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Natural killer (NK) cells are an important component of the innate immune system due to
their strong ability to kill virally infected or transformed cells without prior exposure to the
antigen (Ag). However, the biology of human NK (hNK) cells has largely remained elusive.
Recent advances have characterized several novel hNK subsets. Among them, adaptive
NK cells demonstrate an intriguing specialized antibody (Ab)-dependent response and
several adaptive immune features. Most adaptive NK cells express a higher level of
NKG2C but lack an intracellular signaling adaptor, FcϵRIg (hereafter abbreviated as FcRg).
The specific expression pattern of these genes, with other signature genes, is the result of
a specific epigenetic modification. The expansion of adaptive NK cells in vivo has been
documented in various viral infections, while the frequency of adaptive NK cells among
peripheral blood mononuclear cells correlates with improved prognosis of monoclonal Ab
treatment against leukemia. This review summarizes the discovery and signature
phenotype of adaptive NK cells. We also discuss the reported association between
adaptive NK cells and pathological conditions. Finally, we briefly highlight the application of
adaptive NK cells in adoptive cell therapy against cancer.
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1 INTRODUCTION

As a crucial member of the innate lymphoid cell (ILC) family, natural killer (NK) cells specialize in
killing damaged, infected, or transformed cells and releasing cytokines as immune modulators (1, 2).
Unlike adaptive immune cells, NK cells do not need to be exposed to the antigen (Ag) in advance to
mature effector functions. Therefore, NK cells are considered at the forefront of the host immune
system. The important role of NK cells in restricting viral infection or tumor metastasis has been
observed in vivo in both murine and human studies (3, 4). However, although a series of
stochastically expressed activating and inhibitory receptors have been described, the recognition
of NK and target cells is far less clear (5). The final activity of NK cells depends on the balance
between activating and inhibitory signals transduced by these receptors.

Accumulating studies have shown that NK cells demonstrate adaptive immune features, such as
clonal expansion and immune memory, resulting in a diversely functional repertoire and stronger
responses to previously encountered stimuli (6). For example, murine Ly49H-dependent NK cells
are capable of responding specifically to murine cytomegalovirus (MCMV) and mount stronger
reactions to secondary challenges (7, 8). Moreover, murine hepatic CXCR6+ NK cells mediate
org March 2022 | Volume 13 | Article 8303961
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memory response to a secondary challenge to hapten or viruses
in the absence of T and B cells (9–11).

The adaptive features of human NK (hNK) cells have been
extensively studied during the last decade. Human cytomegalovirus
(HCMV), an enveloped member of the Herpesviridae family, has
been shown to extensively alter the phenotype and function of
hNK cells, as reflected by a strong association with an NK subset
expressing NKG2C, a receptor for HLA class I histocompatibility
antigen, alpha chain E (HLA-E) (12, 13). Of interest, these NK
cells specifically respond to HCMV peptides presented by HLA-
E (14). Subsequent studies have also suggested that HCMV
infection is positively associated with a group of peripheral
blood (PB) NK cells, g-NK, characterized by the absence of
FcRg, a signaling adaptor protein. NKG2C+ NK and g-NK
subsets are largely overlapping but not identical, and g-NK
cells also demonstrate adaptive features, such as clonal
expansion, augmented effector function, and extended lifespan
(15–17) (Figure 1). In 2015, hNK cells lacking FcRg, spleen
tyrosine kinase (SYK), and EWS/FLI1-activated transcript 2
(EAT-2), along with silencing of promyelocytic leukemia zinc
Frontiers in Immunology | www.frontiersin.org 2
finger (PLZF) expression, were termed “adaptive NK cells” by
Schlums et al. (18). A subset of NKG2C+ adaptive NK cells can
specifically recognize HCMV strains encoding variable UL40
peptides and can further expand and differentiate in response to
stimulation by pro-inflammatory factors (14). However,
available evidence suggests that the above-mentioned
recognition of NKG2C with HLA-E plus peptides is not
observed in NKG2C- adaptive NK cells (19). Immunological
memory is defined as the enhanced response to the re-challenge
of the same Ag, and immunological memory cells can persist for
years, even for a lifetime (20). Thus far, there are no data
indicating that adaptive NK cells can recognize various Ags
and mount an enhanced response. Rather, adaptive NK cells
achieve a broader spectrum of Ag specificity through antibody
(Ab)-dependent function. NK cells have long been considered
short-lived innate effector cells. However, several lines of
evidence indicate that adaptive NK cells have an unexpectedly
long lifespan compared to conventional NK (c-NK) cells.
Resembling adaptive memory cells, adaptive NK cells can live
for months to years (16). Additionally, adaptive NK cells have
FIGURE 1 | Distribution and relationship of g-NK and NKG2C+ NK cells. (A) g-NK cells persist and expand long-term in healthy individuals with prior HCMV
infection, and their proportion will increase under the co-infection of HBV, HCV, HIV, and other chronic viruses. Exceptionally, a fraction of this subset has also been
observed in HCMV- individuals. (B) g-NK cells characterized by FcRg deficiency are different from NK cells marked by NKG2C and are composed of both NKG2C+

and NKG2C- subsets. In addition to this subset, adaptive NK cells comprise a subset of non-specifically recognized and HLA-E-specifically recognized NKG2C+ NK
cells. These subgroups largely intersect. g-NK, g chain-negative natural killer; HCMV, human cytomegalovirus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV,
human immunodeficiency virus; FcϵRIg or FcRg, IgE receptor subunit-g; EAT2, EWS/FLI1-activated transcript 2; SYK, spleen tyrosine kinase; and HLA-E, HLA class I
histocompatibility antigen; alpha chain E.
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been found to expand in response to other viral infections, such
as hepatitis B virus (HBV), hepatitis C virus (HCV), human
immunodeficiency virus (HIV), herpes simplex virus (HSV), and
influenza virus (21–25). This review summarizes the research
progress of adaptive NK cells, with a special focus on molecular
hallmarks, epigenetic regulation, differentiation, and tissue
distribution. Additionally, we focus on the correlation between
adaptive NK and multiple clinical diseases, such as viral infection
and cancer, and put forward prospects that target them to
improve immunotherapy.
2 DISCOVERY AND MOLECULAR
MARKERS OF HUMAN ADAPTIVE
NK CELLS

The discovery of human adaptive NK cells can be traced back to
more than 1 decade ago (12, 15, 16, 18, 26–30). The expansion of
a CD94/NKG2C+ NK subset in the PB of HCMV+ donors was
first described by Guma et al. in 2004 (12). These NK cells
express lower levels of NKp30 and NKp46 compared to CD94/
NKG2A+ NK cells isolated from the same donors. The expansion
of CD94/NKG2C+ NK cells is associated only with HCMV but
not with HSV or EBV serology (12). In 2011, Lopez-Verges et al.
described an expansion of CD57+NKG2Chi NK cells in bone
marrow (BM) transplantation recipients with acute HCMV
infection (26). In 2012, Foley et al. suggested that these
HCMV-induced NKG2C+ NK cells were transplantable and
expanded in response to recipient CMV Ag in vivo, thus
demonstrating memory-like phenotype (27). Earlier, in the
same year, Hwang et al. documented a group of FcRg-deficient
NK cells, g-NK, in the PB of one-third of healthy donors (15).
These cells are considered likely to arise from clonal expansion,
express low levels of NKp46 and NKp30, and respond poorly to
K562 cells. However, g-NK cells express an almost normal level
of CD16 and demonstrate an enhanced response to CD16 cross-
linking. The association between the presence of g-NK cells and
HCMV infection was described by Zhang, T. et al. in 2013 (16).
In the same year, Beziat et al. studied the role of both self-specific
inhibitory killer cell immunoglobulin-like receptors (KIRs) and
activating KIRs during clonal expansion of NK cells in response
to CMV infection (28). The association of FcRg and NKG2C
expression was finally described by Schlums et al. and Lee et al. in
2015 (18, 29) and further discussed by Muntasell et al. in 2016
(30). Additionally, HCMV-associated NKG2C+ NK cells were
named adaptive NK cells by Muntasell et al. (30). As numerous
researchers have considered NKG2C+ NK cells that have
previously encountered HCMV as or even equal to adaptive
NK cells, such generalization may ignore subsets of cells
including NKG2C- g-NK cells (29); we hereby find a legible
explanation. A study by Liu, L.L. et al. found that a characteristic
footprint of adaptive NK cells existed in NKG2C-/- donors,
including terminal differentiation phenotypes, functional
reprogramming, and epigenetic remodeling of the interferon-
gamma (IFN-g) promoter (19).
Frontiers in Immunology | www.frontiersin.org 3
Detailed studies have shown that HCMV-associated NK
cells undergo extensive epigenetic modulation compared to c-
NK cells. The defect in FcRg is not due to gene mutation but
due to hypermethylation of the FCER1G promoter. Epigenetic
modification is also the underlying mechanism controlling a
specified function. Compared with c-NK cells, adaptive NK
cells have a superior ability to produce IFN-g and tumor
necrosis factor alpha (TNF-a) in response to stimuli
through CD16. Consistently, IFNG and TNF, encoding IFN-g
and TNF-a, respectively, show hypomethylation at the
gene loci, highlighting the mechanism of the elevated
capacity of adaptive NK cells to release these cytokines
following activation via CD16 and NKG2C (31, 32).

Though adaptive NK cells exhibit a stronger response to
CD16 cross-linking, the expression of several signaling
molecules of the CD16 pathway, including ZAP70, PLCg1,
PLCg2, LCP2, and PIK3CA, is not significantly different
between adaptive NK and c-NK cells. Of interest, SYK
expression is absent in some adaptive NK cells due to
promoter hypermethylation. The SYK-deficiency is closely
related to HCMV infection, rather than HSV-1 or HSV-2, and
can be passed along to daughter cells. The SYK-deficiency in
adaptive NK cells does not impair their function but is associated
with enhanced responsiveness to CD16 cross-linking. Notably,
SYK-deficient adaptive NK cells have mainly been found among
g-NK cells (18, 29). Another epigenetic signature of adaptive NK
cells is the hypermethylation of the promoters of several
important transcription factor (TF)-encoding genes, including
ZBTB16 (encoding PLZF), SH2D1B (encoding EAT-2), and
DAB2 (encoding DAB2). ZBTB16 silencing results in reduced
expression of PLZF and deficiency of IL-12Rb1 and IL-18Ra.
Indeed, adaptive NK cells demonstrate a marginal response to
IL-12 and IL-18 stimulation (18) (Figure 2).

It has been shown that only NKG2Chi NK cells are expanded
in HCMV seropositive individuals and experience epigenetic
remodeling of the conserved non-coding sequence 1 (CNS1) of
IFNG, similar to memory CD8+ T or Th1 cells. To cater to the
engagement of NKG2C and 2B4, the accessibility of CNS1 is
necessary to increase IFNG transcription. Indeed, a closed
configuration of CNS1 has been detected in NKG2C- NK cells
from HCMV+/- individuals and in NKG2C+ NK cells from
HCMV- individuals. Remarkably, among HCMV+ individuals,
the open configuration of CNS1 occurs exclusively in expanded
NKG2Chi self-MHC specific KIRs (sKIRs)+ NK cells.
Consistently, NKG2C+ NK cells from HCMV+ individuals do
not show a closed configuration of CNS1, similar to NKG2C- NK
cells. The CNS1 methylation that occurs in expanded NKG2Chi

NK cells does not rely on the expression of sKIRs or CD57 and is
stably retained in the daughter cells (31). Taken together,
epigenetic modification is responsible for specific phenotypes
of adaptive NK cells (Figure 2).

Collectively, adaptive NK cells have the following
characteristics: 1) associated with prior HMCV infection; 2) lack
expression of FcRg, tyrosine kinase SYK, signaling molecules
EAT-2 and DAB2, and TF PLZF; 3) do not necessarily
express NKG2C or CD57; 4) express sKIRs but lack NKG2A;
March 2022 | Volume 13 | Article 830396
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5) down-regulation of natural cytotoxic receptors (NCRs) (i.e.,
NKp46 and NKp30), CD161, Siglec7, ITGA6, CD7, PECAM1,
and TIM-3, and lack of IL-12R and IL-18R; 6) stable surface level
of NKG2D and CD16, and up-regulation of ILT2, CD2, FAS,
CD11a, CD44, CCR5, and Bcl-2; 7) mount long-term effective
recall response directed by Fc receptor (FcR)-mediated Ab-
dependent target recognition, possibly via specific recognition
by NKG2C or other known or unknown receptor; 8) epigenetic
imprinting; and 9) Ab-dependent enhanced functional
capabilities, including Ab-dependent cell-mediated cytotoxicity
(ADCC), in vitro expansion, and cytokine production (15, 16, 18,
29, 33, 34).
3 FUNCTIONAL CHARACTERISTICS OF
ADAPTIVE NK CELLS

3.1 Expansion and Effector Function
The detailed mechanism mediating adaptive NK cell
proliferation remains elusive, though NKG2C+ NK cell
Frontiers in Immunology | www.frontiersin.org 4
expansion can be observed both in vitro and in vivo (35). A
similar response to different viral infections indicates that cellular
factors mediate this expansion phenotype. Indeed, existing
evidence suggests that IL-12, IL-15, and HLA-E are critical for
the expansion of NKG2C+ NK cells (36–38). Consistently, HLA-
E and inflammatory cytokines can be up-regulated during
HCMV, hantavirus, or HIV infection. The involvement of
cytokines in mediating NKG2C+ NK cell expansion is also
supported by in vivo observations in humans infected with
viruses. Up-regulated IL-12 and IL-15 are positively associated
with HCMV serostatus in children (39). Moreover, IL-12Rb1
deficiency impairs the generation of NK cells with adaptive
features (40). However, the role of IL-12 in mediating the
expansion of adaptive NK cells requires further study, given
their low IL-12 receptor expression and marginal response to IL-
12 plus IL-18 stimulation in vitro (18, 29). Of interest, adaptive
NK cells show clonal expression of inhibitory KIRs specific for
self-HLA class I molecules, suggesting that licensing is involved
in adaptive NK cell generation or expansion (15, 18, 28).
Notably, KIRs on adaptive NK cells tend to be ligands of HLA-
C1/C2, which are also ligands for stimulating KIRs (such as
FIGURE 2 | Molecular factors govern adaptive NK cell function. Fc segment of Abs can take shape specific signal of adaptive NK cells to recognize target cells
by binding to CD16. NKG2C, CD2, TIGIT, and other unknown molecules may act as crucial signaling pathway for the activation or inhibition of adaptive NK cells.
IL-12, IL-18, and other cytokines together constitute the pro-inflammatory cytokine signal, which guides adaptive NK cell differentiation, expansion, and activation.
Epigenetic programming promotes stochastic DNA methylation-dependent allelic silencing of FCER1G, SYK, and SH2D1B. These ultimately contribute to IFNG
promoter hypomethylation and format heterogeneous adaptive NK cell repertoire. The up-regulation of ARID5B and its inducing UQCRB with low H3K9Me2 in the
promoter region alter metabolic reprogramming, prolong survival, and motivate abundant IFN-g secretion of adaptive NK cells. Abs, antibodies; CD, cluster of
differentiation; TIGIT, T-cell immunoglobulin and ITIM domain; interleukin, IL; IFN-g, Interferon-gamma; TNF-a, Tumor necrosis factor alpha; and ARID5B, AT-rich
interaction domain 5.
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2DS4), which are correlated with resistance to viral infection (28,
41). Whether KIRs play a role in adaptive NK cell expansion
requires further study.

CD16 is a low-affinity Fc receptor that is mainly expressed by
NK cells but can also be detected on neutrophils and monocytes.
The intracellular part of CD16 is short and, as a result, has a
limited ability to transduce signals in isolation. CD16 couples
with CD3z and FcRg, to deliver an activating signal. Though
many adaptive NK cells, mostly g-NK, do not express FcRg, their
response to CD16 cross-linking is even better than other NK cells
that express both CD3z and FcRg. While the underlying
mechanism for this phenotype requires further study, it has
been shown that knockout of FcRg by CRISPR-Cas9-mediated
gene editing can reconstitute this phenotype in c-NK cells (42).
This finding is interesting because it indicates, for the first time,
that FcRg can inhibit the CD16 pathway of hNK cells. It also
suggests that ADCC function can be enhanced by manipulating a
single gene other than CD16 itself. FcRg only contains one ITAM
motif, while CD3z contains three. The simplest explanation is
that the loss of FcRg makes CD16 more available to CD3z,
although the molecular mechanism of this finding warrants
further study. Upon MCMV infection, Ly49H, through
multiple surface expression, binds to m157 to drive the
differential expansion of memory NK cell clones, such as TCR
affinity. Consistent with experiments on mice that have reported
that the expression of Ly49H has a fairly strong correlation with
Ly49H+ NK cell expansion, a positive correlation between the
expression of NKG2C and the expansion of NKG2C+ cells has
also been observed in HCMV-seropositive donors (43, 44).
However, such studies have not been reported for g-NK cells
that are not specifically recognized via NKG2C, suggesting that
the specifically activated signal CD16-Fc segment or some other
unknown Ag recognition pathway is involved in avidity selection
and expansion. Remarkably, the enhanced Ab-dependent
response of g-NK cells is not limited to HCMV-infected target
cells and also applies to HSV-1-infected target cells; this indicates
that g-NK cells have considerable potential to mediate Ab-
dependent cross-protection against broad-spectrum viral
infections (16). In HCMV+ individuals, irrespective of
NKG2C+ or NKG2C-, HCMV-specific Ab invariably induces
an increase in IFN-g and TNF-a production by g-NK cells,
suggesting that the CD16 signaling pathway may be the crucial
signal for adaptive NK cell responses (29). Notably, Lee et al.
reported that g-NK cells can be significantly expanded in vitro
following the application of autologous HCMV+ serum. It is
unclear whether this expansion mainly relies on the CD16
pathway or whether other cytokines are also involved
(29) (Figure 2).

NK cells are immune sentinels that eradicate target cells and
release various cytokines and chemokines to tune the adaptive
immune response (45). The activation of NK cells is determined
by the balance between activating and inhibitory signals. NCRs,
such as NKp30, NKp46, and NKG2D, are well-known to be
important for natural killing activity, while CD16 mediates
ADCC (46). A large portion of adaptive NK cells, mostly g-

NK, have a limited number of membrane NCRs and therefore
Frontiers in Immunology | www.frontiersin.org 5
only show a marginal response when co-cultured with K562
cells (15).

3.2 Significant Regulatory Molecules
3.2.1 NKG2C
Human NKG2C, also known as KLRC2, is located at 12p13 in the
NK complex (47). NKG2C binds to HLA-E and transmits an
activating signal to NK cells. HCMV-encoded UL40 peptide can
stabilize HLA-E on the surface of HCMV-infected cells and affect
HLA-E presentation and binding to NKG2C (48). Given that
NKG2C is a critical marker for adaptive NK cells, its role in
regulating the function of adaptive NK cells has been well
investigated. Interesting progress has been reported by
Hammer et al., who demonstrated that UL40-encoded peptide-
pulsed HLA-E-expressing cells can trigger an elevated frequency
and number of NKG2C+ adaptive NK cells. Notably, due to the
variability of the peptide, its ability to induce IFN-g, TNF-a, and
CCL3 secretion by NKG2C+ adaptive NK cells differs in the
order of VMAPRTLFL > VMAPRTLIL > VMAPRTLVL, and the
same phenomenon is also observed in the cytotoxicity assay (14).
Merino et al. stimulated NKG2C chronically via anti-NKG2C
and found a significant proliferation of adaptive NK cells with
epigenetic remodeling similar to that of exhausted CD8+ T cells.
Of note, this chronic stimulation also drives the expression of
lymphocyte-activation gene 3 (LAG3), programmed death-1
(PD-1), and T-cell immunoglobulin and ITIM domain
(TIGIT), which confer the phenotype of exhausted T cells (49).

In a healthy population, the NKG2C haplotype can be
detected in approximately 20% of donors, while homozygous
deletion is common (50). The NKG2C copy number not only
determines the surface expression level of NKG2C receptor but
also directly contributes to the abundance, differentiation, and
distribution of adaptive NK cell subset in response to HCMV, as
demonstrated by NKG2C+/del compared to NKG2C+/+ healthy
individuals (30).

NK cells in NKG2C homozygous and hemizygous subjects
show differences in response to NKG2C signals (i.e., iCa2+

influx), degranulation, and IL-15-dependent proliferation,
further indicating that the receptor is involved in forming the
HCMV-induced reconfiguration of the NK-cell compartment
(51). Of note, the g-NK subset is composed of both NKG2C+ and
NKG2C- NK cells. Lee et al. found that g-NK cells could respond
to HCMV-infected target cells, regardless of NKG2C expression,
in the presence of HCMV+ plasma (29). Liu, L.L. et al. made a
similar observation in NKG2C-/- donors (19) (Figure 2).
However, the frequency of NKG2C+ NK cells after g-NK
expansion has not been well characterized. NKG2C- g-NK cells
can be expanded in vitro (unpublished data), indicating that
pathways other than NKG2C can mediate adaptive NK
cell expansion.

3.2.2 CD2
Glycoprotein CD2 is a co-stimulatory receptor expressed mainly
on T and NK cells, which binds to LFA3/CD58, a cell surface
protein expressed on other cells, such as dendritic or endothelial
cells. Previous studies have shown that CD2 is involved in the
March 2022 | Volume 13 | Article 830396
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formation of immune synapses (ISs) between immune cells and
Ag presenting cells and is up-regulated on memory and activated
T cells. Similarly, the presence of CD2 has been observed in the
ISs formed between NK and target cells. CD2 may interact with
CD16 in cis to promote its reposition as a linkage between CD16
and the actin cytoskeleton (52). CD2 expression is significantly
increased in adaptive NK cells of NKG2C+ and NKG2C-/-

donors. Additionally, the interaction between CD2 and CD16
enhances the Ab-mediated response in adaptive NK cells. Co-
ligation of CD2 and CD16 leads to significantly higher levels of
phosphorylation of all signaling molecules, including CD3-z,
ZAP70/SYK, SLP76, LAT, ERK1/2, and S6RP, suggesting that
CD16 and CD2 synergistically activate the MAP kinase and
mTOR pathways (19) (Figure 2).

3.2.3 TIGIT
TIGIT is a momentous inhibitory molecule in the PVR/nectin
family and is mainly expressed on T and NK cells, and its
immune-modulatory function has been studied in the context
of autoimmunity, viral immunity, and cancer (53). Ligating
TIGIT with high-affinity CD155 and low-affinity CD112 can
recruit SH2 domain-containing inositol-5-phosphatase (SHIP)
to ITIM and inhibit the activation of T and NK cells. Indeed,
tumor-infiltrating NK cells are found to express high levels of
TIGIT. Blocking Abs that target TIGIT and CD155 interaction
could up-regulate NK functions and inhibit tumor growth in a
mouse model (54). PB adaptive NK cells express low levels of
TIGIT and, therefore, in contrast to c-NK cells, are less sensitive
to TIGIT pathway inhibition mediated by myeloid-derived
inhibitory cells (MDSCs) (55) (Figure 2).

3.3 Metabolic Regulation
An isoform of AT-rich interaction domain 5 (ARID5B) is
selectively up-regulated and involved in supporting
mitochondrial membrane potential, the expression of electron
transport chain (ETC) components, oxidative metabolism,
survival, and IFN-g production in adaptive NK cells. The
increased metabolism observed in this subset appears to
depend, at least in part, on the up-regulated expression of
ARID5B and the induction of genes encoding components of
ETC, including the ETC complex III gene UQCRB .
Synchronously, a significantly inferior H3K9Me2 enrichment
at the UQCRB promoter was observed. Beyond this, the decrease
in ARID5B is associated with increased apoptosis and decreased
expression of BCL-2, which suggests that ARID5B is essential for
the survival of adaptive NK cells. As BCL-2 is located in
mitochondria to counteract the production of ROS, a
byproduct of ETC activity, increased BCL-2 in adaptive NK
cells may be crucial to limit oxidative stress (56) (Figure 2).
Taken together, enhancing ARID5B and mitochondrial function
is a promising strategy to improve cell survival in NK cell-
mediated immunotherapy.

3.4 Interleukin Signaling Regulation
The common gamma chain (gc) receptor family cytokines,
including IL-2, IL-15, and IL-21, are required for the
generation, persistence, and homeostasis of adaptive NK
Frontiers in Immunology | www.frontiersin.org 6
cells (57). IL-2 was first discovered as a T cell growth factor in
1976 and was later found to have various pleiotropic properties,
including the ability to augment the cytolytic activities of NK
cells and cytotoxic T cells. The IL-2 receptor a chain (IL-2Ra)
binds IL-2 at intermediate-affinity (Kd ~ 10−9 M) but can
combine with IL-2Rb and IL-2Rg to form a heterotrimer with
a much higher affinity. Equally important, NK cells cannot
survive for an extended time without IL-15 signaling, as IL-15
promotes the continuous expression of the key anti-apoptotic
protein MCL-1, and adaptive NK cells are no exception.
Moreover, IL-2 and IL-15 play a key role in NK cell function
through the JAK1/3 and STAT5-dependent signaling pathway,
which can bind to the IL-2R complex or IL-15Rb/a on the
surface of NK cells to induce the activation of b/g-related JAK1
and JAK3 tyrosine kinases. This phosphorylation further leads to
the recruitment and activation of STAT5 and the transcription of
STAT5-target genes, such as Bcl2, GzmB, Idb2, Mcl1, Pim2, and
Prf1, all of which are required for proliferation, survival, and
cytotoxicity (58). Beyond the JAK/STAT pathway, gc family
cytokines also function through other pathways, such as the
MAP kinase- and phosphoinositol 3-kinase-dependent
pathways (59).

Peptide recognition boosts adaptive NK cell expansion and
differentiation under the assistance of short-term addition of IL-
12 and IL-18, even though this subset does not express IL12/
IL18R, especially g-NK, although the exact mechanism is unclear.
The combined stimuli skew the adaptive NK phenotype and even
contribute to hypomethylation of IFNG CNS1. Additionally, a
short stimulation of IL-12 plus IL-18 induces down-regulation of
FcRg and CD7 in NKG2C+/- cells. Transcriptional levels of
adaptive NK cell-related genes are also affected by the
combination of pro-inflammatory signals plus peptide
recognition, such as NCR3, SH2DB1, ZBTB32, ZBTB16,
ZBTB20, ITGAL, and CRTAM. These signals drive sustained
transcription of genes encoding activation and apoptosis
markers, such as HLA-DR, TNFRSF9, LAG3, CTLA4, and
PDCD1, as well as effector molecules, such as IL8, CSF2, IL10,
GZMB, IFNG, TNF, CCL3, CCL4, and TNFSF10 (14).
4 DIFFERENTIATION AND TISSUE
DISTRIBUTION OF ADAPTIVE NK CELLS

Generally, hNK cells account for approximately 5%–15% of the
total PB lymphocytes. The half-life of circulating NK cells is
approximately 14 days, and the proliferation is 4%–5% per day.
hNK cells stem from a common innate lymphoid progenitor
(CILP) via an NK cell precursor (NKP), both of which are
differentiated from a common lymphoid progenitor (CLP)
(60). Subsequently, under the regulation of TFs, such as TOX,
TBX21, ETS1, and E4BP4, NKP further differentiates into
immature NK cells (iNK) in an Eomes-dependent manner to
become highly proliferative CD56bright NK cells. Additionally,
RUNX2, GATA3, and BACH2 constitute a regulatory network
that dominates the formation of the mature CD56dim subgroup.
Besides the down-regulation of CD56, terminal differentiation of
March 2022 | Volume 13 | Article 830396
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NK cells involves the modulation of receptor profile, the
acquisition of cytotoxic function, and even epigenetic
modifications, which constitute the heterogeneity of NK cells
(61). Although the differentiation of adaptive NK cells is poorly
understood, it is feasible that adaptive NK cells may be derived
from the CD56dimCD57+ subgroup. Holmes et al. considered
that the TF regulation network shifts with the down-regulation
of ZBTB16 and the up-regulation of BCL11B, which may be
mutually antagonistic. Ultimately, BCL11B acts as the top of the
pyramid to regulate YBX3, PBX4, SATB2, IRF4, and NFIC, in the
formation of adaptive NK cells (62) (Figure 3).

Mounting evidence has shown that the development of
adaptive NK cells and CD8+ T cells has an analogous process.
Transcriptional profiling reveals that the differentiation axis of
CD7loNKG2C+NKp30loCD57+ adaptive NK cells converges
toward that of CD45RAhiCD28-CCR7-CD27-CD57+CD8+ T
cells (62). Immature T cells complete positive and negative
selection to obtain MHC restriction and central immune
tolerance, respectively, in the thymus. Correspondingly, iNK
cells undergo a similar process known as “missing self” and
“education” or “license” by expressing self- and non-self KIRs to
form a repertoire that binds to MHC-I ligands. Eventually,
mature NK cells are formed with effector function and self-
tolerance (63–65). Kim et al. and Bryceson et al. further
suggested that HCMV-induced epigenetic modification and
Ab-dependent expansion are mechanisms underlying the
formation of this memory-like NK cell pool, paralleling with
cytotoxic effector T cell (Teff) differentiation (18, 29). The
genome-wide analysis illustrated that the methylation
characteristic of early mature NK cells (CD56dimCD57bright

EAT2+) was different from that of Teff cells. However,
CD56dimCD57brightEAT2- adaptive NK cells are quite similar to
Frontiers in Immunology | www.frontiersin.org 7
those of Teff cells. Comparing adaptive NK cells with Teff cells, 61
differential methylation regions are found; nevertheless, there are
up to 2372 differences between early mature NK (CD56dim

CD57-) and adaptive NK cells (18). Heath et al. suggested that
the extensive expansion of NKG2C+CD57+ NK cells after sensing
stress served to keep pace with HCMV reactivation or other
factors behind such expansion; this adaptive property is similar
to that of virus-specific CD8+ T cells in that it does not involve
replication. The accumulation of this NK subset may reflect the
NK immune response, which is homologous with the expanded
adaptive T cell response, marked by the accumulation of HCMV-
specific effector memory T cells (Tem) (66). The integrative-
omics analysis revealed that super-enhancers related to gene
cohorts might coordinate NK cell function and localization. The
TCF7-LEF1-MYC module in CD56bright NK cells may
participate in preserving the progenitor cells, which can further
replenish adaptive cells after BLIMP1 induction. TCF7-LEF1 is
weakly expressed in adaptive NK cells that show a terminal
differentiation state closer to that of Tem and Th1 cells (67).
These results further illustrate the correlation between
adaptive NK cells and Teff during differentiation and tissue
colonization (Figure 3).

GATA-2 expression is confined to hematopoietic stem and
progenitor cells (HSPC). Patients with heterozygous GATA2
mutation frequently exhibit immunodeficiency, such as no NK
cell progenitors. However, in some patients with GATA-2
mutation, a durable survival or self-renewing PLZF- adaptive
NK cell pool has been observed. These cells express low levels of
perforin and GZMA but high levels of GZMB. Similar to adaptive
NK cells in healthy individuals, these NK cells respond to FcR
pathway-stimulation but not to IL-12 plus IL-18 (68). The
expression of cytotoxic granule components is controlled by
March 2022 | Volume 13 | Article 830396
FIGURE 3 | Adaptive NK cell development and differentiation. The positive and negative selection experienced by T cells in the thymus may be similar to the
“license” and “education” of NK cells in BM. Subsequently, non-self KIRs expressed on NK cell surface facilitate adaptive NK cell diversity. TF networks show
reciprocal regulation during distinct stages of NK cell differentiation, in particular, Bcl11b is fundamental for the differentiation of adaptive NK cells and c-NK cells. At
the genome levels, adaptive NK cells accompanied by altered methylation properties are parallel to Teff cells. In addition, the circulating inflammatory progenitor cells
in PB may as a source of adaptive NK cells during HCMV and HIV co-infection. BM, bone marrow; KIRs, killer cell immunoglobulin-like receptors; TF, transcription
factor; HSC, hematopoietic stem cell; CILP, common innate lymphoid progenitor; NKP, NK cell precursor; CLP, common lymphoid progenitor; iT, immature T cell;
iNK, immature NK cell; c-NK, conventional NK; and PB, peripheral blood.
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T-bet and Eomes (69). Consistently, T-bet expression in these
adaptive NK cells is significantly lower than that in typical PLZF+

NK cells, but there is no clear difference in Eomes expression.
PLZF- adaptive NK cells in patients with GATA2 mutation show
functional properties related to those of adaptive NK cells from
healthy individuals. Although they help to kill infected cells, the
high-frequency adaptive NK cells in individuals with GATA2
mutation may cause inflammation-driven BM failure (68).
Another important discovery suggested that the differentiation
and function of adaptive NK cells can be independent of
glycosylphosphatidylinositol (GPI) anchors in patients with
paroxysmal nocturnal hemoglobinuria (PNH), which frequently
undergoes somatic X-linked PIGAmutations that lead to a lack of
GPI anchored membrane proteins on hematopoietic cells (70). In
short, the homeostasis of adaptive NK cells in the periphery may
not depend on HSPC or CD56bright precursor NK cells.

A recent study showed that in HIV+ anti-retroviral-treated and
HCMV+ reactivated patients, HCMV-controllingNKG2C+ adaptive
NK cells may be derived from novel circulating inflammatory
precursors marked by Lin-CD34+ DNAM-1brightCXCR4+ and can
rapidly differentiate into an NKG2C+KIR+CD57+ NK subset.
Moreover, other Lin-CD34-CD56-CD16+Perf-CD94-CXCR4+

precursors from CLP also possess the potential to develop toward
memory-likeNKG2C+NKcells (71) (Figure 3). It is inferred that the
precursors of adaptive NK cells are released and circulate in PB
during viral infection, where they exert powerful killing activity upon
maturation. Overall, to date, it is unclear whether adaptive NK cells
are specifically differentiated from a subgroup of CLP. No current
studies have reported that c-NK cells from HCMV seronegative
donors can be induced to differentiate into an adaptive NK cell state
in vitro (72). Existing studies have shown that they aremore likely to
be NK cells with cytotoxic T-like specificity. Thus, the concrete
mechanisms of their differentiation source and regulatory factors
require further experimental data support.

After maturation, adaptive NK cells migrate to multiple
peripheral organs but are preferentially present in non-
lymphoid organs. In addition to PB, adaptive NK cells can
colonize the tonsils, lymph nodes (LNs), liver, pleural fluid,
and other sites. Interestingly, adaptive NK cells can also
infiltrate into tumor tissues, such as in non-small cell lung
cancer (NSCLC) (73) and colon cancer (unpublished data).
Additionally, Shah et al. explored the presence of NK cell
memory in primates and discovered a systematic distribution
of Dg NK cells, referred to as g-NK, with adaptive features
through a rhesus macaque model. They also found that in
addition to PB, Dg NK cells were also distributed in the spleen,
BM, multiple lymph nodes, and colon mucosa. Apart from
CMV-induced expansion, rhesus cytomegalovirus (RhCMV)-
primed Dg NK cells can also be affected by simian
immunodeficiency virus (SIV) infection, following which they
are recruited into the mucosa and effector tissues. Dg NK
function is subverted by SIV infection through inhibition of
the CD16-mediated CD3z-ZAP70 pathway. Most importantly,
Dg NK cells chose CD3z-Zap70 signaling as an alternative
pathway, which can modulate CD16 density, mucosal homing,
and NK function while forgoing typical g-chain/SYK signaling
Frontiers in Immunology | www.frontiersin.org 8
(74). This model provides an optimized experimental animal
model for further exploration of the function of adaptive NK
cells in the future.
5 CLINICAL RELEVANCE OF ADAPTIVE
NK CELLS

The imprint mediated by HCMV infection on the adaptive NK
cell repertoire is usually fixed at the initial encounter. The
stability of the impact probably depends on the host and virus
genetics, as well as environmental factors, such as age and viral
load at initial infection. However, inefficient control of potential
infections is associated with immunosenescence or dysregulated
immunity, which may promote the expansion of pre-
differentiated adaptive NK cells (75). In umbilical cord blood
transplantation (UCBT) recipients, HCMV reactivation may
induce rapid phenotypic reconfiguration, including the early
and late acquisition of certain adaptive characteristics (76).
Adaptive NK cells may play a part in in processes involving
specific Abs, such as immune complex diseases or targeted Ab-
based cancer therapy. As the definition of adaptive NK cells does
not entirely overlap with that of the previously discovered
NKG2C+ NK cells, it remains to be elucidated whether
adaptive NK cells are also suitable for these models. Moreover,
it is currently unclear whether adaptive NK cells may protect
against or promote disease progression.

5.1 Viral Infection
HCMV impacts both innate and adaptive subsets and immune
responses during its three-phase infection, that is, acute
infection, persistence, and latency/reactivation, leading to
immune system shaping (77). Early studies have shown that
NK cells are critical for controlling herpesvirus infection (78).
Not only are they involved in first-line innate defense, but the
latest data based on mice show that memory-like NK cells with
adaptive lymphocyte characteristics can be triggered in phase I of
HCMV infection and can be preferentially maintained in the
later phases. The presence of an abundance of adaptive NK cells
may be associated with considerable clinical prognosis, especially
for patients with cancer who use approved monoclonal
antibodies (mAbs) that can effectively trigger ADCC. However,
NKG2Chi NK cells account for 50% of the entire compartment in
some HCMV-infected individuals, which will reduce the
diversity of the overall NK pool and attenuate surveillance of
heterologous infection or tumor progress (77).

In virologically suppressed patients with HIV, expanded
adaptive NK cells express low levels of HLA-DR and CD38
and lack NKp30 and NKp46 expression. This may be damaging
to NK-mediated immune surveillance in patients receiving
combination antiretroviral therapy. The presence of this
subgroup is related to HCMV serology and soluble CXCL10 in
plasma (25). Likewise, in cHBV and HCMV co-infected
individuals, adaptive NK cells show increased frequency and
polarization compared to c-NK cells (79). Furthermore, adaptive
NK cells are also present in individuals with HCV infection.
March 2022 | Volume 13 | Article 830396
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Notably, direct antiviral therapy can alter the PD-1 expression
and ADCC activity of adaptive NK cells, resulting in improved
effector function (23). Another interesting finding indicates that
in chronic HCV-infected HCMV+ subjects, adaptive NK cells
account for most of the CD56negCD16+ population, in addition
to constituting a fraction of CD56dimCD16+. Adaptive NK cell
carriers have lower levels of liver enzymes and fibrosis, revealing
that the involvement of adaptive NK cells in chronic HCV
infection can effectively ease liver disease (80). Petitdemange
et al. demonstrated that acute Chikungunya virus (CHIKV)
infection promotes a transient change in the phenotype and
function of NK cells, as evidenced by transient clonal expansion
of NK cells co-expressing CD94/NKG2C and HLA-C1 alleles,
decreased expression of NKp46, NKG2A, and CD161, and up-
regulated expression of CD57, ILT2, and NKp44. Intriguingly,
NKG2C can rapidly increase in response to acute CHIKV
infection and enter the contraction phase following viral
clearance. The clonal expansion of this subset is correlated
with viral load, indicating that NK cells can sense CHIKV
from the onset of infection, thereby helping to eliminate the
virus (81). Hart et al. found that the frequency of adaptive NK
cells is positively associated with a favorable prognosis of malaria
after natural exposure to Plasmodium falciparum. Erythrocytes
infected with P. falciparum can induce NK cell degranulation
and be lysed via ADCC in the presence of plasma from patients
infected with malaria. The significance of this research is that an
imminent vaccine with IgG1 and IgG3 Abs against P. falciparum
Ags expressed on the surface of infected erythrocytes could
stimulate CD16 to ultimately achieve effective elimination of P.
falciparum (82).

In the process of coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), adaptive NK cells are enriched in patients
compared to healthy donors. This difference is particularly
obvious in patients with fatal outcomes. Moreover, the
frequency of adaptive/memory NK cells in deceased patients
increases statistically (83). Other work showed that adaptive NK
cells had signs of expansion in patients with COVID-19, but this
did not rely on the HCMV activation secondary to COVID-19.
Compared to nonresponding adaptive NK cells, responding
adaptive NK cells express HLA-DR, CD38, CD62L, and MIP-1,
while the expression of NKG2A, NKG2D, TIGIT, and CD25 is
marginal (84). Furthermore, NKG2C and HLA-E host genetic
variation may determine the severity of COVID-19 symptoms.
Indeed, the expression levels of KLRC2del and HLA-E*0101 are
significantly higher in patients hospitalized with COVID19,
especially in those requiring intensive care, compared to
patients with mild symptoms (85).

5.2 Transplantation Immunity
As the first reconstituted lymphocyte after transplantation, NK
cells may be strongly imprinted by HCMV, especially in a
transplant setting where T-cell immune function is chronically
impaired (86). Muccio et al. noticed that in UCBT recipients
undergoing HCMV reactivation, the down-regulated expression
of FcRg was detected at a later time point (i.e., twelfth month),
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while other adaptive NK phenotypes were acquired early after
UCBT (i.e., sixth month). Additionally, FcRg was found to be
more frequently down-regulated in NKG2C-CD57+ NK cells
compared to the classic memory-like NKG2C+CD57+ subset.
They further demonstrated that down-regulation of PLZF and
FcRg are independent events, as the down-regulation of FcRg in
NKG2C-CD57+ NK cells does not show a corresponding down-
regulation of PLZF at 24 months post-transplantation. This may
require HCMV reinfection/reactivation to achieve stable
epigenetic reprogramming that allows for sustained FcRg
silencing. The expansion ability of adaptive NK cells is
significantly improved in the presence of IgG Abs, suggesting
that the low frequency of adaptive NK cells is related to the
impaired humoral response in the UCBT recipient (76).

Whether the increased proportion of adaptive NK cells
mentioned above (anti-COVID-19 immune response) is a
double-edged sword for the body to defend against exogenous
infection or tumor immunity remains a pressing research
question. According to the existing results, the potential cross-
reactivity of adaptive NK cells can be beneficial in the treatment
of leukemia. Interestingly, patients with acute myeloid leukemia
(AML) who undergo hematopoietic stem cell transplantation
(HSCT) have a lower relapse rate and superior disease-free
survival (DFS) when the donor and/or recipient is HCMV
seropositive before transplantation; these individuals benefit
from the expansion of CD56dimCD57+NKG2C+ adaptive NK
cells in response to HCMV reactivation (87). Nguyen et al.
considered that NKG2C+ adaptive NK cells can eradicate the
minimal residual disease by cross-reactive recognition with
HLA-E+ leukemic blasts (88). Ex vivo experiments have shown
that adaptive NK cells enriched in HLA-E ligands have enhanced
alloreactivity to HLA-mismatched targets and even serve as a
specific and efficient killer of allogeneic pediatric T- and
precursor B-cell acute lymphoblastic leukemia (ALL) blasts (89).

Immunosuppressed kidney transplant recipients (KTRs)
induced by thymoglobulin have a poor immune response
and may be infected after receiving transplants collected
from HCMV seropositive donors. In KTRs receiving
immunosuppressive therapy, primary HCMV infection,
reactivation, or reinfection is associated with graft loss and
reduced patient survival. The damaging effect of HCMV on
KTRs can be prevented by post-transplant viremia screening,
antiviral prophylaxis, and mTOR targeting drug treatment.
However, the control of HCMV replication in KTRs depends
on the recipients’ immune system to restrain the pathogen (90).
Among KTRs that are clinically stable for more than 2 years after
transplantation, HCMV seropositivity or HCMV DNA
replication can alter the NK cell phenotype. In KTRs with
active HCMV replication, an expanded FcRg–LIR-1+NKG2C–

NK subset exhibits vigorous ADCC function in the presence of
immobilized HCMV glycoprotein B reactive Abs; however, low
expression of perforin after co-culture with K562 suggests that
the natural killing ability of this subset is weakened. These results
demonstrate that HCMV can relapse in asymptomatic KTRs and
that this recurrence leads to continuous exposure of NK cells to
HCMV to promote the expansion and persistence of adaptive
March 2022 | Volume 13 | Article 830396
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NK cells in vivo (91). This expansion also applies to the
involvement of NKG2C+ adaptive NK cells in the control of
HCMV in KTRs. Consistently, the incidence of viremia after
transplantation is reduced in the case of transplantation of large
numbers of NKG2C+ NK cells (92).

5.3 Tumor Immunity
Based on preclinical and clinical observations, as well as the
aforementioned HSCT, adaptive NK cells promote the control of
hematopoietic malignancies and prevent recurrence of disease.
An analysis of 215 patients with hematological malignancies
demonstrated that transplantation conditions significantly affect
the functional NK cell pool. The levels of adaptive NK cells in
recipients receiving non-myeloablative therapy (NMAC) are
statistically higher than those in recipients receiving
myeloablative therapy (MAC), and high HCMV neutralizing
Ab titers have certain promotion significance for adaptive NK
cell expansion. Multivariate analysis of DFS, relapse, and
treatment-related mortality (TRM) suggests that NMAC
recipients with a large number of adaptive NK cells have
favorable clinical outcomes 6 months after HCT (93).

Similar effects have been observed for the treatment of multiple
myeloma (MM) with CD38-specific Ab, daratumumab. CD38 is
highly expressed in hematopoietic stem cells (HSCs) and MM and
functions as a receptor-mediated adhesion to regulate the cyclase
and hydrolase activities. Daratumumab targeting CD38 can lyse
lymphoma cells or CD38+ immunosuppressive cells through Fc-
mediated complement-dependent cytotoxicity (CDC), ADCC,
and Ab-dependent cellular phagocytosis (ADCP) (94).
Immunophenotypic characteristics and functional analysis of
adaptive NK cells from newly diagnosed multiple myeloma
(NDMM) patients showed that adaptive NK cells exhibit an
observably lower level of CD38 expression compared to c-NK
cells, suggesting that they can evade daratumumab-induced
fratricide. A recent study has shown that knockdown of the
ectoenzyme CD38 in high-affinity non-cleavable variant of
CD16a (hnCD16a)-induced pluripotent stem cell (iPSC) NK
cells enhances their metabolic capacity, particularly glycolysis
and cysteine metabolism, and improves their relative resistance
to oxidative stress. The metabolic profile of this subset is also
observed in adaptive NK cells (95). Encouragingly, CD38low

adaptive NK cells exert a powerful daratumumab-mediated
ADCC in vitro, and the frequency of this subset is positively
correlated with the effector function of daratumumab (96). In vivo
or in vitro studies by Bigley et al. further support the effective anti-
tumor effect of g-NK cells combined with therapeutic mAbs,
daratumumab and elotuzumab, targeting signaling lymphocytic
activation molecule F7 (SLAMF7), in MM. Consistent with the
above, g-NK cells express minimal levels of CD38 and SLAMF7 on
their surface. In NSGmice, following in vitro expansion, g-NK and
c-NK cells were adoptively transferred and supplemented by
daratumumab and rhIL-15 to achieve in vivo expansion. After
31 days, g-NK cells persisted in the blood and spleen, with more
than 10-fold higher numbers than c-NK cells. In a disseminated
orthotopic xenograft MM.1S model, compared to daratumumab
plus c-NK cells, adoptive treatment with a combination of
daratumumab and g-NK cells reduces average tumor burden by
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> 99.9%. Moreover, 5 of the 7 mice eliminated the burden of
myeloma, with a survival rate of up to 100% after 60 days.
Interestingly, the persistence of expanded g-NK cells is detected
in the blood, spleen and, BM relative to that of c-NK cells in the
MM model (57).

Contrary to the positive role played by adaptive NK cells in
hematological tumors, HCMV infection and the existence of
adaptive NK cells in solid tumors may be a negative factor. A
solid tumor is a major adverse outcome of orthotopic liver
transplantation (OLT), and 60%–90% of transplant recipients
develop HCMV infection due to reactivation of the latent virus
or new infection after long-term immunosuppressive treatment.
HCMV can infect tumor cells, including medulloblastoma and
colon carcinoma, and HCMV infection of tumor cells may
disrupt the recognition by NK cells via down-regulating the
expression of MHC class I molecules on tumor cells (97–99).
Baryawno et al. discovered that HCMV infection of primary
medulloblastomas and medulloblastoma cell lines further up-
regulated COX-2 expression and PGE2 production in tumors,
thereby stimulating tumor cell proliferation (100). The work by
Achour et al. emphasized the complexity of the NK cell
response and its clinical impact after OLT. Importantly, the
new development of head and neck neoplasm or colon cancer
was associated with the aberrant expansion of adaptive NK cells
and robust production of TNF-a in HCMV+ patients. In
contrast, NK cells from patients with genitourinary system
tumors had classic iNK cell characteristics, including high
expression of NKG2A and powerful IFN-g production. TNF-
a is closely related to the replication of CMV and can
significantly increase malignant transformation by triggering
the NF-kB transcription activator, eventually leading to
immune failure in controlling various malignant tumors.
Nevertheless, the level of IFN-g can predict the long-term
survival rate of patients with gastrointestinal stromal tumors
after treatment with imatinib mesylate (101). In summary, in an
immunosuppressive environment, the interaction between the
NK repertoire and HCMV status may greatly hinder the
spectrum of immune surveillance, which is preferential to the
growth and development of specific neoplastic tumors
after OLT.
6 THERAPEUTIC POTENTIAL OF
ADAPTIVE NK CELLS

NK cell-based immunotherapy demonstrates promise.
Currently, NK cell strategies for tumor immunotherapy
include autologous or allogeneic NK cell therapy activated in
vitro, a combination of NK cells and mAbs, such as immune
checkpoint inhibitors (ICIs), rituximab, daratumumab,
trastuzumab, and cetuximab, and construction of CAR-NK
cells (102). Cytokine-induced human memory-like NK cells in
NSG mice reveal an enhanced response to stimuli from several
weeks to months after the initial adoptive transfer and a superior
anti-tumor activity against AML. Similarly, in a first-in-human
phase I clinical trial, adoptively transferred memory-like NK cells
March 2022 | Volume 13 | Article 830396
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proliferate and expand in patients with AML and manifest a
robust response to leukemia target (103). Chimeric Ag receptors
(CARs) have been applied to improve the specific recognition of
tumor cells by effector lymphocytes. CD19-CAR-memory-like
NK cells targeting CD19 have shown a promising anti-tumor
response to lymphoma in a preclinical study (104). For a long
time, NK cells have been considered as short-lived innate effector
cells (105). However, several lines of evidence indicate that
adaptive NK cells have an unexpected long lifespan compared
to c-NK cells, resembling adaptive memory cells, which can live
for months to years (16). Based on the success of cytokine-
induced memory-like NK and g-NK cells coupled with
daratumumab in vivo and the durable longevity of adaptive
NK cells, we hold the opinion that adaptive NK cells are
suitable candidates for adoptive cell therapy.

Here, we propose several aspects to accelerate the clinical
application of adaptive NK cells:

1) Developing Ag-specific Abs or NK cell engagers (NKCEs)
that trigger the CD16 pathway to mimic TCR or BCR and
significantly broadens the spectrum of Ag specificity of
adaptive NK cells (106–108).
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2) Stabilizing membrane CD16 and target Ag. Methods to
significantly improve ADCC efficiency can be considered in
terms of both adaptive NK and target cells, such as avoiding
CD16 on the surface of adaptive NK cells being cleaved by A
disintegrin and metalloproteinase-17 (ADAM17) and Matrix
Metalloproteinase (MMP), enhancing its high-affinity binding
to the Fc segment, or advancing of Ag presentation to the surface
of tumor cells to reduce endocytosis (109, 110).

3) Manipulating co-regulatory pathways expressed on NK cells
with either co-activated receptor agonist or co-inhibitory receptor
blocking Abs, all of which are effective means to strengthen the
activation and functions of adaptive NK cells, such as adding 4-
1BB/CD28 and CD3z co-stimulatory signals, blocking the co-
inhibitory pathway with EOS-448 against TIGIT, and stimulating
the co-activation pathway of CD2, NKG2C, and 4-1BB (111).

4) Up-regulating ARID5B in adaptive NK cells to maintain
their long-term survival. ARID5B is a transcriptional regulator
that regulates anti-apoptosis, oxidative metabolism, and IFN-g
secretion in adaptive NK cells (56) (Figure 4).

Our current results show that lentivirus infection in vitro can
lead to down-regulation of FcRg in c-NK cells, resulting in a
FIGURE 4 | Future therapeutic strategies are based on adaptive NK cells. (A) When the CD16 pathway is activated by Abs or NKCEs binding to different targets,
adaptive NK cells secrete numerous IFN-g and TNF-a to regulate anti-tumor immunity; (B) Methods to significantly improve the efficiency of ADCC can be
considered from two aspects of adaptive NK cells and target cells, such as avoiding CD16 on the surface of adaptive NK cells being cleaved by ADAM17 or MMP,
enhancing its binding with Fc segment in a high-affinity manner, and advancing Ag presentation to the surface of tumor cells to reduce endocytosis; (C) Adding 4-
1BB/CD28 and CD3z co-stimulatory signals to adaptive NK cells, or blocking the co-inhibitory pathway with the antagonistic Ab EOS-448 of TIGIT, and stimulating
the co-activation pathway of CD2, NKG2C, and 4-1BB with agonist are all effective means to strengthen adaptive NK cell function; (D) Up-regulation of ARID5B
expressed in adaptive NK cells can alter its metabolic characteristics, resulting in longer persistence and increased function. NKCEs, NK cell engagers; ADCC, Ab-
dependent cell-mediated cytotoxicity; ADAM17, A disintegrin and metalloproteinase-17; and MMP, Matrix Metalloproteinase.
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prominent increase in the proportion of adaptive NK cells
(unpublished data). Therefore, in the future, immunotherapy
based on the above strategy will also apply to general NK cells or
non-HCMV reactive memory-like NK cells. HCMV reactive
adaptive NK cells have a unique advantage of being invoked as
a cell therapy tool. They have a stronger Ab-dependent response-
ability than c-NK cells and can maintain a longer survival time in
vivo, which greatly exerts ADCC function and improves the
curative effect.
7 CONCLUSION

A primary physiological role of NK cells is to provide a primary
defense against pathogenic organisms during the initial response
period when the adaptive immune system is activated. Although
NK cells respond to various microorganisms, including bacteria
and protozoa, they are particularly imperative in viral infections.
Through Fc receptor-mediated recognition of target cells bound
by Abs, adaptive NK cells can produce a robust response to
infected cells, especially during chronic or recurrent infection,
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where reactive Abs are readily available. Considering that
adaptive NK cells are present in a fraction of healthy
individuals, the presence or absence and frequency of adaptive
NK cells may accelerate immune heterogeneity among
individuals against infection and cancer. Adaptive NK cells can
serve as a novel tool for the clinical treatment of chronic diseases,
such as malignancies and viral infections.
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