
Whole-exome sequencing of ovarian cancer families uncovers
putative predisposition genes

Qianqian Zhu 1, Jianmin Zhang2, Yanmin Chen2, Qiang Hu1, He Shen2, Ruea-Yea Huang3, Qian Liu1, Jasmine Kaur4,
Mark Long1, Sebastiano Battaglia3, Kevin H. Eng1, Shashikant B. Lele4, Emese Zsiros4, Jeannine Villella5, Amit Lugade3,
Song Yao6, Song Liu1, Kirsten Moysich6 and Kunle O. Odunsi3,4

1Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
2Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
3Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
4Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
5Division of Gynecologic Oncology, Lenox Hill Hospital/ Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at

Hofstra/Northwell, New York, NY
6Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY

Despite the identification of several ovarian cancer (OC) predisposition genes, a large proportion of familial OC risk remains

unexplained. We adopted a two-stage design to identify new OC predisposition genes. We first carried out a large germline

whole-exome sequencing study on 158 patients from 140 families with significant OC history, but without evidence of genetic

predisposition due to BRCA1/2. We then evaluated the potential candidate genes in a large case–control association study

involving 381 OC cases in the Cancer Genome Atlas project and 27,173 population controls from the Exome Aggregation

Consortium. Two new putative OC risk genes were identified, namely, ANKRD11, a putative tumor suppressor, and POLE, an

enzyme involved in DNA repair and replication. These two genes likely confer moderate OC risk. We performed in vitro

experiments and showed an ANKRD11 mutation identified in our patients markedly lowered the protein expression by

compromising protein stability. Upon future validation and functional characterization, these genes may shed light on cancer

etiology along with improving ascertainment power and preventive care of individuals at high risk of OC.

Introduction
Epithelial Ovarian cancer (OC) is the leading cause of death
from gynecologic malignancies. The American Cancer Society
estimated that in 2019 22,530 new OC cases will be diagnosed in
the US and 13,980 would die from the disease. OC is known to
have strong genetic predisposition with an estimated heritability
of approximately 40%.1 A family history of OC is one of the

strongest risk factors of the disease. Women with a family history
of OC are 3.1-fold more likely to develop this cancer.2 Studies in
the past 15 years have discovered a number of high-risk OC genes,
such as BRCA1, BRCA2, BRIP1, MLH1, MSH2, MSH6, RAD51C,
RAD51D and PMS2.3 Lifetime risk of OC is estimated to be
15–40% for women with deleterious mutations in BRCA1/2, com-
pared to 1.4% for women in the general population.4,5 However,
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mutations in BRCA1/2 can only explain 43% of excess familial
risk6 and 5–10% of the total OC incidence.7 As a result, as much
as 60% of OC familial risk remains unexplained,8 necessitating
continuous efforts to discover new OC predisposition genes.

Recent efforts to identify additional OC predisposition
genes came from large case–control genome-wide association
studies (GWAS),9–13 and targeted sequencing of candidate genes
in case–control or case-only cohorts.14–16 While GWAS offer sys-
tematic scan of the common genetic variants across the genome,
the variants identified usually confer small increments in OC risks
and reside in noncoding genomic regions, leaving the actual genes
responsible for the signals undetermined. Targeted sequencing
allows testing of rare variants, which are more likely to have larger
effect size and direct functional consequence,17 in the genes of
interest but leaves out most of the genes in the genome, and would
miss genes not specified a priori. To overcome these limitations,
we chose the whole-exome sequencing (WES) approach and
focused our studies on a high-risk familial OC population from a
large Familial Ovarian Cancer Registry (FOCR), where we expect
an enriched pool of OC predisposition genes. Indeed, in a previ-
ous segregation analysis on 1919 pedigrees from FOCR,18 we
found evidence supporting a dominant mode of segregation of
susceptibility to OC and the existence of OC susceptibility genes
beyond BRCA1, BRCA2 and MSH2. To maximize the likelihood
of discovering new OC genes, we performed WES on FOCR par-
ticipants from families that had not been screened for BRCA1/2
mutations or families that tested negative for deleterious muta-
tions in those genes, and followed with a large case–control study
to evaluate genes’ contribution to OC risk (Fig. 1). To the best of
our knowledge, this is the largest WES study of hereditary OC
families to date, and we report ANKRD11 and POLE as novel
putative OC predisposition genes.

Materials and Methods
Study population
The FOCR housed at Roswell Park Comprehensive Cancer
Center (formerly known as the Gilda Familial Ovarian Cancer
Registry) recruits families with two or more cases of OC, fam-
ilies with three or more cases of cancer on same side of family
with at least one being OC, families with at least one female
having two or more primary cancers and one of the primaries
being OC, and families with two or more cases of cancer with
at least one being OC diagnosed at an early age of onset
(45 years old or younger).18 Families provide written informed
consent under an institutional protocol CIC95-27. Cases are

verified by medical record and/or death certificate when
required and a registry pathologist verifies stage and histology.
The registry comprises 50,401 individuals including 5,614 OCs
from 2,636 unique families. The 155 participants selected in
our study had germline DNA samples available and previously
tested negative for germline BRCA1/2 mutations (n = 134;
86.5%) or had not been subjected to genetic testing (n = 21;
13.5%). Genetic testing for BRCA1/2 in FOCR has been
reported previously,18 except for 11 patients the genetic testing
was done by Myriad. In addition, three early-onset OC patients
from the Ovarian Cancer Association Consortium (OCAC)
were included.

Next-generation sequencing and variant calling
Exome capture was performed using Agilent SureSelect Human
All Exome v3 or v5 kit from the genomic DNA isolated from each
individual. The captured DNA was sequenced using Illumina
HiSeq to generate 100-bp paired-end reads. Raw sequence reads
were aligned to the Human Reference Genome (NCBI Build 37)
using the Burrows–Wheeler Aligner (BWA). After removing PCR
duplicates using Picard, the GATK software was used for local
realignment, base quality recalibration and variant calling of single
nucleotide variants (SNVs) and small insertions and deletions
(indels). In the variant calling step, variants were first called in
each sample separately, and then joint genotyping analysis was
performed across all samples to generate analysis-ready variants.

Variant filtering
Only biallelic variants were included in our analysis. Genotypes
with read depth <3 were considered missing and variants with
missing genotypes in >10% individuals were excluded. Long inser-
tions and deletions (>10 bp) were also removed. Variants in seg-
mental duplications of greater than 96% similarity were excluded
due to high false positive rate of variant calling. To keep only rare
variants, we excluded any variants with allele frequency >0.1% in
non-TCGA and non-Finnish European population from the
Exome Aggregation Consortium19 (ExAC) (exac03nontcga) as
well as any variant in dbSNP129, the 1000 Genomes Project
(2015 August release, EUR population), and the Exome Sequenc-
ing Project (ESP6500siv2, European American only). Variants that
were not functionally important were filtered out, including non-
exonic variants (except splicing variants), nonframeshift variants,
synonymous variants and nonsynonymous variants that were
predicted to be benign by all prediction methods,20 including
SIFT, PolyPhen2, MutationTaster, LRT, MutationAssessor,

What’s new?
Despite the identification of several ovarian cancer (OC) predisposition genes, familial OC risk largely remains unexplained.

Here, the authors report the discovery of two new putative OC predisposition genes based on germline whole-exome

sequencing of 140 families with a strong OC family history but without known BRCA1/2 mutations. By comparing another

381 OC cases with more than 27,000 population controls, they show that the putative tumor suppressor ANKRD11 and POLE,

an enzyme involved in DNA repair and replication, moderately increase OC risk. These genes may shed light on cancer etiology

and improve ascertainment power of individuals at high OC risk.
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FATHMM, RadialSVM and logistic regression (LR) score.
ANNOVAR21 was used to facilitate these variant filtering steps.
We further eliminated any variants in genes not expressed in
breast or female reproductive system according to the Human
Protein Atlas (www.proteinatlas.org; Data from v14.proteinatlas.
org),22 and any variants in genes with residual variation intoler-
ance score (RVIS) score23 ≥90th percentile unless the gene was a
known cancer predisposition gene3 or a gene included in Cancer
Gene Census.24 At the end, only the recurrent genes that were
mutated in at least two families were kept for further analysis.
Variants in the 11 genes selected for validation (including the five
novel genes and six known cancer genes, Fig. 1) were manually
inspected to ensure reliable variant calls.

Sanger sequencing
For each variant in the five novel candidate genes that was
observed in our discovery cohort, we performed Sanger sequenc-
ing on all variant carriers and same number of randomly selected
noncarriers.

Variant analysis in TCGA OC cohort
We selected 381 normal samples (“Blood Derived Normal”
or “Solid Tissue Normal”) from TCGA self-reported white
OC cases that have been whole-exome sequenced. We
extracted their BAM files with restriction to the 11 gene
regions from the Genomic Data Commons Data Portal. We
performed variant calling and variant filtering as described

above for our own WES data. Manual inspection was also
employed for the observed variants in the 11 genes selected
for validation.

Case–control association test
Variant sites in ExAC non-TCGA samples (release 1) were
obtained from the ExAC website. We included the variants that
passed GATK quality filter and were observed in Non-Finnish
European population. These variants were filtered in the same
way as described above for our discovery cohort and the TCGA
OC cases to retain only rare and putatively functional variants.
As individual-level genotype data in ExAC are not available, we
summed up mutant allele counts across all remaining variants in
the same gene in the ExAC controls and compared them with
values in the TCGA OC cases using two-sided Fisher’s exact test.
Bonferroni correction was used to correct for testing multiple
genes.

Somatic mutation burden in TCGA OC cohort
Somatic mutations were extracted from the high confidence set of
somatic mutations in TCGA PanCanAtlas Ovarian Serous
Cystadenocarcinoma data, which was downloaded from cBioPortal
and contained only biallelic variants.25 Of the 381 TCGA OC
patients, 345 had somatic mutation information available and
therefore only these 345 patients were included in the analysis of
somatic mutation burden. To identify carriers with somatic muta-
tions in BRCA1, BRCA2, ANKRD11 and POLE, we focused on rare
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Figure 1. The two-stage study design. One novel candidate, TTC28, was excluded from case–control association study due to extremely low
coverage of the gene in the matched normal WES data of TCGA OC cases. [Color figure can be viewed at wileyonlinelibrary.com]
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and putatively functional somatic mutations. Variant filtering pro-
cess was the same as described above for our ownWES data, except
that dbSNP database was not used for filtering here. We also
required the somatic mutations to have allele frequency ≥10% in
the corresponding tumor sample and were supported by at least
three reads. Copy number alterations from GISTIC, which were
also downloaded from cBioPortal, were used to locate OC patients
with homozygous deletions in the above four genes in their tumors.

Characterization of ANKRD11 genetic variants
Flag-tagged wild-type (WT) or mutant cDNA constructs were
cloned into pcDNA3.1 + C-DYK vector (GenScript). The
sequences of the constructs were confirmed by sequence anal-
ysis. WT or mutant constructs were cotransfected with GFP
expressing vector construct into 293T cells with PolyJet™ In
Vitro DNA Transfection Reagent (SL100688; SignaGen Labo-
ratories, Rockville, MD) and cell lysates were harvested after
48 hr. The 293T cell line (ATCC® CRL-3216™, RRID:
CVCL_0063) was ordered from ATCC in 2018, which has
been authenticated using STR profiling and was confirmed
without mycoplasma contamination. The cell lysates were sep-
arated on SDS-PAGE gel and transferred to a PVDF mem-
brane (Millipore, Burlington, MA). After blocking with 5%
nonfat milk for 1 hr at room temperature, the membranes
were incubated with primary antibodies overnight at 4�C. The
next day, the membranes were incubated with HRP conju-
gated anti-rabbit or mouse secondary antibody (Bio-Rad, Hercu-
les, CA) for 1 hr. The proteins were detected using ECL Plus
Western Blotting Detection Reagents (GE Healthcare, Philadel-
phia, PA). To investigate protein stability of ANKRD11-K1461R,
the WT or K1461R transfected cells were treated without or with
10 μg/ml eukaryote protein synthesis inhibitor cycloheximide
(CHX) and 10 μg/ml proteasome inhibitor MG-132 for 1, 2 and
4 hr. Protein lysates were harvested and the immunoblot was
further performed. Anti-β-Actin (#3700; 1:2000); anti-GFP
(#2950; 1:1000) from Cell Signaling Technology, Danvers,
MA; anti-Flag (MA191878; 1:500) from Invitrogen, Waltham,
MA. The protein abundances were quantified using Image
J software.

Study approval
The study was approved by Institutional Review Boards. All
participants provided written informed consent.

Data availability
Data are restricted due to ethical concerns in keeping with the
institute’s policies on germline variation data and the level of
patient consent gained. Data are available from the Familial
Ovarian Cancer Registry (ovarianregistry@roswellpark.org)
for researchers who meet the criteria for access to confiden-
tial data. The results published here are in part based upon
data generated by The Cancer Genome Atlas (dbGaP Study
Accession: phs000178.v10.p8) managed by the NCI and

NHGRI. Information about TCGA can be found at http://
cancergenome.nih.gov.

Results
Study population in the discovery stage
We selected a discovery cohort that is likely enriched with
unknown OC predisposition genes for WES. This cohort
included a total of 158 cancer patients of European descent
selected from 140 families with a family history of OC but
without known BRCA1/2 mutations (see Materials and
Methods), among which 152 were OC cases and six were
breast cancer cases with family members diagnosed with
OC. The median age onset is 49 and the number of OC cases
within these families ranged from 1 to 6. Tumor characteris-
tics were summarized in Table 1.

Established and novel candidate genes identified by WES of
OC families
Variants from WES underwent rigorous filtering and we kept
in our analysis the recurrent genes that harbored rare and
putatively functional variants in at least two families (Fig. 1,
see Materials and Methods). Among these genes, we observed
three known OC predisposition genes: BRCA1, BRIP1 and
MSH2, which were found mutated in 15 (9.49%), four (2.53%)
and two (1.27%) cancer patients respectively. BRCA2 variant
was only observed in one patient, which probably resulted
from our explicit exclusion of known BRCA-positive patients
from our discovery cohort. Nevertheless, we included BRCA2
in our further analysis due to its importance in OC.

Table 1. Characteristics of the discovery cohort

Characteristic n (%)

Age at diagnosis, years
range (median)

91–83 (49)

Histology

Serous 81 (51.27%)

Endometrioid 22 (13.92%)

Clear cell 9 (5.70%)

Mucinous 8 (5.06%)

Other 7 (4.43%)

Unknown 31 (19.62%)

Stage

I 33 (20.89%)

II 10 (6.33%)

III 42 (26.58%)

IV 3 (1.90%)

Unknown 70 (44.30%)

Grade

1 26 (16.46%)

2 26 (16.46%)

3 59 (37.34%)

Unknown 47 (29.75%)

1The patient was diagnosed with germ cell ovarian cancer.
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In addition to observing known OC risk genes, we observed
two recurrent genes that have been implicated in other cancers,
including POLE in colorectal cancer and EP300 in colorectal,
breast and blood cancers.24 These two genes were both mutated
at a frequency equal to BRIP1. The identification of known
colorectal cancer genes in our study is intriguing as colorectal
cancer is an established risk factor for OC.26,27

To further identify novel candidates for OC predisposition
gene, we prioritized genes that were more frequently mutated
in these high-risk patients. Candidates were selected using a
stringent cutoff where genes were required to be mutated in at
least 3.5% patients or families, which translated to six patients
or five families. The cutoff was chosen to be aligned with what
have been observed cumulatively for BRCA-Fanconi anemia

OC-associated genes excluding BRCA1/2.15 Of the 13 genes
meeting this criterion, five (TTC28, VPS13B, COL6A3, FREM2
and ANKRD11) were of particular interest as they have not
been previously known as cancer predisposition genes but were
implicated to involve in cancer (Table 2 and Supporting Infor-
mation Table S1). Mutations in these novel genes occur at a
frequency that is higher than many well-known predisposition
genes, such as BRIP1 and MSH2, in previous15,16 and current
study. Sanger sequencing (see Materials and Methods) con-
firmed observed variants in these five novel candidate genes.

Validation of candidate genes in case–control association study
To evaluate the predisposition potential of these new genes,
we compared the frequencies of rare and putatively functional

Table 2. The mutation frequency of known cancer genes, and OC predisposition candidate genes in the discovery cohort and TCGA OC cases

Gene1

Discovery cohort TCGA OC cases

Number of
variants Carriers (n = 158) (n, %) Carrier families2 (n = 140) (n, %)

Number of
variants Carriers (n, %) n total3

BRCA1 12 15 9.49% 13 9.29% 20 34 8.92% 381

TTC28 6 7 4.43% 6 4.29% – – – –

FREM2 6 7 4.43% 6 4.29% 7 7 1.96% 357

VPS13B 5 6 3.80% 5 3.57% 12 12 3.15% 381

COL6A3 6 5 3.16% 5 3.57% 12 11 3.08% 357

ANKRD11 5 5 3.16% 5 3.57% 13 13 3.64% 357

EP300 4 4 2.53% 4 2.86% 11 11 2.89% 381

POLE 3 4 2.53% 3 2.14% 16 16 4.34% 369

BRIP1 3 4 2.53% 3 2.14% 3 3 0.79% 381

MSH2 2 2 1.27% 2 1.43% 6 7 1.84% 381

BRCA2 1 1 0.63% 1 0.71% 21 24 6.30% 381

1The novel OC predisposition candidate genes were in bold.
2The families where the gene was mutated in at least one individual.
3The samples with genotypes missed for all the variants of the corresponding gene were excluded.

Table 3. Comparison of mutant allele frequency in case–control association study

Gene1

TCGA OC cases ExAC population controls2

OR p-value3Total chr count4 Allele frequency Allele count Total chr count Allele frequency

BRCA1 762 4.46% 245 54,346 0.45% 10.31 7.22E−22
TTC28 – – 47 5,400 0.87% – –

FREM2 714 0.98% 592 54,346 1.09% 0.90 1.00

VPS13B 762 1.57% 600 54,346 1.10% 1.43 0.22

COL6A3 714 1.54% 651 54,346 1.20% 1.29 0.38

ANKRD11 714 1.82% 339 54,346 0.62% 2.95 7.92E−04
EP300 762 1.44% 393 54,346 0.72% 2.01 2.99E−02
POLE 738 2.17% 444 54,346 0.82% 2.69 5.71E−04
BRIP1 762 0.39% 135 54,346 0.25% 1.59 0.44

MSH2 762 0.92% 161 54,346 0.30% 3.12 9.19E−03
BRCA2 762 3.15% 349 54,346 0.64% 5.03 7.26E−10

1The novel OC predisposition candidate genes were in bold. Genes were in the same order as in Table 2.
2Variants were from Non-Finnish European population of ExAC with samples from TCGA excluded.
3Fisher exact test p-value for comparing allele counts between OC cohort and ExAC. p values that were statistically significant after Bonferroni correction
for 10 genes (p-value <5 × 10−3) are in bold.
4The samples with genotypes missed for all the variants of the corresponding gene were excluded.
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germline variants in those genes between an independent OC
cohort of 381 patients from the Cancer Genome Atlas project
(TCGA) and 27,173 population controls from ExAC (see
Materials and Methods). The OC cases used for validation
included all self-reported white OC cases from TCGA that had
WES data from matched normal available. We assessed a total
of 11 genes in this case–control study including all five novel
genes along with the six known cancer genes (Fig. 1, Table 3
and Supporting Information Table S2). Due to extremely low
coverage of the TTC28 gene region in TCGA WES data, this
gene was excluded from the analysis and only 10 genes entered
association testing. Four genes (BRCA1, BRCA2, ANKRD11
and POLE) were found to carry significantly more mutant
alleles in TCGA OC cases than in controls (Bonferroni
corrected p-value <0.05). The two new putative OC predisposi-
tion genes, ANKRD11 and POLE, conferred moderate risk to
OC with odds ratio (OR) 2.95 and 2.69, respectively. Interest-
ingly, in the TCGA OC cohort, we observed that the patients

carrying germline mutations in these two genes tend to have
higher somatic mutation burden (Supporting Information
Fig. S1, one-sided p-value based on Kolmogorov–Smirnov
test = 0.1 and 0.111 for ANKRD11 and POLE, respectively), a
pattern that has been documented for BRCA1 and BRCA2 in
OC.28 The trend became statistically significant after we
included the carriers with somatic mutations or homozygous
deletions in their tumor samples (Fig. 2, one-sided p-value
based on Kolmogorov–Smirnov test = 4.55 × 10−3 and 0.022
for ANKRD11 and POLE, respectively).

Functional evaluation of ANKRD11 variants
To test whether the rare and putatively functional variants in
the new cancer disposition gene ANKRD11 have any effects
on protein abundance, we selected the five variants identified
in our discovery cohort (Fig. 3a, Supporting Information
Table S2) and evaluated their effects on protein expression by
transient transfection of the WT or mutant constructs into

Figure 2. Somatic mutation burden in TCGA OC cohort. The number of somatic mutations in patients who either carried germline mutations or carried
somatic mutations or homozygous deletions in their tumor samples in each of the four genes was compared to patients that did not carry mutations or
homozygous tumor deletions in any of the four genes (Other) using Kolmogorov–Smirnov (KS) test. [Color figure can be viewed at wileyonlinelibrary.com]
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293T cells. All five ANKRD11 variants were predicted by in
silico bioinformatics programs to be deleterious to protein sta-
bility or function (Supporting Information Table S3). We found
that one variant (K1461R) markedly reduced ANKRD11 pro-
tein level (Figs. 3b and 3c). This is caused by the mutant
ANKRD11 protein being unstable and rapidly degraded, as we
observed increased protein level after inhibiting protein degra-
dation with proteasome inhibitor MG132 (Fig. 3d).

Discussion
We identified two new genes, ANKRD11 and POLE, that carry
significantly increased OC risk when compared to population
controls in ExAC. ANKRD11 has previously been found to be
a potential tumor suppressor.29,30 It falls within the loss of
heterozygosity region in 16q24.3 in breast cancer, which
occurs in at least half of all breast tumors.29 ANKRD11 is a
coactivator and a target gene of P53 and it enhances P53 tran-
scriptional activity through increased acetylation of P53.29

ANKRD11 can also suppress the oncogenic potential of P53
Gain-Of-Function mutant.30 ANKRD11 expression was found
lower in breast tumor tissues and breast cancer cell lines when
compared to normal breast tissues or nonmalignant immortal-
ized breast epithelial cells.29–31 Restoring ANKRD11 expres-
sion in breast cancer cell lines can suppress tumor cell growth
in the presence of P53 that can bind DNA.29 While previous
studies focused on breast cancer, our study found ANKRD11
to increase risk of OC with an OR of 2.56–2.95. We selected
the five ANKRD11 variants observed in our patients for func-
tional evaluation and found one abolish ANKRD11 protein
abundance, which pointed to the possibility that reduced
ANKRD11 protein level contributes to OC onset, consistent
with prior observed effect of ANKRD11 level in breast
cancer.29–31 Further functional experiment will be needed
to characterize the effect of other deleterious ANKRD11
variants such as G2480R, which sits in the C-terminal
of ANKRD11 responsible for signaling ANKRD11
degradation,32 as well as to investigate their potential func-
tional consequence on cell proliferation, invasion and
migration in order to understand the mechanism under-
neath the observed increased risk of OC.

POLE encodes the catalytic subunit of DNA polymerase
epsilon. It is involved in DNA repair and chromosomal DNA
replication. POLE is considered a colorectal cancer predisposi-
tion gene3,33 and the National Comprehensive Cancer Net-
work guidelines recommend colonoscopy every 2–3 years to
individuals carrying POLE mutations, even though its precise
risk in colorectal cancer has not been estimated yet. Our find-
ing is consistent with recent findings that POLE mutations can
contribute to susceptibility to a broad cancer spectrum includ-
ing OC.34,35 Furthermore, it has also been reported that POLE-
mutant endometrial and colorectal tumors had a high somatic
mutation burden, elevated expression of immune checkpoint
genes and increased lymphocytic infiltration,36–43 and therefore
immune checkpoint inhibitors was recommended for treating

cancers with POLE-mutations.41,44 Similar recommendation
was also demonstrated in mismatch repair (MMR) deficient
cancers regardless of the cancers’ tissue of origin.45 In this

Figure 3. Characterization of ANKRD11 variants. (a) The ANKRD11
variants we identified in our discovery cohort (denoted by *) and TCGA
OC cohort. (b) Immunoblot analyses were performed with anti-Flag, anti-
GFP and anti-β-Actin antibodies. The samples are lysates from 293T
cells co-transfected with the ANKRD11-WT or ANKRD11 variant
containing constructs and GFP expressing vector. β-Actin was used as
the loading control. (c) Quantification of ANKRD11 immunoblot band
intensity relative to loading control using ImageJ. All the experiments
were performed in triplicates. Error bars represent SD; ***p < 0.001 by
two-tailed Student’s t-test. (d) Immunoblot analyses were performed
with anti-Flag, anti-GFP and anti-β-Actin antibodies. The samples are
lysates from 293T cells co-transfected with the ANKRD11-WT or
ANKRD1-K1461R containing construct and GFP expressing vector. The
transfected cells were treated with 10 μg/ml CHX and 10 μg/ml MG-132
for 1, 2 and 4 hr. β-Actin was used as the loading control. [Color figure
can be viewed at wileyonlinelibrary.com]
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phase II clinical trial, clinical benefit was observed in 53%
patients, half of whom also carried germline mutations in
MMR genes. Under the hypothesis that patients with germline
POLE-mutations can benefit from immune checkpoint block-
ade, it might be beneficial to offer OC patients with gene panel
testing including POLE, which could help to determine the best
treatment options for them.

In support of this, we observed a trend of higher somatic
mutation burden in OC patients with germline ANKRD11 and
POLE-mutations. This finding is consistent with what has
been observed in endometrial and colorectal tumors with
somatic POLE-mutations.40,42,43 In addition, it might also
raise the beneficial potential of including POLE in gene panel
testing of OC patients and their family members in order to
optimize the prevention strategies to decrease their risk of OC
and colorectal cancer. We noticed POLE variants were more
prevalent in the TCGA OC cohort than in our discovery
cohort (4.34% vs. 2.53% in Table 2). As the TCGA cohort
included mostly sporadic OC while our cohort is enriched
with familial OC, it might imply a likely stronger contribution
of POLE to sporadic OC than familial OC.

We attempted to further validate ANKRD11 and POLE
using the large GWAS datasets of OC cases and controls of
the Ovarian Cancer Association Consortium (OCAC).9 How-
ever because the very rare variants observed in our WES study
were missing in genotyping/imputation data, the OCAC data
was not suitable for validating our findings.

There are limitations to our study. When we estimated the
OC risk conveyed by each gene, we took advantage of the
existing variant data from ExAC population controls. We
acknowledge that cancer status in ExAC individuals was not
fully characterized and the ExAC data was generated sepa-
rately from our study. A strict case–control study by targeted
sequencing of the genes in both OC patients and cancer-free

controls would be necessary in the future. However, the sam-
ple size of such study is likely to be significantly less than
ExAC. Despite these limitations, the ExAC data has been
commonly used and validated as an effective control dataset
for estimating cancer risk for both known15,46–48 and newly
discovered cancer predisposition genes/loci.49,50

In summary, we conducted the largest WES study of
hereditary OC to date and followed with a validation study to
identify ANKRD11 and POLE as two possible OC predisposi-
tion genes. Identification of additional OC predisposition
genes can potentiate ascertainment power and preventive care
of individuals with high OC risk. Future follow-up studies
including additional sequencing and functional experiments
are warranted to confirm these findings.
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