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Abstract

Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely
recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated
with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that
Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study,
our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium
pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion
mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that
resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We
also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from
hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper
basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F.
verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in
a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and
F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species.
These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide
development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi.
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Introduction

Asexual sporulation is the preferred mode of reproduction in

most pathogenic fungi [1,2]. More importantly, these asexual

spores, commonly known as conidia, are used as a primary

dissemination tool as well as for initiating infection [3–7]. Under

favorable conditions, fungal pathogens can rapidly propagate and

spread to cause diseases in economically important crops as well as

humans and animals. Significantly, recent studies have shown that

fungal pathogens responsible for plant diseases can also cause

opportunistic mycosis in humans [8,9]. However, the mechanisms

of asexual sporulation are diverse and complex and remain largely

undefined in numerous pathogenic fungi. In model organisms,

namely Neurospora crassa and Aspergillus nidulans, signaling pathways

that regulate conidiation have been extensively studied, and

excellent reviews are available [2,10,11]. Briefly, there are key

transcriptional regulators known to be involved in this process.

One important gene that plays a critical role in the transition from

conidiophore to condia formation is brlA in A. nidulans [12].

Further genetic and biochemical studies led to the discovery of

abaA and wetA [13,14]. These three genes (brlA-abaA-wetA) have

been proposed to constitute a central regulatory pathway that acts

in concert with other genes to control conidiation in Aspergillus

[15,16]. However, we also need to recognize that different fungal

species may have developed different regulatory mechanisms for

producing various types of conidia.

The genus Fusarium is considered the most important and

diverse genera of plant pathogenic fungi and causes a wide range

of diseases in every economically important crop species [17,18].

Several species within the genus are also associated with the

production of mycotoxins which poses a significant threat to food

safety and human health [19–22] Moreover, once considered a

relatively uncommon cause of ocular disease, Fusarium species have

emerged as one of the leading causes of human keratomycosis

outbreaks, along with Aspergillus and Candida species [23,24] The
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genomes of closely related Fusarium species, F. graminearum, F.

verticillioides, and F. oxysporum, have been sequenced mainly due to

their economic and scientific importance [18,25,26]. In addition,

these Fusarium species offer a unique opportunity to investigate

numerous biological features, including distinct asexual sporula-

tion modes. In recent years, a number of conidia-related genes in

Fusarium species have been identified by insertional mutagenesis or

targeted gene deletion approaches. Several genes are important

transcriptional regulators, such as FgSTUA, FoSTUA and REN1,

which are conserved in filamentous fungi and essential for

conidiogenesis [27–29]. Genes such as FgVEA, FvVE1 and FgTEP1

are involved in multiple signaling pathways, regulating virulence,

secondary metabolism and conidiation [30–32]. Some important

signal transduction related genes, e.g., GPMK1, GzSNF1 and FAC1,

which encode various protein kinases are also required for

conidiation in Fusarium species [33–37]. However, molecular

mechanisms underlying conidiogenesis in Fusarium species is

complex and does not seem to adhere to the regulatory pathway

established in A. nidulans and N. crassa [2,10,11,38]. Therefore, it is

currently difficult to unambiguously define genetic mechanisms or

signaling pathways required for this important biological process

in Fusaria.

Although F. graminearum, F. verticillioides and F. oxysporum are

defined into the same genus, they exhibit distinct features in

asexual sporulation. For instance, F. graminearum only produces

macroconidia on solitary phialides or on multiple phialides borne

on conidiophores [27]. In F. verticillioides, the fungus grows as

haploid mycelia and propagates vegetatively via hyphal elongation

and produces two types of asexual spores, macroconidia and

microconidia [39]. Macroconidia emerge from macroconidio-

phores, which are branched and unbranched monophialides

[40,41]. Similarly, unicellular and uninucleate microconidia also

arise from branched and unbranched monophialides, frequently

forming long conidial chains and false heads. When compared to

the other two, F. oxysporum is unique in the fact that it can only

reproduce asexually, but through three different types of conidia:

microconidia, macroconidia, and chlamydospores [40–42]. Mi-

croconidia are ellipsoidal and have no or one septum, macroco-

nidia are falcate and have three or four septa, and chlamydospores

are globose-like with thick walls [29,40].

Despite the structural difference between macroconidia and

microconidia, conidiation pattern is very similar, and the use of

enteroblastic mechanisms from the phialide is common in all three

species [43]. In Fusarium species, phialides are cylindrical, solitary

or produced as a component of a complex branching system.

Microconidia are formed from phialides with false heads or from

long chains by basipetal division, from the apex toward the base

[44,45]. Macroconidia with pronounced foot cells are generally

produced from phialides on conidiophores also by basipetal

division [46]. However, in F. oxysporum the chlamydospores are

produced acrogenously from hyphae or by the modification of

hyphal cells and conidial cells through the condensation of their

contents [47].

Transcriptional regulation plays a critical role in altering the

expression of specific subsets of genes associated with development

and differentiation in cells [48,49]. In our previous study, we

identified and characterized Htf1, an important homeobox

transcription factor (TF) required for conidiogenesis, in Magna-

porthe oryzae [7,50]. We reasoned that Htf1 may also play a critical

role in Fusarium conidiation. However, considering that different

Fusarium species have different mode of conidiogenesis, we also

hypothesized that Htf1 can perform unique function in different

species. In this study, our aim was to functionally characterize Htf1

orthologs in F. graminearum, F. verticillioides and F. oxysporum, and

determine its role in conidiogenesis. Results showed that Htf1

ortholologs in three Fusarium species have significant similarity in

specifically regulating phialidegenesis and subsequent macroconi-

diation. Moreover, Htf1 ortholologs in F. verticillioides and F.

oxysporum are required for morphogenesis of microconidial chains

and false heads.

Results

Comparative analysis of Htf1 orthologs in Fusarium
species

Htf1 was reported previously as a key regulator of conidiogen-

esis in M. oryzae [7,50]. To investigate functional conservation, we

first isolated genes encoding Htf1 homolog in three Fusarium

species as well as other filamentous fungi via BLAST analysis.

Study of databases (Broad Institute Fungal Genome Initiative

[www.broadinstitute.org] and Fungal Transcription Factor Data-

base [ftfd.snu.ac.kr]) revealed that M. oryzae Htf1 homolog is

present in these fungal species and that these homologs contain a

conserved homeodomain motif, predominantly located in the N-

terminus region (data not shown). As anticipated, the homeodo-

main motif was highly conserved in Fusarium species and M. oryzae

(Figure 1A), but a high level of variability was observed in the C-

terminus region between M. oryzae and Fusarium species. When we

compared the predicted protein sequence of F. graminearum

FGSG_07097 gene (designated FgHTF1), F. verticillioides

FVEG_08072 gene (designated FvHTF1), F. oxysporum

FOXG_01706 gene (designated FoHTF1), and M. oryzae

MGG_00184 gene (previously HTF1 [50], designated MoHTF1

in this manuscript), identity was greater than 95% at the protein

level within the homeodomain amongst Fusarium species, and

MoHtf1 homeodomain shared 60% identity with Fusarium

counterparts (Figure 1B). These genes also share a highly

conserved exon/intron structure (Figure S1A). Outside the

homeobox domain region, protein similarity drops significantly

when compared across fungal species (data not shown), and no

known functional motifs or biologically significant domains exist

(Figure S1B). In Arabidopsis thaliana Athb-12, the C-terminus region

has been shown to serve as the activation domain [51], but

functional role of Htf1 C-terminus region in fungi have not been

characterized to date.

FgHTF1 is dispensable for vegetative growth and fertility
but essential for conidiation

In order to study the function of Htf1 ortholog in Fusarium

conidiogenesis, we first deleted FgHTF1 in F. graminearum using

gene replacement approach (Table S1, Figure S2A). Transfor-

mants were selected on hygromycin-amended medium, and gene

deletion was confirmed by polymerase chain reaction (PCR) and

Southern blot analyses (Figure S2B and S2C). FgHTF1 deletion

mutant (DFghtf1) showed no discernible difference in vegetative

growth and sexual reproduction when compared to the wild-type

strain PH-1 on complete medium (CM) and wheat kernels

medium, respectively (Table 1, Figure S3A and S3B). However,

DFghtf1 mutant showed significantly reduced macroconidia

production in liquid carboxymethylcellulose (CMC) medium

[52]. After three days, only 1.0060.876104 macroconidia were

observed in DFghtf1, whereas 51.4466.646104 macroconidia were

in PH-1 (Table 1). Even after fifteen days of incubation, DFghtf1

mutant did not recover the production of macroconidia compared

to PH-1, indicating that this reduction in conidiation was not

related to the duration of incubation (Table 1). The defect in

conidia production was fully recovered to the wild-type level in the

complemented strain DFghtf1-Com, where the native promoter-

Fusarium Phialide Development and Conidiogenesis
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driven FgHTF1 gene cassette was re-introduced into DFghtf1

(Figure S2B and S2C, Table 1). These results indicate that

FgHTF1 is critical for macroconidia production in F. graminearum.

FgHTF1 specifically regulates phialidegenesis and
subsequent conidiation

In order to investigate the reason for significantly reduced

conidiation in DFghtf1, we microscopically observed fungal tissues

grown in CMC, a medium that promotes fungal conidiation.

Under the same culture condition, PH-1 and DFghtf1-Com

produced typical conidiogenous cells, i.e., phialides, which divide

to produce incipient macroconidia. The morphology of phialides

in PH-1 and DFghtf1-Com assumes a bottle-like shape (Figure 2A).

The mutants, however, did not produce these structures on its

conidiophores, but rather formed clusters consisting of hyphal

segments (Figure 2A). Fluorescence staining of nuclei with 496-

diamidino-2-phenylindole (DAPI) showed that a phialide in the

wild type was uninucleate and harbors a macroconidium

(Figure 2B). However, in DFghtf1 it appeared that multiple

phialide-like structures were disorderly formed on a conidiophore

with no macrocondia development (Figure 2C). Presumably, the

mutation in FgHTF1 led to abnormal conidiogenous cells with

uncontrolled proliferation and the loss of conidiation capacity.

These results suggest that FgHtf1 governs proper differentiation of

phialides and is continuously required for maintenance of

conidiogenesis in F. graminearum.

FgHTF1 regulates macroconidia basal cell division and
foot cell development

While DFghtf1 deletion mutant lost its ability to produce

macroconidia from phialides, which is the main conidiogenesis

structure in F. graminearum, we still observed some conidia

produced in CMC medium, suggesting that alternative conidiation

mechanisms exist. After further microscopic observation, we

detected DFghtf1 and PH-1 producing spores directly from hyphae,

similar to budding observed in Saccharomyces cerevisiae, albeit at low

frequencies (Figure 3A). However there was also a significant

difference in conidiogenesis between DFghtf1 and PH-1. In the

early stages of culturing PH-1 (within 48 h), incipient conidium

broke off from intercalary or terminal hyphae without distinct

septation, whereas in DFghtf1 no conidium was observed at the

early stages of culturing in CMC medium. Only after five days of

incubation, DFghtf1 produced some matured conidia with evident

septation at the tip of hyphae (Figure 3A). In addition, we noticed

that there was no recognizable narrow region that allows conidium

to detach easily from hyphae, and hence, these conidia lack the

typical enteroblastic phenomenon associated with PH-1

(Figure 3A). In PH-1, the narrow region serves as the site for the

production of macroconidium by cell division. Therefore, we

inferred that the dissociative spores may be ruptured away from

DFghtf1 hyphae by mechanical force during shaking incubation

(Figure 3B), and this may explain why macroconidia produced by

DFghtf1 were morphologically aberrant (Figure 3C). The wild-type

macroconidia were moderately curved on the dorsal side and

straight on the ventral surface with papillate apical cells and

distinct foot-shaped basal cells (Figure 3C). However, DFghtf1

conidia were grotesque without proper foot-shaped basal cells

(Figure 3C). These observations indicate that FgHTF1 is important

for proper basal cell division and subsequent foot cell development

in macroconidia produced directly from hyphae.

Aberrant macroconidia of DFghtf1 mutant still can
germinate properly and be pathogenic on hosts

While DFghtf1 produced a limited number of macroconidia by

budding and have a defect in the foot cell, these spores were still

able to germinate like wild type at 25uC in liquid CM with gentle

agitation. After 1 h incubation, approximately 70% of macroco-

nidia in DFghtf1 and PH-1 looked swollen (Figure 4A). After 2 h,

over 95% of macroconidia had at least one germ tube from

terminal cells, intercalary cells, or both in the mutant (Figure 4A,

Table 1). To determine whether FgHTF1 has a role in

pathogenicity, we inoculated wheat heads and wheat coleoptiles

with conidia from PH-1 and DFghtf1. At 14 days post inoculation

(dpi), typical ear rot symptoms were observed on wheat head

inoculated with PH-1 and the DFghtf1 (Figure 4B, Table 1). Similar

brown lesions on coleoptiles and corn stalks infected by PH-1 and

DFghtf1 were observed (Figure 4C and 4D). These results showed

that the aberrant DFghtf1 macroconidia can germinate properly

and be pathogenic on hosts.

Figure 1. Comparative analysis of Htf1 protein in three Fusarium species. (A) Sequence alignment of the homeodomain in Htf1 homolog of
F. graminearum (FgHtf1), F. verticillioides (FvHtf1), F. oxysporum (FoHft1) and M. oryzae (MoHtf1) was performed using Clustal W and Boxshade (http://
bioweb.pasteur.fr/seqanal/interfaces/boxshade.html). The conserved amino acid residues are shaded black, whereas similar residues are shown in
gray. Consensus amino acids are marked with asterisk (*). (B) Homology matrix analysis of Htf1 homeodomain (left box) and whole protein (right box)
in three Fusarium species and M. oryzae by DNAMAN software. Numbers (%) indicate protein identity.
doi:10.1371/journal.pone.0045432.g001
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Expression of FgHTF1 correlates with conidiophore
development in F. graminearum

In order to investigate the temporal and spatial pattern of

FgHTF1 expression during conidiogenesis, FgHTF1 gene with its

native promoter was fused in-frame to the green fluorescent

protein (GFP)-encoding gene. The construct was then transformed

into DFghtf1 protoplasts. Subsequently, we isolated three transfor-

mants expressing GFP in hyphae, and the presence of the FgHtf1-

GFP construct was confirmed by PCR (data not shown). All

positive transformants (DFghtf1-GFP) produced a similar number of

conidia when compared to the wild-type progenitor. To investi-

gate the expression patterns of FgHtf1 during conidia germination

in F. graminearum, we followed GFP expression by fluorescence

microscopy at different time points (24 h, 36 h, 48 h, 60 h and

72 h) after inoculating DFghtf1-GFP mycelia into CMC medium,

which is conducive to spore production. GFP signals were not

detectable or extremely weak from 24 h to 36 h when DFghtf1-

GFP strain was incubated in CMC (data not shown). However, at

48 h GFP signal spiked, and the localization of FgHtf1 to nucleus

was verified by GFP and ethidium bromide (EB) stain (Figure 5A).

To study expression patterns of FgHTF1 in PH-1, we extracted

total RNA from PH-1 cultured in CMC medium at 24 h, 36 h,

48 h, 60 h and 72 h. Real-time PCR detected a high-level

expression of FgHTF1 at 48 h during the sporulation-induced
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Figure 2. FgHtf1 regulates the differentiation of phialides and
subsequent macroconidiation. (A) Wild-type strain PH-1 and
complementation strain DFghtf1-Com produced abundant macroconid-
ia borne on terminal phialides while the DFghtf1 mutant produced
aberrant terminal phialides but failed to form macroconidia. tp, terminal
phialides; ma, macroconidia; cp, conidiophore; h, hyphae. Bar = 20 mm.
(B) Fluorescence staining of nuclei with DAPI demonstrated that
phialide-like structures in wild type were uninucleate (white arrow).
Bar = 20 mm. (C) Fluorescence staining of nuclei with 496-diamidino-2-
phenylindole (DAPI) observes clumps consisting of hyphal segments in
DFghtf1 mutant. Bar = 20 mm.
doi:10.1371/journal.pone.0045432.g002
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stage (Figure 5B), but leveled off at 60 h and 72 h. We have

observed previously that conidiophores typically proliferate after

48 h time point in CMC culture (data not shown). Thus, we can

conclude that FgHtf1 transcription factor is activated and localized

to the nucleus prior to conidiogenesis and perhaps regulates

expression of genes associated with conidiophore and phialide

development in a temporal and spatial specific manner.

FvHTF1 regulates microconidia chain and false head
formation in F. verticillioides

F. graminearum only produces macroconidia as asexual repro-

duction, and to further investigate whether Htf1 plays a role in

microconidiation in Fusarium species, we generated FvHTF1 null

mutation (DFvhtf1) in F. verticillioides, which produces both

macroconidia and microconidia. Homologous recombination that

resulted in FvHTF1 deletion was identified by PCR and was

further confirmed by Southern blot (Figure S4A and S4B). DFvhtf1

mutant did not show a significant difference in vegetative growth

and microconidia morphology when compared to the wild-type

strain A149 grown on various media, including complete medium

(CM) and mung bean agar medium (Figure S5A and S5B).

When examined under optical and scanning electron

microscopes, A149 produced long chains of microconidia and

false heads of microconidia aggregates (Figure 6A and 6B),

which are customary taxonomic features of F. verticillioides. In

contrast, we did not find microconidia chains in DFvhtf1 even

with repeated efforts on various cultures conditions, even

though there was no distinct difference in conidiophore

morphology. In addition, microconidia of DFvhtf1 did not stay

attached to each other to form false heads as typically observed

in the wild-type progenitor (Figure 6A and 6B). In DFvhtf1, the

shape of conidia false head produced from the conidiophore

varied, some assumed a trifolium pretense-like shape, others

looked like petal, and some also possess dichotomization shape

(Figure 6A and 6B). Although the shape of microconidia cluster

produced by DFvhtf1 varied in their appearances, they

displayed a common conidiogenesis pattern, which suggests

that all microconidia were verticillate branches at the apex of

monophialides (Figure 6A and 6B). To further confirm the

microconidial chain and false head shape defect in DFvhtf1, the

mutant strain was transformed with the corresponding wild-

type gene. Complementation of FvHTF1, where the native

promoter-driven FvHTF1 gene cassette was re-introduced into

DFvhtf1, restored microconidia chains and false head pattern

(Figures S4B and 6A), demonstrating that FvHTF1 is needed for

the formation of microconidial chains and false head pattern in

F. verticillioides.

When we assayed the production of microconidia on 7-day

mung bean agar and synthetic low-nutrient agar (SNA) cultures,

the wild-type strain produced about twice as much microconidia

than DFvhtf1 (Figure 6C and 6D), suggesting that a significant

reduction in conidiation could be due to a defect in formation of

microconidia chains. It is conceivable that altered microconidia-

tion pattern observed in DFvhtf1 prohibits the fungus from

developing long chains of microconidia through basipetal division

typically observed in the wild-type F. verticillioides [40,41,44].

Microconidia production was fully restored to the wild-type level

in the complemented strain DFvhtf1-Com (Figure 6C and 6D).

The Htf1-regulated macroconidiation is conserved in F.
verticillioides and F. graminearum

While microconidia are the predominant form of asexual spores

in F. verticillioides, it also produces macroconidia in nature and in

certain laboratory conditions [36,53]. When we monitored the

development process of macroconidiation in F. verticillioides, we

observed the mechanism similar to F. graminearum, in which

macroconidia are produced on solitary phialides or on multiple

phialides borne on conidiophores (Figure 7A). In DFvhtf1, we

found that the macroconidiogenesis from phialide was impaired

(Figure 7A), however, the mutant used budding pattern to produce

foot cell-defective macroconidia, which is identical to what we

observed in F. graminearum DFghtf1 mutant (Figure 7A).

In addition, we assayed for the amount of macroconidia in

mung bean liquid medium under continuous dark and UV light

conditions. In continuous dark condition, the wild-type and

complemented strains produced a similar level of macroconidia,

which typically accounts for approximately 5% of the total

conidia harvested from F. verticillioides cultures after 7 days. Under

the same conditions, however, only 2% of the conidia were

macroconidia in the DFvhtf1 mutant (Figure 7B). These data

suggested that FvHTF1 plays an important role in macroconidia

development. UV light is known to stimulate macroconidia

production in Fusarium species [36,53], and under UV light

approximately 17% of the total conidia harvested after 7 days of

incubation were macroconidia in wild-type and complemented

strains. This is a significant increase when compared to the

continuous dark condition. However, in DFvhtf1 mutant the

percentage of macroconidia (2%) was consistent with that

Figure 3. Macroconidial defect in DFghtf1 mutant. (A) Budding
pattern of macroconidial development in F. graminearum. Wild-type
PH-1 strain produced incipient macroconidium without distinct
septation directly from hyphae. DFghtf1 deletion mutant produced
matured conidium with clear septation from the tip of hyphae. The
resulting cells were observed with a DIC microscope and also stained
with DAPI and calcofluor white (CFW) to visualize nuclei and septa,
respectively, under a fluorescence microscope. Black arrows in PH-1
strain indicated the position of cell division. s, septa, n, nucleus.
Bar = 20 mm. (B) Macroconidia matured and then released from the
hyphae by mechanical force during incubation with agitation. DFghtf1
mutant was stained with calcofluor white (CFW) to visualize cell wall
and septa. White arrows indicate the point of breakage. Bar = 20 mm. (C)
Morphological phenotypes of macroconidia produced by PH-1 and
DFghtf1 mutant. a, PH-1, typical Fusarium macroconidium, the apical
cell is in the below (black arrow), and the foot cell is on the top (white
arrows). b–d, DFghtf1 mutant, an obvious defect in foot cell.
Bar = 20 mm.
doi:10.1371/journal.pone.0045432.g003
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produced under continuous dark condition (Figure 7C). These

results suggested that FvHTF1 is important for macroconidia

production and that it may plays a role in cellular responses to

UV light stimulus.

FoHTF1 is also required for the development of
microconidia and macroconidia, but not for
chlamydospores

The results we obtained from F. graminearum and F. verticillioides

studies led us to further explored F. oxysporum conidiogenesis. This

fungus produces three types of asexual spores: microconidia,

macroconidia, and chlamydospores. To determine whether the

function of Htf1 is conserved in F. oxysporum conidiogenesis, we

generated a gene-replacement mutant of FoHTF1 (Figure S6). The

mutant (DFohtf1) was normal in vegetative growth and microco-

nidia morphology (Figure S7), but when assayed for conidiation on

SNA medium we found that DFohtf1 had a significant reduction in

macroconidia and a slight reduction in microconidia when

compared to the wild type (Figure 8A and 8B). The DFohtf1 and

the wild-type strain were examined under an optical microscope,

and we noticed that the mutants lacked normal false head

microconidia and formed windmill-shaped structure, which was

congruent with microconidiogensis in DFvhtf1 mutant (Figure 8C).

However, DFohtf1 produced normal chlamydospores acrogenously

from hyphae or by the modification of hyphal cells, as the wild

type (Figure 8D). Phialides of macroconidia also redundantly

proliferated and developed constant extension very similar to

DFghtf1 and DFvhtf1 mutants (Figure 8E). These results indicate

that FoHTF1 is important for conidiophore and phialide

development, and ultimately microconidia and macroconidia

production. However we concluded that FoHTF1 is not involved

in hyphal differentiation that leads to chlamydospores in F.

oxysporum.

The function of Htf1 is conserved in three Fusarium
species

Htf1 in three Fusarium species showed highly conserved

functions in macroconidiogenesis and microconidiogenesis. F.

graminearum FgHtf1 homeodomain and whole protein sequence

Figure 4. Aberrant DFghtf1 macroconidia can germinate and are pathogenic to host. (A) Germination of wild-type PH-1 and mutant
DFghtf1 macroconidium in CM. The cells were first observed with a DIC microscope, and subsequently stained with calcofluor white (CFW) to visualize
cell walls and septas, respectively, under a fluorescence microscope. Bar = 20 mm. (B) Wheat heads were point-inoculated in the two central spikelets
each with 200 conidia of PH-1 and DFghtf1. Control wheat heads were point-inoculated with distilled water. Infection assay was terminated after 21
days. (C) Infected wheat coleoptiles inoculated with conidia of the PH-1 and DFghtf1. The brown lesions observed on coleoptiles (in length and
discoloration intensity) were not distinguishable in PH-1 and DFghtf1 samples. (D) Corn stalks were inoculated with toothpicks carrying a mycelium
block of PH-1 and DFghtf1. Infected corn stalks were split longitudinally at the inoculation sites and examined 14 days post inoculation.
doi:10.1371/journal.pone.0045432.g004

Figure 5. Expression and localization of the GFP-fusion
protein. (A) Expression of FgHTF1 in mycelia of F graminearum
transformants DFghtf1-GFP grown in CMC medium, which is conducive
to spore production. The strain DFghtf1-GFP carries a single GFP-
carboxy translational fusion of FgHTF1. GFP fluorescence was observed
in mycelia at 48 h after inoculation, and each cell contained one
fluorescence punctum. Mycelia of DFghtf1-GFP were also stained by
ethidium bromide (EB), which is a nuclear counterstain for use in
multicolor fluorescent techniques and stains nuclei specifically. The
merged image of GFP and EB staining showed that DFghtf1-GFP
localizes to the nucleus (white arrow), Bar = 20 mm. (B) Expression levels
of DFghtf1-GFP at different time course (24 h, 36 h, 48 h, 60 h and 72 h)
after inoculation in CMC medium. qRT-PCR was used to quantify
transcript level of FgHTF1 relative to that of the constitutive reference
gene b-tubulin using the 22DDC

T method.
doi:10.1371/journal.pone.0045432.g005
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share greater than 95% and 85% amino acid identity, respectively,

when compared to FvHtf1 and FoHtf1 (Figure 1B). To test

whether Htf1 homologs from three Fusarium species are functional

orthologs, we transformed FvHTF1 and FoHTF1 genes with their

respective promoter regions into DFghtf1 mutant. Positive trans-

formants were identified by PCR with respective specific primers

(Table S2), and these showed rescued conidiogenesis in DFghtf1

mutant when incubated in CMC medium (Figure 9A, Table 1). In

addition, we also transformed FgHTF1 gene into the DFvhtf1

mutant. Significantly, the complemented strain DFvhtf1-Fg pro-

duced abundant microconidia in chain and false head shape

although F. graminearum species does not produce microconidia

(Figure 9B). These results suggest that Htf1 is conserved in three

Fusaria and that FgHtf1 can transcriptionally regulate F.

verticillioides proteins that are involved in microconidiogenesis.

Discussion

Conidiation is an important characteristic in fungi that requires

spatial and temporal regulation of gene expression that leads to

specialized cellular differentiation and intercellular communica-

tions [1,2,10]. In our previous study, we found that HTF1 is

essential for conidiation in M. oryzae. Further observation revealed

that DMohtf1 mutant produces greater amounts of conidiophores,

which showed curvature slightly near the tip but could not develop

into sterigmata-like structures (Figure 10) [50]. This led us to

conclude that MoHTF1 is an essential positive regulator respon-

sible for switching from conidiophore maturation to the initiation

of conidia development in M. oryzae. Concurrently, we also

proposed that MoHTF1 functions as a negative regulator of

conidiophore development. In other filamentous fungi, homeodo-

main transcription factors have been linked to the shaping of

fruiting body structure, sexual reproduction, and mycelial branch

formation [49,54–56]. In this study, we hypothesized that, while

there are similarities and conservation in HTF1 gene function

between M. oryzae and Fusarium species, there are divergent

biological features exhibited by Htf1 in Fusarium species. In three

Fusarium species, we found that the deletion of HTF1 also

abolished macroconidia development from conidophores. In

Figure 6. FvHtf1 regulates microconidiation in chain and false head. (A) Light microscope images of microconidiogenesis in wild-type F.
verticillioides (A149), FvHTF1 gene-deletion mutant (DFvhtf1) and complementated strain (DFvhtf1-Com). Chains and false heads of microconidia were
evidently observed in F. verticillioides A149 and DFvhtf1-Com. In DFvhtf1 mutant, microconidial chains were absent and instead microconidia were
assembled in a aberrant petal-shaped false heads (a,c). Bar = 50 mm. (B) Scanning electron microscopy of A149 and DFvhtf1 microconidiation. Wild-
type strain A149 showed the typical chains and false heads of microconidia (bar = 10 mm), but DFvhtf1 failed to produce microconidial chains and
instead produced false heads with 2 to 5 microconidia at the apex of monophialides resulting in a floral petal shape (bar = 5 mm). (C) Microconidia
produced by A149, DFvhtf1, and DFvhtf1-Com in a 7-day-old mung bean agar culture. (D) Microconidia produced by A149, DFvhtf1, and DFvhtf1-Com
in a 7-day-old SNA culture.
doi:10.1371/journal.pone.0045432.g006
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Figure 7. Macroconidiation in DFvhtf1 mutant. (A) In wild-type strain (A149) and the complementation strain (DFvht1-Com), incipient
macroconidia without septation are produced on terminal phialides or hyphae. The gene-deletion mutant (DFvhtf1) failed to form macroconidia from
aberrant terminal phialides. DFvhtf1 produced mature conidium with clear septation from the tip of the hyphae. The macroconidia of DFvhtf1
deletion mutant showed a morphological defect. These observed phenotypes in DFvhtf1 are consistent with what we witnessed in F. graminearum
mutant (DFghtf1). tp, terminal phialides; ma, macroconidia; nr, narrow region, ac, apical cell; bc, basal cell (foot cell). Bar = 20 mm. (B) Macroconidia
production by A149, DFvhtf1, and DFvht1-Com in mung bean liquid medium under continuous dark conditions. (C) Macroconidia production by
A149, DFvhtf1, and DFvht1-Com in mung bean liquid medium under UV light conditions.
doi:10.1371/journal.pone.0045432.g007

Figure 8. Conidiation in DFohtf1 mutant. (A) The wild-type F. oxysporum (WT) and the gene-deletion mutant (DFohtf1) strains were assayed for
macroconidia production in SNA medium under continuous UV light. (B) WT and DFohtf1 strains were assayed for macroconidia production in SNA
medium under continuous UV light. (C) WT and DFohtf1 strains were grown on SNA medium for 5 days. In the wild-type strain, microconidia were
produced from phialides generally in false heads. DFohtf1 lacked prototypical false head microconidia but rather formed a windmill-shaped
microconidia head (a,c). Bar = 20 mm. (D) Chlamydospores are formed from hyphae of WT and DFohtf1 strains. Bar = 20 mm. (E) Aberrant terminal
phialides and macroconidia produce by DFohtf1 mutant. tp, terminal phialides; ma, macroconidia; ac, apical cell; bc, basal cell (foot cell). Bar = 20 mm.
doi:10.1371/journal.pone.0045432.g008
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addition, Dhtf1 mutants in these Fusarium species failed to form

morphologically discernible phialide, but rather forming ‘‘clusters’’

consisting of hyphal segments (Figure 10). This phenotype was

more profound in F. graminearum than F. verticillioides and F.

oxysporum, however it was consistently observed in three Fusaria. In

addition, the deletion of HTF1 in Fusarium species caused excessive

elongation of conidiogenous cell, suggesting that Htf1 is a negative

regulator of conidiogenous cell development similar to M. oryzae.

But we also discovered a major difference in conidiogenesis

between M. oryzae and Fusarium species. In M. oryzae, the

conidiogenous cell usually was deemed as conidiophore, while in

Fusarium species it often represent phialides, and therefore it would

be reasonable to presume that the function of HTF1 in Fusarium

species underwent a further specialization for phialidegenesis.

Some genes associated with phialide development have been

reported in Fusarium species, such as FgStuA in F. graminearum,

FoStuA and REN1 in F. oxysporum. The sequence of FgStuA protein

showed a very high level of homology (72%) with FoStuA [27,29].

Not surprisingly, the deletion mutants of DFgStuA and DFoStuA

lacked conidiophores and uninucleate phialides, suggesting a

conserved function in two orthologs. In A. nidulans, where phialidic

conidiation has been extensively studied, stuA mutants produced

significantly stunted conidiophores and lacked normal metulae

and phialides [57,58]. It is also recognized that stuA affects

conidiation through the spatial and temporal modifier of brlA and

abaA expression [59,60]. However, FgStuA regulates sexual

development and pathogenicity in addition to conidiogenesis,

suggesting that this transcription factor may have a broader and

diverse impact on F. graminearum lifestyle [27]. Significantly, in

contrast to FgStuA all gene-deletion mutants we studied (DMohtf1,

DFghtf1, DFvhtf1, DFohtf1) showed phenotypic deformity only

limited to conidiogenesis. Our SAGE data (unpublished) and

previously published microarray study in PH-1 and DFgStuA [27]

showed no reciprocal influence in FgHTF1 and FgSTUA, and it is

reasonable to hypothesize that FgStuA and FgHtf1 regulate

phialide development through different cellular networks.

REN1 encodes a protein analogous to A. nidulans MedA and M.

oryzae Acr1, and all of these are involved in conidiogenesis [28].

The ren1 mutant strains lacked normal conidiophores and

phialides and formed rod-shaped, conidium-like cells directly

from hyphae by acropetal division [28], but maintained pathoge-

nicity on host. These results showed that Ren1 specifically regulate

conidiogenesis. In our study, we concluded that FgHTF1 does not

directly play a role in conidial germination and pathogenicity,

although there were many significant defects in phialidiogenesis

and macroconidiogenesis in DFghtf1 mutant. This similarity in

cellular function led us to further analyze the expression of REN1

orthologous gene FGSG_02471 in DFghtf1 mutant. However, the

result showed no significant change in expression (data not shown),

suggesting that these two transcription factors are not epistatic.

However, it remains to be tested whether these two genes regulate

signaling pathways that converge downstream and impact

conidiogenesis in F. graminearum.

In Fusarium species, macroconidia have distinct basal foot cell

and pointed distal ends. In this study, we discovered that

macroconidia in Dhtf1 mutants, those produced through hyphal

budding, exhibit significant defect in the foot cell (Figure 10).

When we monitored conidiogenesis in microscopic detail, we

recognized that the first initial conidium of the wild-type strain is

formed within the apical extension of the phialide or hyphae at the

early stage of development. Before the macroconidium is released,

the characteristic foot cell at the base of macroconidium is formed.

Figure 9. Complementation of DFghtf1 and DFvhtf1 mutant by
Fusarium Htf1 homologous genes. (A) We complemented F.
graminearum gene deletion mutant (DFghtf1) with F. verticillioides
FvHTF1 (DFghtf1-Fv) and F. oxysporum FoHTF1 (DFghtf1-Fo). DFght1-Fv
and DFght1-Fo produced abundant macroconidia borne on terminal
phialides in contrast to DFghtf1 which produced aberrant terminal
phialides and failed to form macroconidia and. Bar = 20 mm. (B) In F.
verticillioides gene deletion mutant (DFvht1), microconidial chains are
absent instead microconidia assemble in abnormal false heads (a–c). F.
graminearum FgHTF1 complemented strain (DFvht1-Fg) showed proty-
pical chains and false heads of microconidia found in wild-type F.
verticillioides. Bar = 50 mm.
doi:10.1371/journal.pone.0045432.g009

Figure 10. Proposed role of Htf1 in M. oryzae, F. graminearum, F.
verticillioides and F. oxysporum. (A) MoHtf1 is important for proper
conidiophore development and subsequent conidia formation. (B) In
three Fusarium species, Htf1 plays a critical role in proper development
of phialides. HTF1 gene deletion led to aberrant terminal phialide and
ultimately abolished macroconidia formation from conidiophores.
Macroconidia formation directly from hyphae were also affected,
namely in foot cell development. (C) In F. verticillioides DFvhtf1 mutants,
prototypical microconidia chain and false heads were not observed but
rather a 2- to 5- microconidia complex at the apex of monophialides
resulting in a floral petal-like shape. This suggests that FvHtf1 is
important for basipetal division typically observed in the wild-type F.
verticillioides. (D) In F. oxsporum DFohtf1 mutants, we observed floral
petal-shaped microconidia false head similar to F. verticillioides DFvhtf1
mutants suggesting FoHtf1 is important for phialide development and
subsequent microconidiogenesis. However, it is not involved in
chlamydospore development. c, conidia; cp, conidiophore; ma,
macroconidia; tp, terminal phialide; ip, intercalary phialide; fc, foot cell;
ch, chain; mp, monophialide; fh, false head; pe, petal; cs, chlamydo-
spore.
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Nevertheless, at late stages of development, the expanding

conidium ruptures the conidiophore wall and is released by an

abscissional splitting of the basal septum. Internal septation of the

conidium normally occurs after it is released. In the Dhtf1 mutant,

it is unlikely that a conidium is released by abscissional splitting of

the basal septum (Figure 10). Perhaps this is why we found mature

conidium with distinct septum born on hyphae in the Dhtf1

mutant. This implies that Htf1 play a key role in regulating foot

cell division during macroconidiogenesis.

Production of both microconidia and macrocondia is a common

phenomenon in most Fusarium species, and both conidia are formed

from phialides in false heads by basipetal division, the develop-

mental mode from the apex toward the base without catenation of

cells [28]. In our study, we learned that Htf1 not only regulated

macroconidiogenesis, but also for microconidiogenesis. In DFvhtf1

mutant, long chains of microconidia were completely absent in

contrast to the wild-type strain (Figure 10). In F. verticillioides, the

cAMP signaling pathway gene FAC1 and two hydrophobin genes

HYD1 and HYD2 have been reported to be important for the

production of microconidial chains [39]. In addition, Choi and Xu

[36] further showed that FAC1 positively regulates microconidia

production and the expression of two hydrophobin genes, HYD1

and HYD2 [36]. Notably, all these reported genes had no

discernable effect on false-head pattern of microconidia, suggest-

ing that these gene-deletion mutants still can produce microco-

nidia through basipetal division. Intriguingly, our study revealed

that the deletion of HTF1 in F. verticillioides and F. oxysporum led to

the formation of petal-shaped pattern by sharing the apical

branches (Figures 6 and 10) instead of producing typical false

heads with characteristic ball-shaped assemblage of microconidia

held together apparently by mucilage. As we described earlier, this

aberrant microconidiogenesis from monophialide may have

interfered with typical microconidia chain development that

occurs through basipetal division and ultimately led to significant

reduction in microconidia in F. verticilioides and F. oxysporum.

Therefore, our results collectively provide evidences that Htf1

regulates microconidial formation from chains and false heads by

basipetal division in Fusarium species.

Materials and Methods

Strains, media and growth condition
All wild-type and mutant strains used in this study are listed in

Table S1. In F. graminearum, growth and morphology were

evaluated by culturing strains on complete medium (CM: 0.6%

yeast extract [w/v], 0.6% casein hydrolysate [w/v], and 1%

sucrose [w/v]) at 28uC for 4 days. Formation of perithecia was

assayed on wheat kernels medium as described previously [61]. To

assay conidiation, an agar block (3 mm in diameter) carrying

mycelia was introduced into 50 ml of liquid CMC medium [52].

The suspension was shaken at 180 rpm for 3–15 days, and the

concentration of conidia was determined with a hemacytometer.

For spore germination assays, fresh macroconidia were suspended

in CM for 4 h with gentle agitation [62]. Macroconidia of PH-1

and mutants were observed using an Olympus BX51 Microscope.

Infection assays on flowering wheat heads, wheat coleoptiles and

corn stalks were conducted as previously described [63–65].

F. verticillioides strains were grown on CM agar and mung bean

agar medium (5% mung bean [w/v], 1.5% agar [w/v], pH 6.0) to

observe morphology and growth. For macro- and microconidia-

tion assays, a culture block (3 mm in diameter) was inoculated on

synthetic low-nutrient agar (SNA) medium, containing (all in w/v)

0.1% KH2PO4, 0.1% KNO3, 0.05% MgSO4 ?7H2O, 0.05% KCl,

0.02% glucose, 0.02% sucrose, and 2% agar, and mung bean agar

or broth. After incubation at 25uC for 7 days under continuous

near-ultraviolet (UV) light or dark condition [66], conidiation was

observed under a light microscope (Olympus BX51).

The F. oxysporum wild-type and mutant strains were cultured on

CM agar to observe morphology and growth. To induce

conidiation in F. oxysporum strains, SNA and mung bean agar

were used as described above. All tests were repeated three times.

Microscopy and histological visualization
To observe conidiogenesis in F. graminearum, an agar block

carrying mycelium was inoculated into CMC as described above

and then were imaged at different culture stages with Olympus

BX51 Research Microscope. Nuclear visualization in phialides

was observed by DAPI staining. Mycelia were collected by

centrifugation, washed with PBS buffer (pH 7.2) and then

resuspended in PBS containing 0.1% Triton X-100. Cells were

then fixed with PBS paraformaldehyde (3.7%, w/v) and stained

with 10 mg/ml DAPI (Sigma). The cell nuclei were observed with

Olympus BX51 Research Microscope at UV excitation wave-

length. For spore germination studies, fresh PH-1 macroconidia

were suspended in CM for 4 h with gentle agitation. Cell walls and

septa of germinating conidia were visualized by staining with

Calcofluor White (10 mg/ml, Sigma).

To directly visualize F. verticillioides and F. oxysporum conidial

chains and false heads without immersion in water or buffer, agar

squares were removed from actively growing colonies and placed

in a slide glass with the fungal colony surface oriented

perpendicular to the cover slip. Images were acquired from

Olympus BX51 Research Microscope.

For scanning electron microscopy (SEM), blocks of 5-day-old

mung bean agar cultures (5 mm2) were fixed in 4% glutaraldehyde

at 4uC for 16 h. The samples were then dehydrated in a graded

ethanol series and dried in a critical point dryer as described [67].

Samples were coated with a thin gold layer and observed with

JSM-6360LV (Jeol Ltd., Tokyo) scanning electron microscope.

Fungal transformation and generation of gene-deletion
mutants

The F. graminearum, F. verticillioide and F. oxysporum protoplast

preparation and fungal transformation were performed following

standard protocols [29,53,63]. Hygromycin- or neomycin-resistant

transformants were selected on media supplemented with 250 g/

mL hygromycin B (Roche Applied Science) or 200 g/mL G418

(Invitrogen).

To generate the DFghtf1 mutant, a 1,291-bp fragment upstream

from FgHTF1 was amplified with primers FG07097AF and

FG07097AR, and this amplicon was subsequently cloned into

the HindIII and EcoRI sites upstream of the hph cassette on pCX63

[68]. Then, 1,033-bp fragment downstream from FgHTF1 was

amplified with primers FG07097BF and FG07097BR, and cloned

into the BamHI and SacI sites downstream of hph cassette, and this

plasmid was transformed into protoplasts of the wild-type PH-1

strain as described [63]. Hygromycin-resistant transformants were

screened by PCR with primers FG07097UA and H853 and

primers FG07097OF and FG07097OR (Table S2). An isolate that

tested positive with PCR was further verified by Southern blot

analysis performed with the digoxigenin high prime DNA labeling

and detection starter Kit I (Roche, Mannheim, Germany).

We generated HTF1 gene-replacement constructs in F.

verticillioide and F. oxysporum using the split-marker approach

[69,70]. Upstream and downstream fragments were amplified

with specific primer pairs that are listed in Table S2. Partial

fragments of the hygromycin phosphotransferase (hph) gene were

amplified with primers HYG/F, HY/R, YG/F, and HYG/R as
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described [71]. After transformation, hygromycin-resistant trans-

formants were screened by PCR with designated primers (Table

S2) and further characterized by Southern blot analysis.

For complementation of DFghtf1 and DFvhtf1, FgHTF1 and

FvHTF1 (with upstream promoter and downstream terminator)

was amplified with primer sets FG07097CF4/FG07097CR4 and

FV08072CF/FV08072CR, respectively (Table S2). The resulting

constructs were co-transformed into protoplasts of the target

mutant along with a vector harboring geneticin-resistance marker

(pKNTG). Transformants exhibiting resistance to both geneticin

and hygromycin were selected, screened by PCR for the presence

of the complementation construct, and further validated by

Southern blot analyses. Inter-species complemented strategies

were similar to generation of DFghtf1-Com strain. FgHTF1, FvHTF1

or FoHTF1 gene was amplified with a set of primers (Table S2),

and subsequently co-transformed into the target fungal protoplasts

with pKNTG vector. The selected isolates were further analyzed

by PCR, using primers (Table S2) to determine the presence of

FgHTF1, FvHTF1 or FoHTF1 gene.

Construction of FgHTF1-GFP vector and
complementation

The FgHTF1-GFP fusion vector, pGM-FgHTF1-GFP, was

constructed by amplification of 2,886-bp fragment including

1,459-bp FgHTF1 coding sequence and a 1,427-bp promoter

region using primers FG07097CF3-GFP and FG07097CR3-GFP

(Table S2). The 2,886-bp PCR product was then cloned into

pGEM-T easy vector to generate pGM-FgHTF1. The 1.5-kb GFP

allele [72] carrying the A. nidulans trpC terminator was amplified

using primers HindIII-GFPF and HindIII-GFPR (Table S2), then

cloned into pGEM-T easy vector. It was subsequently digested

with HindIII to release the GFP allele with HindIII sticky ends,

which was inserted into HindIII site of pGM-FgHTF1 to create

pGM-FgHTF1-GFP. We verified the orientation of GFP insertion

and in-frame fusion by sequencing the pGM-FgHTF1-GFP

vector. To generate FgHTF1-GFP strain, pGM-FgHTF1-GFP

vector and pKNTG vector were cotransformed into DFghtf1

mutant. Transformants carrying a single insertion were selected

and phenotypic restoration in DFghtf1 mutants was sought. GFP

fluorescence was observed using a Leica TCS SP5 inverted

confocal laser scanning microscope (Leica, Germany)

Quantitative RT–PCR
Wild-type conidia were harvested at growth stages (24 h, 36 h,

48 h, 60 h and 72 h incubated on CMC medium). RNA was

isolated with TRIzol reagent (Invitrogen) and purified with the

DNA-free kit (Ambion). First-strand cDNA was synthesized with

the M-MLV reverse transcriptase (Invitrogen), and qRT-PCR was

performed with the ABI 7500 sequence detection system (Applied

Biosystem) using QuantiTect SYBRgreen PCR Master Mix

(Qiagen). Primers used to amplify selected genes in qRT-PCR

reactions are listed in supplemental Table S2. TUB2

(FGSG_06610.3) was used as the endogenous reference gene.

The relative quantification of each transcript was calculated by the

22DDC
T method [73]. All qRT-PCR reactions were conducted in

triplicates for each sample and the experiment was repeated three

times.

Supporting Information

Table S1 Wild-type and mutant strains of fungi used in
this study.

(DOC)

Table S2 PCR primers used in this study.

(DOC)

Figure S1 Analysis of putative Htf1 homeobox tran-
scription factors in fungi. (A) Schematic description of HTF1

gene structure, namely intro/exon boundaries, in Fusarium species

(FgHTF1, FvHTF1, and FoHTF1) and Magnaporthe oryzae

(MoHTF1). Gray blocks and gray lines indicate exons and introns,

respectively. Numbers on right indicate deduced protein sequence

length in amino acids. (B) Sequence alignment of F. graminearum

(FgHtf1), F. verticillioides (FvHtf1), F. oxysporum (FoHft1) and M.

oryzae (MoHtf1) predicted protein sequences was performed using

Clustal W and Boxshade (http://bioweb.pasteur.fr/seqanal/

interfaces/boxshade.html). The conserved amino acid residues

are shaded black, whereas similar residues are shown in gray.

Consensus amino acids are marked with asterisk (*).

(TIFF)

Figure S2 The FgHTF1 gene-replacement construct and
mutants. (A) Schematic diagram of the genomic region of the

FgHTF1 and hph genes. Primers F1 (FG07097AF), R1

(FG07097AR), F2 (FG07097BF) and R2 (FG07097BR) were used

to generate FgHTF1 gene replacement constructs, and OF1

(FG07097OF), OR1 (FG07097OR), F1 (FG07097AF) and R1

(FG07097AR) were used for mutant screening and identification.

S, Sal I. (B) DNA gel blots of Sal I-digested genomic DNA were

hybridized with FgHTF1 upstream fragment as the probe (shown

in Figure S2A). PH-1, wild-type strain; DFghtf1-Com, complemen-

tation strain; DFghtf1-7 and DFghtf1-8, null mutants. (C) Total

RNA samples isolated from mycelia of PH-1, DFghtf1-8 and

DFghtf1-Com were subjected to RT-PCR using FgHtf1 gene-specific

primers FG07097OF and FG07097OR (Table S3). As predicted,

the RT-PCR amplicon (1,178 bp) was observed in PH-1 and

DFghtf1-Com, but was absent the deletion mutant DFghtf1-8.

(TIFF)

Figure S3 Vegetative growth and fertility in F. grami-
nearum wild type (PH-1) and DFghtf1 mutant. (A) Colonies

PH-1 and DFghtf1 grown on CM agar for 4 days. (B) PH-1 and

DFghtf1 were incubated on wheat kernels medium for 2 weeks to

induce formation of perithecia. No significant difference was

observed.

(TIFF)

Figure S4 F. verticillioides FvHTF1 gene-replacement
strategy and confirmation. (A) Schematic diagram of the

genomic region of the FvHTF1 and hph genes. Primers F1

(FV08072AF), R1 (FV08072AR), F2 (FV08072BF) and R2

(FV08072BR) were used to generate FvHTF1 gene replacement

constructs. Probe 1 and probe 2 were used to screen and verify

gene replacement mutants. K, Kpn I. (B) DNA gel blots of KpnI-

digested genomic DNA were hybridized with probe 1 and probe 2.

A149, wild-type F. verticillioides; DFvhtf1-Com, complementation

strain; DFvhtf1-9 and DFvhtf1-15, null mutants.

(TIFF)

Figure S5 Colony and microconidia morphology of F.
verticillioides wild type (A149) and DFvhtf1 mutant. (A)

Colony morphology of A149 and DFvhtf1 mutant grown on CM

and MB agar for 6 and 7 days, respectively. (B) Microconidia

stained with 496-diamidino-2-phenylindole (DAPI) observed under

a fluorescence microscope. Bar = 10 mm.

(TIFF)

Figure S6 F. oxysporum FoHTF1 gene-replacement
strategy and confirmation. (A) Schematic diagram of the

genomic region of the FoHTF1 and hph genes. Primers F1
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(FO01706AF), R1 (FO01706AR), F2 (FO01706BF) and R2

(FO01706BR) were used to generate FoHTF1 gene replacement

constructs. Probe was used to screen and verify gene replacement

mutants. N, NcoI. (B) DNA gel blots of NcoI-digested genomic

DNA were hybridized with probe. WT, wild-type F. oxysporum.

DFohtf1-3, DFohtf1-6, DFohtf1-9 and DFohtf1-11, null mutants.

DFohtf1-Ect, ectopic strain.

(TIFF)

Figure S7 Colony and microconidia morphology of F.
oxysporum wild type (WT) and DFohtf1 mutant. (A)

Colony morphology of WT and DFohtf1 mutant grown on CM

agar for 6 days. (B) Microconidia stained with 496-diamidino-2-

phenylindole (DAPI) observed under a fluorescence microscope.

Bar = 10 mm.

(TIFF)
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