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Abstract

Summary: An R package that can implement multiple linear learners, including penalized regression and regression
with spike and slab priors, in a single model has been developed. Solutions are obtained with fast minorize-
maximization algorithms in the framework of variational Bayesian inference. This package helps to incorporate
multimodal and high-dimensional explanatory variables in a single regression model.

Availability and implementation: The R package VIGoR (Variational Bayesian Inference for Genome-wide
Regression) is available at the Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/) and at GitHub
(https://github.com/Onogi/VIGoR).

Contact: onogiakio@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In current biology, data of multiple omics can be available from
many samples (Hasin et al., 2017; Kim and Tagkopoulos, 2018),
and data are also available from environments in fine scales (Gupta
and Quan, 2018; Munandar et al., 2017). Thus, it is often of interest
to discover important variables from such high-dimensional and
multimodal data (Wang et al., 2017) or to use them to predict phe-
notypes (Riedelsheimer et al., 2012). To model such multimodal
and high-dimensional variables in realistic time, flexible and fast re-
gression tools are required. High-dimensional variables can be
included in regression models using penalties. Although various
penalized regressions have been proposed (e.g. Tibshirani, 1996;
Zou and Hastie, 2005), implementation of these methods usually
assumes unimodal explanatory variables (e.g. glmnet; Friedman
et al., 2010). An extension to multiple learners is feasible in a
Bayesian framework because each learner can be a module. Indeed,
a popular R package BGLR (P�erez and de los Campos, 2014) allows
modeling multimodal explanatory variables using different Bayesian
regression methods. However, calculation time will be an issue be-
cause the package depends on Markov chain Monte Carlo (MCMC)
algorithms.

Here, we provide an R package VIGoR (Variational Bayesian
Inference for Genome-wide Regression) which can incorporate
multimodal explanatory variables using different regression meth-
ods. Solutions are obtained with variational inference which is more
time-efficient than MCMC. The package was initially developed to

provide variational Bayesian inference for linear regressions (Onogi
and Iwata, 2016) and has been updated to incorporate multiple
learners. The updates are summarized in Supplementary Methods.
VIGoR implements multiple regression methods including Bayesian
lasso (BL) (Park and Casella, 2008), extended Bayesian lasso (EBL)
(Mutshinda and Sillanpää, 2010), Bayesian Alphabets (BayesA,
BayesB and BayesC), Bayesian ridge regression (BRR) and best lin-
ear unbiased prediction (BLUP). Bayesian Alphabets will be jargons
in quantitative genetics; BayesB and BayesC are regressions with
spike and slab priors (Habier et al., 2011; Meuwissen et al., 2001)
and BayesA uses t-distributions as prior distributions of regression
coefficients (Meuwissen et al., 2001). These regression methods
were selected because they show different properties. BayesB,
BayesC and EBL are suitable for variable selection, and BRR and
BLUP are suitable for issues where many variables are involved in
the response variable. BL and BayesA tend to show the intermediate
properties. See Supplementary Methods for the details of these
methods. Users can add these learners simultaneously to a single
model as

yi ¼
XM

m¼1
fm xm;i; hm

� �
þ ei;

where yi is the response variables for sample i, M is the number of
learners in the model, fm indicates the mth learner, xm,i is the ex-
planatory variables for learner m and sample i, hm is the parameters
of learner m and ei is the residual. The theoretical backgrounds and
variational Bayesian algorithms are illustrated in the pdf manual of
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Fig. 1. Experimental results. (A) Exp. 1 where BayesC with different shrinkage magnitudes was applied to bimodal explanatory variables. The upper two panels are the AUC

for the first and second type variables (AUC1 and AUC2), respectively. The lower two panels are the prediction accuracy and calculation time. For VIGoR and BGLR, three

convergence criteria (1e� 4, 1e� 5 and 1e�6) and chain lengths (1500, 20 000 and 30 000) were attempted, respectively. The x axis is the total number of explanatory varia-

bles where the bimodal explanatory variables are included half-and-half. Note that AUC1, AUC2 and prediction accuracy of VIGoR were similar among the criteria and thus

the curves of 1e�4 and 1e�5 are masked by 1e�6. All plots were averages of 20 replications and the standard deviations are omitted for visual ease (presented in

Supplementary Fig. S1). Calculation time was measured with a Windows 10 machine with Intel Core i7-5930K CPU, 3.50 GHz. AUC was calculated using ROCR package

(Sing et al., 2005). (B) Exp. 2 where Bayesian ridge regression and BayesB were applied to tetra-modal explanatory variables. Estimation accuracy is the Pearson correlation

for the first type variable between the true effects and effects estimated by Bayesian ridge regression. AUC2 is the AUC for the second type variable obtained from BayesB.

AUC3 and AUC4 (AUC for the third and fourth type variables also obtained from BayesB) are omitted and presented in Supplementary Figure S2. All plots were averages of

20 replications and the standard deviations are presented in Supplementary Figure S2. (C) Exp. 3 where BayesC with different shrinkage magnitudes was applied to additive

and interaction effects of real soybean data. Prediction accuracy was evaluated using Pearson correlation between the observed and predicted values. The unit of calculation

time is second. Runs were repeated 10 times from different initial values
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the package available at https://github.com/Onogi/VIGoR. It is not-
able that the multiple learners in a model can share the explanatory
variables (i.e. xm;i ¼ xn;i for m;n 2 1; . . . ;M and m 6¼ n). Such mod-
eling would behave like ensemble learning which is expected to be
robust against hyperparameter specification and data architecture
(Knürr et al., 2013; Onogi et al., 2015).

2 Experiments

Two simulation experiments (Exp. 1 and 2) were performed here.
The simulated data in Exp. 1 and 2 were bimodal and tetra-modal,
respectively. The total number of explanatory variables was 2000,
6000, 10 000, 20 000, 60 000 or 100 000. Each type (mode) of varia-
bles was included in equal numbers and explained the same amount
of the variance of the response variable. Both the numbers of train-
ing and testing samples were 1000. In Exp. 1, both types of the ex-
planatory variables were generated from the standard normal
distribution, and 1% and 0.1% of each variable were assumed to
have non-zero effects drawn from the standard normal distribution.
BayesC with different shrinkage magnitudes was applied to both
types of variables. In Exp. 2, one type of explanatory variable was
assumed as SNPs, and genotypes were generated assuming allele fre-
quencies being 0.5. The other three types of variables were gener-
ated from the standard normal distribution. All the SNPs were
assumed to have non-zero effects, and 0.1% had non-zero effects for
the other types of variables. Bayesian ridge regression was applied to
SNPs, and BayesB were applied to the other types of variables.
BayesB and BayesC implemented in VIGoR and BGLR differ in the
inclusion probability of explanatory variables. The probability is
fixed to a predefined value in VIGoR whereas it is inferred with a
prior beta distribution, Beta p0; p0ð Þ, in BGLR. Here, p0 is the ex-
pectation and p0 defines the variance as p0 1� p0ð Þ= p0 þ 1ð Þ. For
fair comparison, p0 was set to 1eþ6 to prevent fluctuation of the
probability during sampling. The predefined value of VIGoR and p0

of BGLR were set to the true values of the simulation. VIGoR and
BGLR were compared in terms of calculation time, area under the
curve (AUC) and prediction accuracy for testing samples. For SNPs
in Exp. 2, Pearson correlation between the true and estimated effects
was used instead of AUC. These experiments are complementally
explained in Supplementary Methods.

Calculation time depends on the criterion of convergence. For
VIGoR, three convergence criteria were compared. The iterative up-
date of VIGoR was stopped when h� � hj jj j2= h�j jj j2 < t where jj jj is
the Euclidean norm, h is the vector containing all parameter values
at the previous iteration, h* is the vector consisting of newly
updated parameter values at the iteration and t is the convergence
criterion which was set to 1e�4 (loose), 1e�5 (moderate) or 1e�6
(strict). Because convergence of MCMC is difficult to verify in par-
ticular when many parameters are involved, three chain lengths
were compared: (i) nIte¼1500, burnIn¼500 and thin¼5 (default
setting of BGLR), (ii) nIte¼15 000, burnIn¼5000 and thin¼10
and (iii) nIte¼30 000, burnIn¼20 000 and thin¼10. Here, nIte,
burnIn and thin denote the total number of iterations, length of bur-
nin and sampling interval, respectively.

In Exp. 1, AUC and prediction accuracy of VIGoR were almost
same among the convergence criteria (Fig. 1A). AUC and prediction
accuracy of BGLR were improved by prolonging the chain length,
but still inferior to those of VIGoR despite more calculation time
spent. In Exp. 2, VIGoR generally showed the best performance
when t¼1e�6 (Fig. 1B). Calculation time under this strict criterion
was still less than the shortest chain length of BGLR (1500).
Complete results with standard deviations are presented in
Supplementary Figures S1 and S2.

In Exp. 3, we compared VIGoR with BGLR using a real data of
soybean (Onogi et al., 2021). Days to flowering of a major variety
(ID V083) evaluated from 2005 to 2015 (N¼213) was predicted
from records of the variety from 1967 to 2004 (N¼838). As ex-
planatory variables, daily mean temperature, photoperiod and pre-
cipitation from sowing dates (1st day) to 246th day were used. First-
order interactions among these variables were also considered
resulting in 246�3þ246�246�3¼182 286 explanatory

variables. These additive and interaction effects were modeled using
BayesC with different shrinkage magnitudes. Specifically, 20% and
0.1% of the additive and interaction variables were assumed to have
non-zero effects. p0 of BGLR was set to 1eþ6. The convergence cri-
terion of VIGoR and the chain lengths of BGLR followed those used
in Exp. 1 and 2. Prediction accuracy of VIGoR was similar among
the convergence criteria (Fig. 1C), and superior to BGLR of any
chain length. Calculation time of VIGoR increased as the criterion
became stricter, but still less than the longest chain of BGLR that
was not able to achieve accuracy equivalent with VIGoR.

3 Conclusions

VIGoR offers fast and accurate solutions for linear models that in-
corporate multiple learners. The package enables users to model
multimodal and high-dimensional explanatory variables, and will
help discovering important variables or predicting phenotypes.
Although the current version is only applicable to quantitative re-
sponse variables, future updates will allow application to categorical
or censored data.
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