:gHðhÞdh

¼ ð�1Þ[ðaÞ 
 @0

gHðaÞ � ð�1Þ[ðbÞ 
 @0

gHðbÞ�gH

Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

4. If @ðhÞ is ½ðııÞ � gH��differentiable and @0ðhÞ is

½ðıÞ � gH��differentiable then [ðhÞ 
 @0ðhÞ is

½ðııÞ � gH��differentiable and

�

[ðhÞ 
 @0ðhÞ
�

0

ðııÞ:gH

¼ [ðhÞ 
 @00

ðııÞ:gHðhÞ � ð�1Þ[0 ðhÞ 
 @0

ðııÞ:gHðhÞ:

Provided that H-difference exists. Thus, we have:
Z b

a

[ðhÞ 
 @00

ðııÞ:gHðhÞdh

¼ ð�1Þ[ðaÞ 
 @0

gHðaÞ � ð�1Þ[ðbÞ 
 @0

gHðbÞ � ð�1Þ
Z b

a

[
0 ðhÞ 
 @0

ðııÞ:gHðhÞdh:

Proof We only give proofs of 1. and 3.

Suppose that @ðhÞ and @0ðhÞ are ½ðıÞ � gH��differen-

tiable. Given that [ðhÞ[ 0 and [
0 ðhÞ\0. Then
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[ðhÞ
@00

ðıÞ:gHðhÞ�ð�1Þ[0 ðhÞ
@0

ðıÞ:gHðhÞ

¼ [ðhÞ

�

@00

1ðhÞ;@
00

2ðhÞ;@
00

3ðhÞ; ~@
00

1ðhÞ;@
00

2ðhÞ; ~@
00

3ðhÞ
�

�ð�1Þ[0 ðhÞ

�

@0

1ðhÞ;@
0

2ðhÞ;@
0

3ðhÞ; ~@
0

1ðhÞ;@
0

2ðhÞ; ~@
0

3ðhÞ
�

;

¼
�

[ðhÞ@00

1ðhÞ;[ðhÞ@
00

2ðhÞ;[ðhÞ@
00

3ðhÞ;[ðhÞ

~@00

1ðhÞ;[ðhÞ@
00

2ðhÞ;[ðhÞ ~@
00

3ðhÞ
�

�ð�1Þ
�

[
0 ðhÞ@0

3ðhÞ;[
0 ðhÞ@0

2ðhÞ;[
0 ðhÞ@0

1ðhÞ;[
0 ðhÞ ~@0

3ðhÞ;[
0 ðhÞ@0

2ðhÞ;[
0 ðhÞ ~@0

1ðhÞ
�

;

¼
�

[ðhÞ@00

1ðhÞ;[ðhÞ@
00

2ðhÞ;[ðhÞ@
00

3ðhÞ;[ðhÞ ~@
00

1ðhÞ;[ðhÞ@
00

2ðhÞ;[ðhÞ ~@
00

3ðhÞ
�

�
�

� [
0 ðhÞ@0

1ðhÞ;�[
0 ðhÞ@0

2ðhÞ;�[
0 ðhÞ@0

3ðhÞ;�[
0 ðhÞ ~@0

1ðhÞ;�[
0 ðhÞ@0

2ðhÞ;�[
0 ðhÞ ~@0

3ðhÞ
�

;

[ðhÞ
@00

ðıÞ:gHðhÞ�ð�1Þ[0 ðhÞ
@0

ðıÞ:gHðhÞ¼
�

[ðhÞ
@0ðhÞ
�

0

ðıÞ:gH
:

The equation evaluated in this case is given as follows:

�

[ðhÞ 
 @0ðhÞ
�

0

ðıÞ:gH
¼ [ðhÞ 
 @00

ðıÞ:gHðhÞ � ð�1Þ[0 ðhÞ 
 @0

ðıÞ:gHðhÞ: ð8Þ

Now, integrating Equ. (8) from a to b, we get:

Z b

a

�

[ðhÞ 
 @0ðhÞ
�

0

ðıÞ:gH
dh

¼
Z b

a

[ðhÞ 
 @00

ðıÞ:gHðhÞdh� ð�1Þ
Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

Theorem 1 implies that:

Z b

a

[ðhÞ 
 @00

ðıÞ:gHðhÞdh

¼ [ðbÞ 
 @0

gHðbÞ � [ðaÞ 
 @0

gHðaÞ � ð�1Þ
Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

Now assume that @ðhÞ is ½ðıÞ � gH��differentiable and

@0ðhÞ is ½ðııÞ � gH��differentiable. Given that [ðhÞ[ 0

and [
0 ðhÞ\0. Then

[ðhÞ 
 @00

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @0

ðıÞ:gHðhÞ

¼ [ðhÞ 

�

@00

3ðhÞ;@
00

2ðhÞ;@
00

1ðhÞ; ~@00

3ðhÞ;@
00

2ðhÞ; ~@00

1ðhÞ
�

� [
0 ðhÞ 


�

@0

1ðhÞ;@
0

2ðhÞ;@
0

3ðhÞ; ~@0

1ðhÞ;@
0

2ðhÞ; ~@0

3ðhÞ
�

;

¼
�

[ðhÞ@00

3ðhÞ; [ðhÞ@
00

2ðhÞ; [ðhÞ@
00

1ðhÞ; [ðhÞ ~@00

3ðhÞ; [ðhÞ@
00

2ðhÞ; [ðhÞ ~@00

1ðhÞ
�

�
�

[
0 ðhÞ@0

3ðhÞ; [
0 ðhÞ@0

2ðhÞ; [
0 ðhÞ@0

1ðhÞ; [
0 ðhÞ ~@0

3ðhÞ; [
0 ðhÞ@0

2ðhÞ; [
0 ðhÞ ~@0

1ðhÞ
�

;

[ðhÞ 
 @00

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @0

ðıÞ:gHðhÞ ¼
�

[ðhÞ 
 @0ðhÞ
�

0

ðııÞ:gH
:

The final result obtained in this case is given by:

�

[ðhÞ 
 @0ðhÞ
�

0

ðııÞ:gH
¼ [ðhÞ 
 @00

ðııÞ:gHðhÞ � [
0 ðhÞ 
 @0

ðıÞ:gHðhÞ:

ð9Þ

Taking integral on both sides of Equ. (9) gives:

Z b

a

�

[ðhÞ 
 @0ðhÞ
�

0

ðııÞ:gH
dh

¼
Z b

a

[ðhÞ 
 @00

ðııÞ:gHðhÞdh�
Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

From Theorem 1, it follows that:

Z b

a

[ðhÞ 
 @00

ðııÞ:gHðhÞdh

¼ ð�1Þ[ðaÞ 
 @0

gHðaÞ�

ð�1Þ[ðbÞ 
 @0

gHðbÞ �gH

Z b

a

[
0 ðhÞ 
 @0

ðıÞ:gHðhÞdh:

This completes the proof. Similarly, we can prove other

cases. h

Example 1 Consider a TPFVF @ðhÞ ¼
ð5:6h4; 6h4; 8:5h4; 4:2h4; 6h4; 9:7h4Þ and [ðhÞ ¼ 4h4 for

h[ 1. Since @ðhÞ is ½ðıÞ � gH�-differentiable and

[ðhÞ; [0 ðhÞ[ 0. Therefore, from Theorem 2 Case 1(i), we

have the following expressions:

[ðhÞ 
 @ðhÞ ¼ ð22:4h8; 24h8; 34h8 : 16:8h8; 24h8; 38:8h8Þ

and

�

[ðhÞ 
 @ðhÞ
	
0

gH
¼ ð179:2h7; 192h7; 272h7;

134:4h7; 192h7; 310:4h7Þ:
ð10Þ

Thus, Eq. (10) indicates that [ðhÞ 
 @ðhÞ is ½ðıÞ � gH�-
differentiable TPFVF.

Now consider [ðhÞ ¼ h�2 and

@ðhÞ ¼ ð5:6h4; 6h4; 8:5h4; 4:2h4; 6h4; 9:7h4Þ.
Since @ðhÞ and @0ðhÞ are ½ðıÞ � gH�-differentiable and

[ðhÞ[ 0; [
0 ðhÞ\0. Therefore, Theorem 3 implies that:

�

[ðhÞ 
 @0ðhÞ
	
0

gH

¼ ð112h4; 120h4; 170h4; 84h4; 120h4; 194h4Þ:
ð11Þ

From Eq. (11), it is clear that [ðhÞ 
 @0ðh is ½ðıÞ � gH�-
differentiable.

4 Pythagorean fuzzy integral transforms

Integral transform is a powerful technique to solve differ-

ent kinds of differential equations. With the help of this

transformation technique, we can convert a differential

equation into an algebraic equation or in the system of

equations. In this section, we discuss two major integral

transforms in the Pythagorean fuzzy context, namely, the

PFLT and the PFFT.
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4.1 The Pythagorean fuzzy Laplace transform

Definition 12 (Akram et al. (2022a)) Let @ðhÞ be a

TPFVF of order b[ 0 on 0� h\1. Then, the PFLT of

TPFVF @ðhÞ is expressed as follows:

VðqÞ ¼ L½@ðhÞ� ¼
Z 1

0

e�qh 
 @ðhÞdh

¼ lim
T!1

Z T

0

e�qh 
 @ðhÞdh; q[ 0:

If the limit exists.

The inverse PFLT of V(q) is given by the following

expression:

L�1½VðqÞ� ¼ 1

2pi

Z dþi1

d�i1
eqh 
 VðqÞdq;

with fixed d 2 R.

Definition 13 Let @ðhÞ be a triangular Pythagorean fuzzy

piecewise continuous function and [ðhÞ be a real-valued

piecewise continuous function with h[ 0. The convolution

of @ðhÞ and [ðhÞ is given by the subsequent expression:

ð@ � [ÞðhÞ ¼
Z h

0

@ðsÞ[ðh� sÞds:

By substituting e ¼ h� s, we get:

ð@ � [ÞðhÞ ¼
Z h

0

[ðeÞ@ðh� eÞde ¼ ð[ � @ÞðhÞ:

The aforesaid expression shows that convolution is

commutative.

Theorem 4 (Convolution Theorem) Suppose that @ðhÞ is a
triangular Pythagorean fuzzy piecewise continuous func-

tion on ½0;1Þ of exponential order b and [ðhÞ is a real-

valued piecewise continuous function on ½0;1Þ. Then, the
PFLT of the convolution of @ðhÞ and [ðhÞ is given by:

L½ð@ � [ÞðhÞ� ¼ L½@ðhÞ� 
L½[ðhÞ�; ðReðqÞ[ bÞ:

Theorem 5 Assume that @ðhÞ is a triangular Pythagorean

fuzzy piecewise continuous function on ½0;1Þ of expo-

nential order b and @0
gHðhÞ is piecewise continuous func-

tion in every finite closed interval I ¼ ½a; b�. Furthermore,
suppose that @ðhÞ and @0

gHðhÞ are gH�differentiable, such

that in the closed interval I, the type of gH�differentia-

bility does not alter. If ReðqÞ[ b, then the PFLT of @0ðhÞ
and @00

gHðhÞ according to the gH�differentiability type is

presented in Table 1.

Theorem 6 Suppose that the PFLT of TPFVFs @ðhÞ,
@0

gHðhÞ exist. Then, the PFLT of the CF ½gH��derivative of

these functions of order 0\.� 2 according to the types of
CF ½gH��differentiability are as under:

1. If @ðhÞ and CF
gHD

.@ðhÞ are ½ðıÞ � gH��differentiable

TPFVFs, then

L½CFðıÞ:gHD
.

0
@ðhÞ� ¼ q.VðqÞ � q.�1@ð0Þ � q.�2@0

gHð0Þ:

2. If @ðhÞ and CF
gHD

.@ðhÞ are ½ðııÞ � gH��differentiable

TPFVFs, then

L½CFðııÞ:gHD
.

0
@ðhÞ� ¼ q.VðqÞ �gH q.�1@ð0Þ � q.�2@0

gHð0Þ:

3. If @ðhÞ is ½ðıÞ � gH��differentiable TPFVF and
CF
gHD

.@ðhÞ is ½ðııÞ � gH��differentiable TPFVF, then

L½CFðııÞ:gHD
.

0
@ðhÞ�

¼ ð�1Þq.�2@0

gHð0Þ �gH ð�1Þq.VðqÞ � ð�1Þq.�1@ð0Þ:

4. If @ðhÞ is ½ðııÞ � gH��differentiable TPFVF and
CF
gHD

.@ðhÞ is ½ðıÞ � gH��differentiable TPFVF, then

L½CFðııÞ:gHD
.

0
@ðhÞ�

¼ ð�1Þq.�2@0

gHð0Þ �gH ð�1Þq.VðqÞ � ð�1Þq.�1@ð0Þ:

Proof We only prove 3.

Table 1 PFLT of @0
gHðhÞ and @00

gHðhÞ

Case gH�differentiability type L½@0
gHðhÞ� L½@00

gHðhÞ�

@ðhÞ @0

gHðhÞ

1 (ı) (ı) qVðqÞ � @ð0Þ q2VðqÞ � q@ð0Þ � @0

gHð0Þ
2 (ı) (ıı) qVðqÞ � @ð0Þ ð�1Þ@0

gHð0Þ �gH ð�1Þq2VðqÞ � ð�1Þq@ð0Þ
3 (ıı) (ı) ð�1Þ@ð0Þ �gH ð�1ÞqVðqÞ ð�1Þ@0

gHð0Þ �gH ð�1Þq2VðqÞ � ð�1Þq@ð0Þ
4 (ıı) (ıı) ð�1Þ@ð0Þ �gH ð�1ÞqVðqÞ q2VðqÞ � q@ð0Þ � @0

gHð0Þ
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Assume that @ðhÞ is ½ðıÞ � gH��differentiable TPFVF

and @0ðhÞ is ½ðııÞ � gH��differentiable TPFVF. Then,

using Definition 8 of CF ½gH��derivative it gives:

C
ðııÞ:gHD

.

0
@ðhÞ ¼ 1

Cð2� .Þ

Z h

0

ðh� sÞ1�.@00

ðıı:gHÞðsÞds:

Definition 13 implies that:

C
ðııÞ:gHD

.

0
@ðhÞ ¼ 1

Cð2� .Þ 

�

h1�. � @00

ðııÞ:gHðhÞ
	

: ð12Þ

Taking PFLT on both sides of Eq. (12) and using Theo-

rem 4, we have:

L



C
ðııÞ:gHD

.

0
@ðhÞ

�

¼ 1

Cð2� .Þ 

�

L



h1�.�
L



@00

ðııÞ:gHðhÞ
�

�

:

Since L



h1�.� ¼ Cð2� .Þ
q2�.

. Therefore, using Case 3 of

Theorem 5, we have:

L



C
ðııÞ:gHD

.

0
@ðhÞ

�

¼ q.�2

�

ð�1Þ@0

gHð0Þ �gH ð�1Þq2VðqÞ � ð�1Þq@ð0Þ
�

;

L½CFðııÞ:gHD
.

0
@ðhÞ�

¼ ð�1Þq.�2@0

gHð0Þ �gH ð�1Þq.VðqÞ � ð�1Þq.�1@ð0Þ:

Hence, we obtained the desired result. Similarly, we can

prove other cases. h

4.2 The Pythagorean fuzzy Fourier transform

Definition 14 Let @ : I ! RT be a TPFVF. The PFFT of

@ðhÞ is defined by the following expression:

VðxÞ ¼ F½@ðhÞ� ¼
Z 1

�1
e�ixh 
 @ðhÞdh:

The inverse PFFT of VðxÞ is expressed by the following

expression:

F�1½VðxÞ� ¼ 1

2p

Z 1

�1
eixh 
 VðxÞdx ¼ @ðhÞ:

The existence of the fuzzy Fourier transform for the

FVF is discussed in Gouyandeha et al. (2017). In this

manuscript, we obtained a different result for integration by

parts of the TPFVF @ðhÞ and real-valued continuous

function [ðhÞ. Thus, we have to prove some important

results for the PFFT.

Theorem 7 Let @ðhÞ be a Pythagorean fuzzy continuous

and absolutely integrable function, such that

limjhj!1 @ðkÞðhÞ ¼ 0 for k ¼ 0; 1. In addition, assume that

@ðjÞ
gHðhÞ is Pythagorean fuzzy absolutely integrable on

ð�1;þ1Þ, for 0� j� 2. Moreover, if @ðhÞ and @0
gHðhÞ

are gH�differentiable with the constraint that the type of

gH�differentiability remains unalter in ð�1;þ1Þ. Then

(i) If @ðhÞ is gH�differentiable then

F½@0
gHðhÞ� ¼ ixF½@ðhÞ�.

(ii) If @ðhÞ and @0
gHðhÞ are gH�differentiable then

F½@00
gHðhÞ� ¼ �gHx2F½@ðhÞ�.

Proof Suppose that @ðhÞ is gH�differentiable.

(i) If @ðhÞ is ½ðıÞ � gH��differentiable, then Defini-

tion 14 implies that:

F½@0

gHðhÞ ¼
Z 1

�1
e�ixh 
 @0

ðıÞ:gHðhÞdh: ð13Þ

Using Case 1(ii) of Theorem 2, we have:

F½@0

gHðhÞ� ¼ lim
T!1

Z T

�T

e�ixh 
 @0

ðıÞ:gHðhÞdh

¼ lim
T!1

�

e�ixT 
 @ðTÞ � eixT 
 @ð�TÞ � ðixÞ
Z T

�T

e�ixh 
 @ðhÞdh
�

:

By the supposition limjT j!1 @ðTÞ ¼ 0, we have:

F½@0

ðıÞ:gHðhÞ ¼ ixF½@ðhÞ�:

Similarly, we can prove that if @ðhÞ is ½ðııÞ � gH��differ-

entiable. Then, using Remark 1(3), it follows that:

F½@0

ðııÞ:gHðhÞ ¼ ixF½@ðhÞ�:

(ii) Suppose that @ðhÞ and @0ðhÞ are ½ðıÞ � gH��differen-

tiable. Then, Definition 14 yields that:

F½@00

ðıÞ:gHðhÞ ¼
Z 1

�1
e�ixh 
 @00

ðıÞ:gHðhÞdh: ð14Þ

Equation (14) can be solved using Theorem 3

F½@00

gHðhÞ� ¼ lim
T!1

Z T

�T

e�ixh 
 @00

ðıÞ:gHðhÞdh

¼ lim
T!1

�

e�ixT 
 @0

gHðTÞ � eixT 
 @0

gHð�TÞ � ðixÞ
Z T

�T

e�ixh 
 @0

ðıÞ:ghðhÞdh
�

:

But by the supposition limjT j!1 @0ðTÞ ¼ 0, we have:

F½@00

ðıÞ:gHðhÞ ¼ ð�1Þx2F½@ðhÞ�:

From Remark 1, we have

ð�1Þx2F½@ðhÞ� ¼ �gHx2F½@ðhÞ�. Thus, we conclude that:
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F½@00

ðıÞ:gHðhÞ ¼ �gHx
2F½@ðhÞ�:

This completes the proof. h

Lemma 1 Suppose that k0 is a TPFN and dðuÞ is a real

Dirac delta function, then

F½k0 
 dðuÞ� ¼ k0:

Proof From Definition 14 of PFFT and Rehman (2011) it

follows that:

F½k0 
 dðuÞ� ¼ k0 

Z 1

�1
e�ixh 
 dðuÞdu

¼ k0 
 F½dðuÞ� ¼ k0:

h

Lemma 2 Let k ¼ ðk1; k2; k3; ~k1; k2; ~k3Þ be a TPFN. Then,

the PFFT of k is given by F½k� ¼ k 
 ð2pÞdðxÞ:

Proof Using results in Rehman (2011), we have

F½1� ¼ ð2pÞdðxÞ:

F½ðk1; k2; k3; ~k1; k2; ~k3Þ�

¼
�

k1ð2pÞdðxÞ; k2ð2pÞdðxÞ; k3ð2pÞdðxÞ;

~k1ð2pÞdðxÞ; k2ð2pÞdðxÞ; ~k3ð2pÞdðxÞ
�

;

¼ ðk1; k2; k3; ~k1; k2; ~k3Þ 
 ð2pÞdðxÞ;
F½k� ¼ k 
 ð2pÞdðxÞ:

h

5 Pythagorean fuzzy solution
of Pythagorean fuzzy partial fractional
differential equation

In this section, we develop an analytical method to extract

the Pythagorean fuzzy solution of PFPFDE using the PFLT

and the PFFT. The understudy PFPFDE contains TPFVF in

two variables. For this, we use the generalized Hukuhara

partial derivatives with respect to both variables.

Consider the PFPFDE

o.Kðu; hÞ
oh.

¼ p
o2Kðu; hÞ

ou2
; h[ 0; u 2 ð�1;1Þ; ð15Þ

where 0\.� 2 and p is a real constant. Here,
o.Kðu; hÞ

oh.
is

supposed to be the Caputo generalized Hukuhara partial

differentiable of order . with respect to h and
oKðu; hÞ

ou
is

considered as Caputo generalized Hukuhara partial differ-

entiable with respect to u.

The PFLT and the PFFT of TPFVF Kðu; hÞ with respect

to h and u, respectively, are used to extract the Pythagorean

fuzzy solution of Equ. (15).

Applying PFLT with respect to h to Kðu; hÞ provides:

Lh½Kðu; hÞ� ¼
Z 1

0

e�qh 
 Kðu; hÞdh: ð16Þ

The PFFT with respect to u of Kðu; hÞ, for any fixed u 2 R

is given by:

Fu½Kðu; hÞ� ¼
Z 1

�1
e�ixu 
 Kðu; hÞdu; for h[ 0:

ð17Þ

Similarly, we can define the inverse PFLT and the inverse

PFFT using the definitions defined in Subsects. 4.1 and 4.2,

respectively.

Let LF be the space of all TPFVFs Kðu; hÞ, such that

both the PFLT and the PFFT exist for them. Then, we

develop the following notation:

~Kðx; qÞ :¼ FuLh½Kðu; hÞ�

¼
Z 1

�1

Z 1

0

e�qhe�ixu 
 Kðu; hÞdhdu; h[ 0:
ð18Þ

Taking the inverse PFLT and the inverse PFFT, respec-

tively, to Eq. (18) gives the solution of Equ. (15).

Theorem 8 Consider the PFPFDE

o.Kðu; hÞ
oh.

¼ p
o2Kðu; hÞ

ou2
; h[ 0; u 2 ð�1;1Þ; ð19Þ

with the Pythagorean fuzzy initial conditions:

Kðu; 0Þ ¼ gðuÞ; 0\.� 2;

Khðu; 0Þ ¼ 0; 1\.� 2;

�

ð20Þ

where gðuÞ is a TPFVF. Assume that the PFFT for gðuÞ is
GðxÞ, if exists. Then, the solution Kðu; hÞ 2 LF is given

by the following expression

Kðu; hÞ ¼ 1

2p


Z 1

�1
GðxÞ 
 E.ð�p x2h.Þe�ixudx;

ð21Þ

such that the integral on the right-hand side of Eq. (21)

exists.

Proof Suppose that Kðu; hÞ and
oKðu; hÞ

oh
are ½ðıÞ � gH�-

differentiable with respect to h. Applying the PFLT with

respect to h to Eq. (19) yields:

Granular Computing

123



Lh

�

o.Kðu; hÞ
oh.



¼ pLh

�

o2Kðu; hÞ
ou2



: ð22Þ

Now, using Theorem 6 and Pythagorean fuzzy initial

conditions (20), we get:

q.Lh½Kðu; hÞ� � q.�1gðuÞ ¼ p
o2

ou2
Lh½Kðu; hÞ�: ð23Þ

We first apply the PFFT with respect to u to Eq. (23) and

then Theorem 7 implies that:

q. ~Kðx; qÞ � q.�1GðxÞ ¼ �gHpx
2 ~Kðx; qÞ )

q. ~Kðx; qÞ � px2 ~Kðx; qÞ ¼ q.�1GðxÞ

and

~Kðx; qÞ ¼ GðxÞ 
 q.�1

q. þ px2
: ð24Þ

The inverse PFLT applied to Eq. (24) results:

Fu½Kðu; hÞ� ¼
1

2pi

Z dþi1

d�i1

eqhGðxÞ 
 q.�1

q. þ px2
dq: ð25Þ

We know that the Laplace transform of the Mittag-Leffler

function (Povstenko 2015), E.ðlh.Þ is given by the fol-

lowing expression:

L½E.ðlh.Þ� ¼
q.�1

q. � l
; ðjlq.�1j\1Þ:

Letting l ¼ �px2 in Eq. (25), we conclude that:

Fu½Kðu; hÞ� ¼ GðxÞ 
 E.ð�px2h.Þ: ð26Þ

Taking the inverse PFFT to Eq. (26) gives the solution of

given PFPFDE (19).

Kðu; hÞ ¼ 1

2p


Z 1

�1
GðxÞ 
 E.ð�px2h.Þe�ixudx:

Similarly, the solution can be obtained for other cases of
CF ½gH�-differentiability. h

Theorem 9 Consider the Pythagorean fuzzy initial con-

ditions for the PFPFDE (19):

Kðu; 0Þ ¼ k0dðuÞ; 0\.� 2;

Khðu; 0Þ ¼ 0; 1\.� 2;

�

ð27Þ

where k0 is a TPFN and dðuÞ is a real Dirac delta function.
Then, the solution Kðu; hÞ 2 FL is given by:

Kðu; hÞ ¼ k0

2
ffiffiffi

p
p

h
.
2

M

�

.
2
;
juj
ffiffiffi

p
p

h
.
2

�

: ð28Þ

Proof Let Kðu; hÞ and
oKðu; hÞ

oh
be ½ðıÞ � gH�-differen-

tiable with respect to h. Suppose gðuÞ ¼ k0dðuÞ in Theo-

rem 8 and using Lemma 1, we have:

~Kðx; qÞ ¼ k0 

q.�1

q. þ px2
: ð29Þ

Taking the inverse PFLT to Eq. (29), it follows that:

Fu½Kðu; hÞ� ¼
k0
2pi

Z dþi1

d�i1

eqh 
 q.�1

q. þ px2
dq: ð30Þ

Taking under consideration the Laplace transform of the

Mittag-Leffler function (Povstenko 2015), we get the fol-

lowing expression:

Fu½Kðu; hÞ� ¼ k0 
 E.ð�px2h.Þ: ð31Þ

Taking inverse PFFT to Eq. (31) gives:

Kðu; hÞ ¼ k0
2p



Z 1

�1
E.ð�px2h.Þ cosðuxÞdx:

This is the solution of given PFPFDE.

Furthermore, if the sequence of the Pythagorean fuzzy

integral transforms is altered and by applying the inverse

PFFT to Eq. (29) gives:

Lh½Kðu; hÞ� ¼
k0
2p

Z 1

�1
cosðuxÞ 
 q.�1

q. þ px2
dx: ð32Þ

Using the results mentioned in Povstenko (2015), Eq. (32)

is equivalent to:

Lh½Kðu; hÞ� ¼
k0
2

ffiffiffi

p
p q

.
2
�1exp

�

� juj
ffiffiffi

p
p q

.
2

�

: ð33Þ

The inverse PFLT applied to Eq. (33) provides:

Kðu; hÞ ¼ k0
2

ffiffiffi

p
p L�1

�

q
.
2
�1exp

�

� juj
ffiffiffi

p
p q

.
2

�

: ð34Þ

Since, L�1



q.�1exp
�

� pq.
	�

¼ 1

h.
M
�

.;
p

h.
	

(Povstenko

2015). Therefore, we conclude that:

Kðu; hÞ ¼ k0

2
ffiffiffi

p
p

h
.
2

M

�

.
2
;
juj
ffiffiffi

p
p

h
.
2

�

: ð35Þ

Thus the desired result is obtained. h

5.1 Examples

In this section, we use the Theorem 8 and Theorem 9 as an

application to solve two PFPFDEs by considering the types

of their derivatives. We evaluate the Pythagorean fuzzy

solution using the Pythagorean fuzzy integral transforms.

Example 2 Consider the PFPFDE:
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o
3
2Kðu; hÞ
oh

3
2

¼ 7
o2Kðu; hÞ

ou2
; h[ 0; u 2 ð�1;1Þ; ð36Þ

with the Pythagorean fuzzy initial conditions:

Kðu; 0Þ ¼ ð3:5; 4; 7:5; 2:8; 4; 8:6Þ;
Khðu; 0Þ ¼ 0:

�

ð37Þ

Suppose that Kðu; hÞ and
oKðu; hÞ

oh
are ½ðıÞ � gH�-differ-

entiable with respect to h. Applying the PFLT with respect

to h to Eq. (36) gives:

Lh

�

o
3
2Kðu; hÞ
oh

3
2



¼ 7Lh

�

o2Kðu; hÞ
ou2



: ð38Þ

Now, using Theorem 6 and Pythagorean fuzzy initial

conditions (37), we get:

q
3
2Lh½Kðu; hÞ� � q

3
2
�1ð3:5; 4; 7:5; 2:8; 4; 8:6Þ

¼ 7
o2

ou2
Lh½Kðu; hÞ�:

ð39Þ

Applying the PFFT with respect to u to Eq. (39) and then

Theorem 7 and Lemma 2 implies that:

q
3
2 ~Kðx; qÞ � q

3
2
�1ð3:5; 4; 7:5; 2:8; 4; 8:6Þ


 ð2pÞdðxÞ
¼ �gH7x

2 ~Kðx; qÞ;
q

3
2 ~Kðx; qÞ� 7x2 ~Kðx; qÞ ¼ q

3
2
�1ð3:5; 4; 7:5; 2:8; 4; 8:6Þ


 ð2pÞdðxÞ

and

~Kðx; qÞ ¼ ð3:5; 4; 7:5; 2:8; 4; 8:6Þ 
 ð2pÞdðxÞ 
 q
3
2
�1

q
3
2 þ 7x2

:

ð40Þ

The inverse PFLT applied to Eq. (40) implies that:

Fu½Kðu; hÞ�

¼ 1

2pi

Z dþi1

d�i1

eqhð3:5; 4; 7:5; 2:8; 4; 8:6Þ 
 ð2pÞdðxÞ 
 q
3
2
�1

q
3
2 þ 7x2

dq:

ð41Þ

Using the Laplace transform of the Mittag-Leffler function

(Povstenko 2015), we conclude that:

Fu½Kðu; hÞ� ¼ ð3:5; 4; 7:5; 2:8; 4; 8:6Þ

ð2pÞdðxÞ 
 E3

2
ð�7x2h

3
2Þ:

ð42Þ

Taking the inverse PFFT to Eq. (42) gives the solution of

given PFPFDE.

Kðu; hÞ

¼ 1

2p


Z 1

�1
ð3:5; 4; 7:5; 2:8; 4; 8:6Þ


 ð2pÞdðxÞ 
 E3
2
ð�7x2h

3
2Þe�ixudx:

Example 3 Consider the PFPFDE with initial conditions:

o
1
4Kðu; hÞ
oh

1
4

¼ 15
o2Kðu; hÞ

ou2
; h[ 0; u 2 ð�1;1Þ ð43Þ

and

Kðu; 0Þ ¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7ÞdðuÞ;
Khðu; 0Þ ¼ 0;

�

ð44Þ

where dðuÞ is a real Dirac delta function. Let Kðu; hÞ and
oKðu; hÞ

oh
be ½ðıÞ � gH�-differentiable with respect to h.

Assume that k0 ¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ in

Theorem 9

~Kðx; qÞ ¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ 
 q
1
4
�1

q
1
4 þ 15x2

:

ð45Þ

Applying the inverse PFFT to Eq. (45) gives:

Lh½Kðu; hÞ� ¼
ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ

2p
Z 1

�1
cosðuxÞ 
 q

1
4
�1

q
1
4 þ 15x2

dx:
ð46Þ

Using the results mentioned in Povstenko (2015), Eq. (46)

is equivalent to:

Lh½Kðu; hÞ�

¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ
2

ffiffiffiffiffi

15
p q

1
8
�1

exp

�

� juj
ffiffiffiffiffi

15
p q

1
8

�

:

ð47Þ

The inverse PFLT applied to Eq. (47) provides:

Kðu; hÞ ¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ
2

ffiffiffiffiffi

15
p L�1

�

q
1
8
�1exp

�

� juj
ffiffiffiffiffi

15
p q

1
8

�

:

ð48Þ

Since, L�1



q.�1exp
�

� pq.
	�

¼ 1

h.
M
�

.;
p

h.
	

(Povstenko

2015). Therefore, we conclude that:
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Kðu; hÞ ¼ ð14:3; 19:5; 23:9; 12:8; 19:5; 25:7Þ
2

ffiffiffiffiffi

15
p

h
1
8

M

�

1

8
;

juj
ffiffiffiffiffi

15
p

h
1
8

�

:

ð49Þ

This is the required solution of given PFPFDE.

6 Application

In Sect. 5, we discussed the method to solve PFPFDE in

detail. Now, we turn our attention to a recent real-life

application of PFPFDE in COVID-19 vaccination. Namazi

and Kulish (2015) considered the effectiveness of an anti-

cancer medicine in the tumor. Keshavarz and Allahviranloo

(2022), Keshavarz et al. (2022) discussed the diffusion of

anti-cancer drug by fuzzy integral transform.

In our study, we develop a partial fractional diffusion

equation to demonstrate the diffusion and effectiveness of

different types of COVID-19 vaccination in the human

body. The vaccine is delivered to the human body by an

intramuscular injection. For this problem, we have the

following PFPFDE, if the diffusion process is considered as

fractals (such as random walk).

o2HKðu; hÞ
oh2H

¼ C2ð2H�1ÞD2ð1�HÞ o
2Kðu; hÞ
ou2

; h[ 0; 0\H� 1:

ð50Þ

The diffusion coefficient D indicates the diffusivity of the

vaccine in the human body, C denotes the speed of the

vaccine deliver to human body to resist the COVID-19

virus attack, H is the Hurst exponent with the condition

0\H� 1.

The effectiveness and dose of the vaccine vary from

person to person depending upon the medical history and

age. These factors indicate uncertainty and vagueness to

the problem, and this uncertainty also affects the initial

conditions. Under this consideration, a Pythagorean fuzzy

model is more appropriate with all factors and can

demonstrate the issues in a better and meaningful way.

Consider the initial conditions for our model expressed

by Eq. (50):

Kðu; 0Þ ¼ k0dðuÞ; 0\.� 2;

Khðu; 0Þ ¼ 0; 1\.� 2;

�

ð51Þ

where k0 is a TPFN and dðuÞ is a real Dirac delta function.
The solution of our proposed model (50) with the

Pythagorean fuzzy initial conditions (51) is evaluated using

Theorem 8 and Theorem 9 as under:

Let Kðu; hÞ and
oKðu; hÞ

oh
be ½ðıÞ � gH�-differentiable

with respect to h. Taking PFLT with respect to h to Eq. (50)

gives:

Lh

�

o2HKðu; hÞ
oh2H



¼ C2ð2H�1ÞD2ð1�HÞLh

�

o2Kðu; hÞ
ou2



:

ð52Þ

Using Theorem 6 and initial conditions (51), we have:

q2HLh½Kðu; hÞ� � q2H�1k0dðuÞ

¼ C2ð2H�1ÞD2ð1�HÞ o2

ou2
Lh½Kðu; hÞ�:

ð53Þ

The PFFT applied to Eq. (53) provides:

q2H ~Kðx; qÞ � q2H�1k0 ¼ �gHC
2ð2H�1ÞD2ð1�HÞx2 ~Kðx; qÞ;

ð54Þ

or

~Kðx; qÞ ¼ k0 

q2H�1

q2H þ C2ð2H�1ÞD2ð1�HÞx2
: ð55Þ

Now, we change the order of inverse Pythagorean fuzzy

integral transform; therefore, we first take the inverse PFFT

to Eq. (55) that results:

Lh½Kðu; hÞ�

¼ k0
2p



Z 1

�1
cosðuxÞ 
 q2H�1

q2H þ C2ð2H�1ÞD2ð1�HÞ dx:

ð56Þ

Using the results mentioned in Povstenko (2015), Eq. (56)

is equivalent to:

Lh½Kðu; hÞ�

¼ k0

2Cð2H�1ÞDð1�HÞ 
 qH�1exp

�

� juj
Cð2H�1ÞDð1�HÞ q

H

�

:

ð57Þ

Now, we take the inverse PFLT to Eq. (57)

Kðu; hÞ ¼ k0

2Cð2H�1ÞDð1�HÞ 


L�1

�

qH�1exp

�

� juj
Cð2H�1ÞDð1�HÞ q

H

� ð58Þ

Since L�1



q.�1exp
�

� pq.
	�

¼ 1

h.
M
�

.;
p

h.
	

(Povstenko

2015). Therefore, we have

Kðu; hÞ ¼ k0

2Cð2H�1ÞDð1�HÞhH

M

�

H;
juj

Cð2H�1ÞDð1�HÞhH

�

:

ð59Þ
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This is the solution of our proposed PFPFDE for COVID-

19 vaccination.

We now discuss about two main types of COVID-19

vaccination, namely, AstraZeneca and Sinovac. AstraZe-

neca is a British manufactured vaccine, while Sinovac is

Chinese vaccine. These both vaccines are very effective to

resist the attack of COVID-19 virus.

Example 4 AstraZeneca is a British manufactured vaccine

that is delivered to the human body through an intramus-

cular injection twice with a gap in first and second doses.

The dosage of this vaccine is based on the medical history

and age of a person. The final vaccine product in each

0.5ml dose is comprised of 3lg of Chimpanzee adenovirus.

The recommended dose of a person of age 18 and above is

ð2:95; 3; 4:52; 2:94; 3; 6Þlg=ml. World Health Organization

(WHO) suggests an interval of 8� 12 weeks between the

first and second doses.

Consider the PFPFDE

oKðu; hÞ
oh

¼ o2Kðu; hÞ
ou2

; h[ 0; ð60Þ

with the Pythagorean fuzzy initial condition

Kðu; 0Þ ¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ 
 dðuÞ;
Khðu; 0Þ ¼ 0;

�

ð61Þ

Let Kðu; hÞ and oKðu; hÞ
oh

be ½ðıÞ � gH�-differentiable with

respect to h. Taking PFLT with respect to h to Eq. (60)

gives:

Lh

�

oKðu; hÞ
oh



¼ Lh

�

o2Kðu; hÞ
ou2



: ð62Þ

Using Theorem 6 and initial conditions (61), we have:

qLh½Kðu; hÞ� � ð2:95; 3; 4:52; 2:94; 3; 6ÞdðuÞ

¼ o2

ou2
Lh½Kðu; hÞ�:

ð63Þ

The PFFT applied to Eq. (63) provides:

q ~Kðx; qÞ � qð2:95; 3; 4:52; 2:94; 3; 6Þ ¼ �gHx
2 ~Kðx; qÞ;

ð64Þ

or

~Kðx; qÞ ¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ 
 1

q
þ x2: ð65Þ

Now, we change the order of inverse Pythagorean fuzzy

integral transform; therefore, we first take the inverse PFFT

to Eq. (65) that results:

Lh½Kðu; hÞ�

¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ
2p



Z 1

�1
cosðuxÞ 
 1

qþ 1
dx:

ð66Þ

Using the results mentioned in Povstenko (2015), Eq. (66)

is equivalent to:

Lh½Kðu; hÞ� ¼
ð2:95; 3; 4:52; 2:94; 3; 6Þ

2


q�
1
2exp

�

� jujq1
2

�

:

ð67Þ

Now, we take the inverse PFLT to Eq. (67)

Kðu; hÞ ¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ
2


L�1

�

q�
1
2exp

�

� jujq1
2

�

:

ð68Þ

Since L�1



q.�1exp
�

� pq.
	�

¼ 1

h.
M
�

.;
p

h.
	

(Povstenko

2015). Therefore, we have

Kðu; hÞ ¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ
2h

1
2


M

�

1

2
;
juj
h

1
2

�

: ð69Þ

Furthermore, M
� 1

2
; z
	

¼ 1

p
exp

�

�z2

4

�

(Povstenko 2015),

thus Eq. (69) takes the following form:

Kðu; hÞ ¼ ð2:95; 3; 4:52; 2:94; 3; 6Þ
2ph

1
2


 exp

�

�juj2

4h

�

:

ð70Þ

Kðu; hÞ indicates the diffusion of AstraZeneca vaccine in a

person.

The graphical representation for the diffusion of the

Astrazeneca vaccine in the human body for u ¼ 1 and for

different values of h and r is illustrated in Figs. 1, 2, and 3.

The r-cut representation of the lower and upper FVFs for

the solution Kðu; hÞ is expressed by Fig. 1. Similarly, the

lower and upper PFVFs for the Pythagorean fuzzy part of

the solution Kðu; hÞ is viewed by Fig. 2. Finally, the

complete solution of the Problem (69) is illustrated in

Fig. 3.

Example 5 The Sinovac vaccine is prepared in Chinese

laboratories. This vaccine is delivered to the human body

by an intramuscular injection two times having a gap

between first and second doses. WHO prescribed a gap of

2� 4 weeks between the both doses. The dose of Sinovac

vaccine is recommended to adults of age 18 and above by

WHO. The final vaccine product is composed of 3lg of
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inactivated SARS-CoV-2 virus in each 0.5ml dose. Let

Kðu; hÞ be the diffusion of Sinovac vaccine in the human

body for the adults of age 18 and above with the dose

ð2:85; 3; 5:2; 2:79; 3; 6Þlg=ml twice.
Consider PFPFDE

o
2
3Kðu; hÞ
oh

2
3

¼ o2Kðu; hÞ
ou2

; h[ 0; ð71Þ

with the initial condition

Kðu; 0Þ ¼ ð2:85; 3; 5:2; 2:79; 3; 6ÞdðuÞ;

Khðu; 0Þ ¼ 0;
:

(

ð72Þ

The solution of our proposed model (71) with the Pytha-

gorean fuzzy initial conditions (72) is evaluated using

Theorem 8 and Theorem 9 as under:

Let Kðu; hÞ and
oKðu; hÞ

oh
be ½ðıÞ � gH�-differentiable

with respect to h. Taking PFLT with respect to h to Eq. (71)

gives:

Lh

�

o
2
3Kðu; hÞ
oh

2
3



¼ Lh

�

o2Kðu; hÞ
ou2



: ð73Þ

Using Theorem 6 and initial conditions (72), we have:

q
2
3Lh½Kðu; hÞ� � q

2
3
�1ð2:85; 3; 5:2; 2:79; 3; 6ÞdðuÞ

¼ o2

ou2
Lh½Kðu; hÞ�:

ð74Þ

The PFFT applied to Eq. (74) provides:

q
2
3 ~Kðx; qÞ � q

2
3
�1ð2:85; 3; 5:2; 2:79; 3; 6Þ ¼ �gHx

2 ~Kðx; qÞ;
ð75Þ

or

~Kðx; qÞ ¼ ð2:85; 3; 5:2; 2:79; 3; 6Þ 
 q
2
3
�1

q
2
3 þ x2

: ð76Þ

Now, we change the order of inverse Pythagorean fuzzy

integral transform; therefore, we first take the inverse PFFT

to Eq. (76) that results:

Lh½Kðu; hÞ� ¼
ð2:85; 3; 5:2; 2:79; 3; 6Þ

2p



Z 1

�1
cosðuxÞ 
 q

2
3
�1

q
2
3 þ 1

dx:
ð77Þ

Using the results mentioned in Povstenko (2015), Eq. (77)

is equivalent to:

Lh½Kðu; hÞ� ¼
ð2:85; 3; 5:2; 2:79; 3; 6Þ

2



q
1
3�1exp

�

� jujq1
3

�

:

ð78Þ

Now, we take the inverse PFLT to Eq. (78)

Fig. 1 r-cut representation of the fuzzy part of the solution (70)

Fig. 2 r-cut representation of the Pythagorean fuzzy part of the

solution (70)

Fig. 3 r-cut representation for the solution of the diffusion of

Astrazeneca vaccine
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Kðu; hÞ ¼ ð2:85; 3; 5:2; 2:79; 3; 6Þ
2




L�1

�

q
1
3
�1exp

�

� jujq1
3

� ð79Þ

Since L�1



q.�1exp
�

� pq.
	�

¼ 1

h.
M
�

.;
p

h.
	

(Povstenko

2015). Therefore, we have

Kðu; hÞ ¼ ð2:85; 3; 5:2; 2:79; 3; 6Þ
2h

1
3


M

�

1

3
;
juj
h

1
3

�

: ð80Þ

But M
� 1

3
; z
	

¼ 3
2
3Ai

�

z

3
1
3

�

, where AiðzÞ is the Airy func-

tion (Povstenko 2015), thus Eq. (80) is equivalent to:

Kðu; hÞ ¼ 3
2
3ð2:85; 3; 5:2; 2:79; 3; 6Þ

2h
1
3


 Ai

�

juj
3

1
3h

1
3

�

: ð81Þ

Kðu; hÞ indicates the diffusion of Sinovac vaccine in the

human body.

7 Conclusions

Fractional calculus is an important area of mathematical

analysis. This is a generalization of the usual calculus that

allows for non-integer order. It has become the focus of

attention of mathematicians, physicists and engineers. A

well-known and widely used method for solving fractional

differential equations is Caputo fractional differentiation.

This allows you to specify the number of integer deriva-

tives at the initial point. This quantity is usually available

and measurable. The concept of PFSs is a relatively new

mathematical framework for fuzzy family and has a strong

ability to deal with inaccuracies. In this paper, we have

proposed a new analytical method using the PFLT and the

PFFT. To this end, we have established the Riemann-

Liouville fractional integral, the Riemann-Liouville frac-

tional derivative, and the Caputo fractional derivative of

the TPFVF. Furthermore, we have presented some basic

results for the TPFVF integral. Furthermore, we have

introduced the Fourier transform in the Pythagorean fuzzy

environment. Finally, we have developed a Pythagorean

fuzzy partial fractional diffusion model to study the dif-

fusion of the COVID-19 vaccine in humans. Furthermore,

we obtained the Pythagorean fuzzy solution of the pro-

posed model under the generalized Hukuhara Caputo

fractional partial differential using the PFLT and the PFFT.

In this methodology, we have used the PFLT under gen-

eralized Hukuhara Caputo partial fractional differentiabil-

ity and the PFFT under [gH - p]-differentiability. To this

end, we established and proved some fundamental theo-

rems of the PFLT and the PFFT under [gH - p]-differen-

tiability. The validity of the introduced method has been

examined by solving some relevant examples. Our pro-

posed method is worthwhile and important for solving a

PFFDE of order 0\.� 1 and PFPFDE of order 0\.� 2.

Therefore, it is necessary to further examine this technique

to extract the Pythagorean fuzzy solutions for such prac-

tical applications.
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