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Abstract

Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given
our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its
steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change
capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on
predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over
features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with
average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of
the art change capturing methods. In addition we have identified several issues concerning prediction of ontology
evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any
biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the
ontology that need extension.
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Introduction

Despite the last decade’s efforts to structure and organize the

deluge of biomedical data brought on by high throughput

techniques, there are still many issues that challenge biomedical

knowledge discovery and management [1].

On one hand, most scientific knowledge is still present only in

natural language text in the form of scientific publications, whose

number grows nearly exponentially making it necessary to employ

text mining techniques if we are ever to aspire at keeping up.

However, the natural ambiguity and subjectivity of natural

language hinders the automated processing of scientific publica-

tions. On the other hand, although there is a large number of

databases to store biomedical data, the effort to achieve

interoperability between them is still lagging behind, given that

most resources, particularly the older ones, were developed in a

completely independent fashion, and the efforts to connect them to

other resources are still insufficient.

One very important breakthrough for both areas, was the

development of biomedical ontologies (bio-ontologies). They

support both issues, by providing unequivocal and structured

models of specific domains, which is fundamental to resolve

semantic ambiguities in text mining and also to serve as a common

background to biomedical databases.

The development of a biomedical ontology, or other domain

ontologies, is a very demanding process that requires both

expertise in the domain to model, as well as in ontology design.

This means that people from different backgrounds, such as

biology, philosophy and computer science should be involved in

the process of creating an ontology. However, specific biomedical

ontologies are usually built by small teams of life sciences

researchers, with little experience in ontology design. They are

responsible for first, agreeing on the precise limits of the domain to

model; second, defining the structure and complexity of the model;

and finally, building the ontology itself by creating the concepts,

relations and other axioms it might contain [2].

Several methodologies have been developed to help build

ontologies [2–5], with the most well-known ontology editors in the

biomedical ontologies community being Protégé [6] and OBO-

Edit [7]. Nevertheless, ontology development remains a mostly

manual and labor-intensive task, which is magnified if the domain

to model is as dynamic and complex as the life sciences.

Biomedical ontologies can never be considered complete, always

having to adapt to our new understanding of biological knowledge.

This forces biomedical ontology development to be an iterative

process [8,9] in order to keep up with the dynamic and evolving

domain. In fact, one of the tenets of the Open Biological and

Biomedical Ontologies (OBO) Foundry, an initiative that estab-

lishes a set of principles for ontology development in the

biomedical domain, is that an ontology should be maintained in

light of scientific advance [10].

This ontology evolution [11] is a continuous effort, requiring

large investments of both time and resources with each new

version that is produced. Moreover, many biomedical ontologies

cover large and complex domains which magnifies the effort

required, even when considering highly successful ontologies, such

as the Gene Ontology [12], where a large community is engaged

in its creation. These challenges create the need for semi-

automated systems that are able to support ontology engineers

in the task of ontology evolution. However, a significant majority

of efforts in this area is not concerned with evolving an existing

ontology, but rather in learning a new ontology from scratch,
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usually from textual resources [13–19]. Nevertheless, they can in

principle be used for ontology extension as well. These approaches

usually depend on either a manually selected corpus of texts to be

used as input to narrow down the domain of interest, or process

large corpus with generic domains.

A relevant process of ontology evolution is the addition of new

elements, i.e. ontology extension. Ontology extension is particu-

larly relevant in fast growing domains such as biomedicine, where

new knowledge is created everyday. The first step in this is to

identify the changes that need to be performed: change capturing.

This is vitally different from a general ontology learning process

that handles the whole domain at once, in that it is focused on

specific areas within the domain of the ontology to be extended.

In this paper we present a methodology that addresses change

capturing by predicting ontology extension. The fact that these

changes can in principle be semi-automatically discovered by

analyzing the ontology data and its usage motivated the present

work. It is a supervised learning based strategy that predicts the

areas of the ontology that will undergo extension in a future

version, based on previous versions of the ontology. By pinpointing

which areas of the ontology are more likely to undergo extension,

this methodology can be integrated into ontology extension

approaches, both manual and semi-automated, to provide a focus

for extension efforts and thus contributing to ease the burden of

keeping an ontology up-to-date.

The primary goal of our methodology is to function as a first

step in automated ontology learning or extension systems.

Ontology learning systems, usually rely on the analysis of a

manually constructed corpus of documents pertaining to the

domain of interest and their performance is closely coupled to the

relevance of these documents. The challenge of focusing the

ontology given an heterogenous corpus in ontology learning has

been identified [20], a challenge that is amplified when it comes to

ontology extension of large ontologies, as is the case of many

biomedical ontologies. A comprehensive corpus for these ontolo-

gies would be quite large and building and then processing it

would be cumbersome. By applying our strategy, ontology

developers can identify subdomains to extend, create tailored

corpus for them, and then run the learning systems over them,

reducing the amount of data they have to process to identify new

concepts. Another option for ontology extension is based on

ontology matching, which can be used to support the integration

of elements from other ontologies. Our strategy can also be

interesting in this case, since by pinpointing the areas to extend, it

can help to narrow down on specific ontologies to match.

Our main contribution for ontology developers lies in the

speeding of the process of extension in these areas, thus releasing

the experts to focus on more complex ontology evolution issues.

We have chosen to evaluate our approach using the Gene

Ontology, since it provides many versions spanning a number of

years, and is perhaps one of the best known and widely used

biomedical ontologies.

In the remainder of this section we will introduce some basic

concepts, present related work and describe the Gene Ontology.

Ontology Evolution and Extension
Ontology evolution can be defined as the process of modifying

an ontology in response to a certain change in the domain or its

conceptualization [21]. These include (1) changes in the portion of

the real world they model, (2) a reassessment of the relevance of

some element to the ontology, (3) the uncovering of information

previously unavailable, or (4) a need to correct previous mistakes

[22]. In general, the evolution of biomedical ontologies is mainly

concerned with the third and fourth types, given the dynamic

nature of biological knowledge production, everyday new dis-

coveries are published, rendering some facts obsolete and bringing

new knowledge to light.

Ontology evolution comprises several different processes, based

on the type of change transformations they employ over ontology

elements: add, remove or modify. While adding new elements is

mostly employed in response to a change of the first or third type,

removing elements is often related to the first, second and fourth

types. Modifying existing elements can belong to any of the four

kinds and ultimately be seen as a compound change of removing

one element and adding a slightly different new one. In this work

we are only concerned with change transformations that add new

elements to the ontology, thereby extending it.

Although [21] and [23] provide an exhaustive terminology for

ontology change, some finer grained aspects of ontology evolution

remained confusing, with several terms being used in an

ambiguous fashion. In a previous work [24] we defined and

distinguished three terms related to ontology changes concerned

with the addition of new elements: ontology extension, ontology

refinement and ontology enrichment. Although ontology extension is

often used interchangeably with both refinement and enrichment,

we defined them as follows:

Ontology extension is the process by which new single

elements are added to an existing ontology.

Thus, ontology extension is concerned with elementary changes

of the addition type. Many reasons can motivate such a change,

such as new discoveries, access to previously unavailable informa-

tion sources, a change in the viewpoint or usage of the ontology, a

change in the level of refinement of the ontology, etc, but they all

rely on the finding of new knowledge. Ontology extension

encompasses both ontology refinement and ontology enrichment.

Ontology refinement is the addition of new concepts to an

ontology, where a new subsumption relation is established between

an existing concept and the new concept. For instance, the

addition of the concept ‘‘mitochondrial fusion’’ as a subconcept of

Author Summary

Biomedical knowledge is complex and in constant evolu-
tion and growth, making it difficult for researchers to keep
up with novel discoveries. Ontologies have become
essential to help with this issue since they provide a
standardized format to describe knowledge that facilitates
its storing, sharing and computational analysis. However,
the effort to keep a biomedical ontology up-to-date is a
demanding and costly task involving several experts. Much
of this effort is dedicated to the addition of new elements
to extend the ontology to cover new areas of knowledge.
We have developed an automated methodology to
identify areas of the ontology that need extension based
on past versions of the ontology as well as external data
such as references in scientific literature and ontology
usage. This can be a valuable help to semi-automated
ontology extension systems, since they can focus on the
subdomains of the identified ontology areas thus reducing
the amount of information to process, which in turn
releases ontology developers to focus on more complex
ontology evolution tasks. By contributing to a faster rate of
ontology evolution, we hope to positively impact ontol-
ogy-based applications such as natural language proces-
sing, computer reasoning, information integration or
semantic querying of heterogenous data.
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‘‘organelle fusion’’ in the biological process branch of the Gene

Ontology.

Ontology enrichment is the process by which non-taxono-

mical relations or other axioms are added to an existing ontology.

For instance, the addition of the relation ‘‘regulates’’ between the

GO concepts ‘‘regulation of mitochondrial translation’’ and

‘‘mitochondrial translation’’.

Change Capturing
Before these changes are actually performed, the need for the

change must be identified. This is the first step of any ontology

evolution process, the change capturing phase, and it can be based

on explicit or implicit requirements [15]. Explicit requirements

correspond to those made by the ontology developers or to

requests made by end-users. Implicit requirements correspond to

those that can be uncovered by change discovery. Stojanovic [25]

lists a series of guidelines for change capturing, organized into

three types according to the kind of data they exploit, to which

Castaño et al. [26] add a fourth:

structure-driven: which are derived from the structure of the

ontology, e.g. ‘A class with a single subclass should be merged with

its subclass’.

data-driven: which correspond to implicit changes in the

domain and are discovered through the analysis of the instances

belonging to the ontology, e.g. ‘A class with many instances is a

candidate for being split into subclasses and its instances

distributed among newly generated classes’.

usage-driven: which are deduced from the usage patterns of

the ontology in the knowledge management system e.g. classes that

have not been retrieved in a long time might be out of date.

discovery-driven: which is applied when a new instance

cannot be described by the ontology classes, and new classes are

identified using external resources.

Related Work
Although there is a large body of work on ontology evolution

(for a review see [27]), there are few works on the change

capturing phase. Stojanovic at al. [28] proposed an approach to

ontology evolution that is based on optimizing the ontology

according to the end-users needs. They track end-users interac-

tions with an ontology-based application to collect useful

information that can be used to assess what the main interests of

the end-users are. Their approach is then a usage-driven change

discovery, which focuses on discovering anomalies in the design of

an ontology, whose repairing improves the usability of this

ontology. This uses several measures, based on querying and

browsing of an ontology-based application.

Browsing-based measures are based on the user’s browsing of

links between ontology concepts. They define the usage of two

concepts p and c as the number of times the link between them has

been browsed, where the c is a subconcept of a concept p. This

concept is used in four measures for estimating the uniformity

(balance) of the usage of a link regarding the link neighborhood: (1)

SiblingUniformity represents the ratio between the usage of a link

and the usage of all links, which have the common source node

with that link (the so-called sibling links); (2) ChildrenUniformity

stands for the ratio between the sum of the usage of all the links

whose source node is the given node and the sum of the usage of a

node through all incoming links into this node. (3) ParentUnifor-

mity is the ratio between the usage of a link and the usage of all

links which have the common destination node with that link, and

(4) UpDownUniformity characterizes the ratio between the usage

of a link in two opposite directions, i.e. in browsing down and

browsing up through a hierarchy.

Another usage-driven strategy was proposed by [29] in the

context of the evolution of multiple personal ontologies, which is

based on a user’s ratings of concepts and axioms.

Also relevant for our work is the investigation of ontology

evolution in biomedical ontologies.

In [30], the author applied a previously proposed strategy,

Evolutionary Terminology Auditing (ETA) [22] to assess the

quality of GO using reality as benchmark. This strategy can be

used not so much to demonstrate how good an individual version

of a terminology is, but rather to measure how much it has been

improved (or believed to have been improved) as compared to its

predecessor. This is based on matches and mismatches between

ontology versions, and their motivations, which are expressed by

17 possible configurations split into four groups, denoting,

respectively, the presence or absence of a term and whether the

presence or absence of a term in a terminology is justified or

unjustified. Of these 17 configurations only two correspond to a

need for extension, in which an entity is missing and it is real and

relevant for the ontology.

[31] proposes an approach to automatically discover evolving or

stable regions of ontologies. This approach is based on a cost

model for changes between ontology versions and is able to

identify regions that have been undergoing (or not) extensive

changes.

On a previous study we delineated a framework to analyze

ontology extension and used it as a background for investigating

the feasibility of predicting ontology extension based on a set of

rules [24]. In predicting ontology evolution we were aiming at

developing a methodology for change capturing. We based our set

of rules on the guidelines proposed by [25] following [8] for

ontology development, namely:

A concept with many instances is a candidate for being split

into subconcepts and its instances distributed among newly

generated concepts.

If a class has only one direct subclass there may be a

modeling problem or the ontology is not complete.

If there are more than a dozen subclasses for a given class

then additional intermediate categories may be necessary.

Based on these we created a set of rules for predicting the

extension of the Gene Ontology:

Rule 1: A class with less subclasses than its siblings is a

candidate for refinement

Rule 2: A class with more total annotations than its siblings is a

candidate for refinement

Rule 3: A class with more manual annotations than its siblings

is a candidate for refinement

Application of these rules to several versions of the Gene

Ontology yielded very poor prediction results, highlighting the

need for more complex approaches to model this issue.

The strategy we present here is unlike previously described

works, since we use metrics of previous ontology versions to

support prediction, whereas change capturing approaches are

based on manually derived rules and ontology evolution

approaches analyze evolution of existing ontology versions.

Gene Ontology
The Gene Ontology (GO) is currently the most successful case

of ontology application in bioinformatics and provides a controlled

vocabulary to describe functional aspects of gene products under

three distinct ontologies: biological process, molecular function

and cellular component. GO terms are structured in a directed

Predicting the Extension of Biomedical Ontologies
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acyclic graph with its hierarchical backbone being composed of

is a and part of relations.

GO is used to annotated gene products, and these annotations

are compiled by the Gene Ontology Annotation project (GOA).

GO annotations are assigned an evidence code which identifies the

kind of evidence supporting the annotation. Although over a

dozen evidence codes exist, the most relevant distinction between

them is whether they are manually assigned by a curator or

inferred electronically. Electronic annotations are generally

considered to be of lower quality than manual ones, but compose

the vast majority of present GO annotations (over 97%). Another

relevant aspect of annotations is whether they can be considered

direct, i.e. the annotation was made precisely to that GO term; or

indirect, i.e. the annotation was made to a subconcept of that GO

term, from which we can deduce that there is also an annotation to

all of its superconcepts.

GO also provides a cut-down version of the GO ontologies, GO

Slims, which contain a subset of the terms in the whole GO to give

a broad overview of the ontology content without the detail of the

specific fine grained terms.

There are about one hundred contributors to GO between the

GO Consortium and GO Associates, and they are expected to

contribute regularly towards the content of GO. Other GO users

can also contribute by suggesting new terms via Sourceforge.net,

however the majority of content requests are made by GO team

members [32]. GO team experts base their decision to change the

ontology on the following precepts:

N working closely with the reference genome annotation group

to ensure that areas that are known to undergo intense

annotation in the near future are updated

N listening to the biological community

N ensuring that emerging genomes have the necessary classes to

support their needs

Although some steps have been taken in the direction of

automatizing some aspects of GO evolution, namely the extension

of GO with computable logical definitions including cross-

references to other ontologies [33] and a new method to optimize

the distribution of the information within the GO structure [34],

the evolution of GO remains challenging given the complex

decision-making processes involved [35].

Methods

Data
Following our previous work [24], we used 15 versions of the

Gene Ontology spanning a period of seven years. Table 1

identifies these versions, and describes a few general statistics

about them. The versions have a six-month interval between them

or as close to that as possible, since not all versions have a full

database available from the Gene Ontology archive.

Extension Prediction Strategy
The intuition behind our proposed strategy is that information

encoded in the ontology or its annotation resources can be used to

support the prediction of ontology areas that will be extended in a

future version. This notion is inspired by change capturing

strategies that are based on implicit requirements. However in the

existing change capturing approaches, these requirements are

manually defined based on expert knowledge. Our system

attempts to go beyond this, by trying to learn these requirements

based on previous extension events using supervised learning.

In our test case using GO, we use as attributes for learning a

series of ontology features based on structural, annotation or

citation data. These are calculated for each GO term and then

used to train a model able to capture whether a term would be

extended in a following version of GO.

Structural features give information on the position of a term

and the surrounding structure of the ontology, such as height (i.e.

distance to a leaf term), number of sibling or children terms. A

term is considered to be direct child if it is connected to its parent

by an is_a or part_of relation, but the total of children of a term

encompasses all descendants regardless of the number of links

between them. Annotation features are based on the number of

annotations a term has, according to distinct views (direct vs

indirect, manual vs all). Direct annotations are annotations made

specifically to the term, whereas indirect annotations are

annotations made to a parent of the term, and thus inherited by

the term. Manual annotations correspond to those made with

evidence codes that reflect a manual intervention in the evidence

supporting the annotation, while the full set of annotations also

includes electronic annotations. Citation features are based on

citation of ontology terms based on external resources, in our case

PubMed. Finally hybrid features combine some of the previous

features into one single value. These features can be mapped onto

the change discovery types: structural features belong to their

homonymous change discovery type; annotations features can be

seen as both data and usage based, since they can be interpreted as

both ontology instances and ontology usage; and citation features

correspond to the discovery-driven change, since they are derived

from external sources. In total we defined 14 features, which we

grouped into five sets (see Table 2): all, structure, annotations,

uniformity, direct, indirect, bestA and bestB. The first three sets are

self-explanatory. Uniformity set features were based on [25],

where we considered annotations to represent usage. The direct set

joins direct features of terms, in terms of children and annotations,

whereas the indirect set joins the same kind of features in their

indirect versions. The best sets were based on the best features

found after running the prediction algorithm for individual

features.

Due to the complexity of ontology extension, we have

established a framework for the outlining of ontology extension

in an applicational scenario. This framework defines the following

parameters:

N Extension type:

– refinement, where a term is considered to be extended if it

has novel children terms

– enrichment, where a term is considered to be extended if

it has novel hierarchical relations to existing terms

– extension, where a term is considered to be extended if it

has novel children terms and/or novel hierarchical relations

to existing terms

N Extension mode:

– direct, where a term is considered to be extended if it has

new children terms (according to extension type)

– indirect, where a term is considered to be extended if it has

any new descendant terms (according to extension type)

N Term set:

– all terms

– terms at a given depth (maximum distance to root)

Predicting the Extension of Biomedical Ontologies
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– terms at a given distance to GOSlim terms

N Time parameters:

– nVer, the number of versions used to calculate the features

– DFC, the time interval(in number of ontology versions)

between versions used to calculate features and version used

to verify extension (i.e. in our dataset, a DFC of two equals a

time interval of one year, since we use ontologies spaced by

six months.)

By clearly describing the ontology extension process according

to this framework, we are able to accurately circumscribe our

ontology extension prediction efforts.

The datasets used for classification were then composed of

vectors of attributes followed by a boolean class value, that

corresponded to extension in the version to be predicted,

according to the used parameters. To compose the datasets we

need not only the parameters but also an initial set of ontology

versions to be used to calculate features and the ontology version

to calculate the extension outcome (i.e. class labels). So given a set

of sequential ontology versions Ov~fO1,:::,Ong, we need to

choose one ontology version to predict extension, Oe, and then

based on time parameters nVer and DFC, select the set of

ontologies to be used to calculate features. For example, for a set of

ontologies Ov~fO1,:::,O6g, if we chose O6 to predict extension,

along with nVer~3 and DFC = 2, the set of ontologies to calculate

features will be Of ~fO2,O3,O4g.
We tested several supervised learning algorithms, namely

Decision Tables, Naive Bayes, SVM, Neural Networks and

Bayesian Networks, using their WEKA implementations [36].

For Support Vector Machines, we used the LibSVM implementa-

tion with an RBF kernel and optimized the cost and gamma

parameters through a coarse grid search. For Neural Networks we

used the Multilayer Perceptron implementation, with the number

of hidden layers equal to (attributeszclasses)=2, a training time

of 500 epochs, and we performed a coarse grid search to optimize

the learning rate. Regarding Bayesian Networks, we estimated

probabilities directly from the data, and focused on testing

different search algorithms, namely Simulated Annealing, K2,

and Hill Climbing. Furthermore we had to take into consideration

that there are many more terms that are not extended than terms

that are, between two sequential ontology versions, which creates

unbalanced training sets. To address this issue we used the

SMOTE algorithm [37]. SMOTE (synthetic minority over-

sampling technique), is a technique that handles unbalanced

datasets by over-sampling the minority class and under-sampling

the majority class that has been shown to support better

classification results for the minority class.

Evaluation
To evaluate our Ontology Extension Prediction strategy we

employed a simple approach: compare our predictions to the

actual extension of the Gene Ontology in a future version. To this

end we employ another time parameter:

N DTT, time interval between versions used for training and

testing

This time parameter is used to create the test set, by shifting the

ontology versions according to DTT. So for instance, given a set of

ontologies Ov~fO1,:::,O5g and using nVer~DFC =DTT~1,

the training and test sets would correspond to the those in Figure 1.

Although there may be an overlap in the ontology versions used in

a particular training/testing setup, the ontology versions used to

determine the class values are always distinct, ensuring that our

setup in unbiased.

This approach allows us to compare the set of proposed

extensions to real ones that actually took place in a future version

of the ontology. We can calculate precision, recall and f-measure

metrics, by using the real extension events observed in the more

recent ontology version as our test case. These metrics are based

on the number of true positives, false positives, true negatives and

false negatives. A true positive is an ontology class that our

Table 1. Description of Gene Ontology versions.

ontology
version n. terms n. relations

max
depth

avg
depth deletions* insertions*

total
annotations

manual
annotations

Jan 2005 17K 26K 17 6.8 N/A N/A 6.0 M 0.50 M

Jul 2005 18K 28K 19 7.0 111 885 7.1 M 0.62 M

Jan 2006 19K 30K 18 7.0 42 1311 7.3 M 0.56 M

Jul 2006 20K 31K 18 7.0 20 578 9.0 M 0.56 M

Jan 2007 22K 35K 18 7.2 97 2079 10.4 M 0.62 M

Jun 2007 23K 38K 18 6.9 131 1454 12.4 M 0.66 M

Jan 2008 24K 40K 18 4.9 153 1674 19.0 M 0.73 M

Jul 2008 25K 44K 18 4.9 104 807 23.0 M 0.78 M

Jan 2009 27K 47K 18 4.9 17 1415 24.7 M 0.79 M

Aug 2009 28K 51K 18 5.0 77 1487 33.0 M 0.87 M

Jan 2010 29K 54K 19 4.9 61 1476 33.5 M 0.91 M

Jul 2010 32K 57K 15 3.9 31 1302 60.5 M 1.06 M

Jan 2011 33K 60K 15 4.01 106 2698 54.4 M 1.23 M

Jul 2011 34K 63K 15 4.03 48 1208 63.8 M 1.35 M

Jan 2012 36K 65K 15 4.05 32 1113 77.8 M 1.41 M

*with respect to the version in the line above.
doi:10.1371/journal.pcbi.1002630.t001
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supervised learning strategy identified as a target for extension,

and that was indeed extended in the test set, whereas a false

positive although having also been identified as a target for

extension, was not actually extended. Likewise, a false negative is

an ontology class which was not identified as a target for extension,

but was in fact extended in reality, whereas a true negative was

neither identified as a target nor was it extended in the test set.

Precision corresponds to the fraction of classes identified as

extension targets that have actually been extended, while recall is

the fraction of classes identified as extension targets out of all real

extensions. F-measure is a measure of a test’s accuracy that

considers both precision and recall.

precision~
true positives

true positiveszfalse positives
ð1Þ

recall~
true positives

true positiveszfalse negatives
ð2Þ

f {measure~2|
precision|recall

precisionzrecall
ð3Þ

Results

When trying to predict ontology extension we are not just

focusing on which features are best predictors, but also on how to

design the learning process to best support the prediction.

Consequently, we are not only trying to find the best prediction

set up in terms of features and machine learning algorithms, but

also in terms of our strategy’s parameters.

Parameter Optimization
A first step in our experiments was to determine the best term

set to use, and to investigate if this was influenced by different

parameters. To this end, we tested the following term sets within

each GO ontology: all terms, all terms with a depth of 3, 4 and 5,

all GO Slim general terms, all GO Slim general leaf terms, all

terms at a depth of 1 from the GO Slim general leaf terms, under

the same sets of parameters (see Table 3).

To provide a simple basis for our first analysis we focused on the

biological process hierarchy and chose a single feature allChildren

and WEKA’s Decision Table algorithm with attribute selection using

BestFirst. Results are presented (unless otherwise specified) using

Figure 1. Example of ontology versions to use for training and testing with nVer~3, DFC~1 and DTT~1.
doi:10.1371/journal.pcbi.1002630.g001

Table 3. Average term set sizes.

Average term set size

Term Sets Biological Process Cellular Component Molecular Function

all 15928 2272.8 8265.6

depth = 3 97.07 21 154

depth = 4 374 112.47 495.33

depth = 5 849 178.47 1093.67

GOSlim 65.27 31.67 -

GOSlim leaves 54.07 26.07 -

GOSlim leaves 1189.93 758.73 -

depth = 1

doi:10.1371/journal.pcbi.1002630.t003
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the average f-measure obtained using all possible setups derived

from the 15 GO versions available, since we are analyzing a large

number of combination of different parameters. So for instance,

when using nVer~1, DFC~2 and DTT~2, we get a total of ten

runs for our prediction evaluation, whereas using nVer = 3,

DFC~1 and DTT~1 we get only six runs.

Before comparing term sets, we need to analyze the trends between

parameter sets. First we focused on extension types and modes (see

Table 4). The first clear trend to emerge is that indirect extension is

predicted with much more success (0.49–0.86) than direct extension

(0.1–0.27). Furthermore, in regards to comparing refinement to

enrichment and generic extension, enrichment is poorly predicted,

with a performance around 0.20–0.30. The performance for indirect

refinement and extension in term sets derived from depth

performance is comparable (0.63–0.78), whereas in GO Slim sets

refinement is better predicted (0.65–0.86 vs. 0.62–0.65).

To clarify this difference, we calculated the average extended

proportion for each extension type (see Table 5 for the values for

the term set at depth = 4), i.e. the average proportion of extended

terms for all GO versions. We verified that the proportion of

extended terms is higher for biological process, independently of

extension type, followed by cellular component and molecular

function, and that the proportion of refined terms is higher than

enriched terms, independently of GO term type. This can have an

impact on training since there are fewer examples of enrichment.

As for the time parameters (see Table 6) and using indirect

extension and refinement, the differences are less marked. An

increase in the number of versions (nVer) used to calculate the

feature values from one to three does not significantly alter the

results, and when we extend the interval between versions for

feature extraction and extension, we observed an increase in

overall performance of about 0.02–0.06.

In general, when comparing term sets considering the best sets

of parameters (B, C and E, see Tables 4 and 6), it is clear that

smaller term sets show a better overall performance. For the

remainder of our analysis we will focus on two term sets, depth = 4

and GO Slim leaves depth = 1, which will be referred to as depth and

GOSlim respectively. These sets were chosen to cover both term set

strategies and provide a reasonable size set without sacrificing too

much performance. We will also from now on focus on refinement

and indirect extension, since they represent the primary goal of

finding areas of the ontology to extend. Considering time

parameters we will use the best overall performers (setup G:

nVer = 3, DFC~2, DtTT~2).

Features
The next step in our experiment was to compare different

features and feature sets. Table 7 presents the average and

standard deviation f-measure values for all features and feature sets

using our standard setup.

When using single features, the best performers are allChildren,

height and allManAnnots, with average f-measure values around

0.74 in the depth set and 0.69 in the GOSlim set. When using sets of

features, in the depth set the top performers are indirect, bestB and all,
with values between 0.75 and 0.76, whereas in GOSlim they are all,
bestB and bestA, with values between 0.77 and 0.78. Using feature

sets insetad of single features has a positive impact on performance in

the GOSlim set, which is not noticeable in the depth set.

Gene Ontologies
So far we have focused on predicting refinement within the

biological process ontology. Tables 8 and 9 summarize the results

obtained for the molecular function and cellular component

hierarchies, showing the top three features and feature sets for

each term set. For molecular function we show only results for the

term set based on depth since there is no GOSlim subset.

Although average f-measure is generally lower for both

molecular function and cellular component, than for biological

process, allChildren and allManAnnots continue to be among the

best features. Furthermore, for cellular component the GOSlim set

shows a worse overall performance than the depth set, in

disagreement with what happens in biological process.

Supervised Learning Algorithms
In addition to Decision Tables, chosen due to their simplicity,

we also tested several other commonly used supervised learning

algorithms, namely Naive Bayes, SVM, Neural Networks (Multi-

Table 5. Average extended proportion for Gene Ontology
according to extension type.

refinement enrichment extension

biological process 0.293 0.103 0.292

cellular component 0.122 0.027 0.124

molecular function 0.076 0.013 0.077

Values are averaged for all GO term at depth = 4 for the 15 ontology versions
with an indirect extension mode.
doi:10.1371/journal.pcbi.1002630.t005

Table 4. Comparison of extension types and modes.

Term Sets refinement direct (A) refinement indirect (B) enrichment indirect (C) extension indirect (D)

all 0.0999+0.07817 0.4919+0.03250 0.2009+0.09838 0.4674+0.03577

depth = 3 0.2704+0.22514 0.7896+0.05400 0.2955+0.22057 0.7495+0.05059

depth = 4 0.2176+0.17606 0.7083+0.03660 0.3429+0.17947 0.6790+0.04012

depth = 5 0.2313+0.14730 0.6348+0.04879 0.2898+0.14780 0.6268+0.05476

GOSlim 0.2024+0.22988 0.8637+0.05889 0.1722+0.21296 0.6530+0.30708

GOSlim leaves 0.1635+0.21344 0.8553+0.06710 0.1003+0.17292 0.6470+0.30122

GOSlim leaves 0.1523+0.13830 0.6529+0.06636 0.3168+0.10540 0.6243+0.07201

depth = 1

Values are average and standard deviation f-measure for all runs using the 15 ontology versions and a Decision Table algorithm, in the biological process hierarchy.
Time parameters: nVer~1, DFC~1, DTT~1.
doi:10.1371/journal.pcbi.1002630.t004
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layer Perceptron) and Bayesian Networks, using their WEKA

implementations. Figure 2 shows a plot for precision and recall for

the best feature sets using these algorithms.

When applying different learning algorithms, we still see that

overall biological process has the best performance, followed by

molecular function and cellular component. Likewise, the general

performance in the GOSlim term set is better than the one in the

depth term set for biological process, whereas it is the reverse for

cellular component.

Looking in with more detail at the biological process results,

the difference between feature sets is small, so we will not

distinguish between them in our analysis. Naive Bayes gives the

top precision values (0.87–0.90) but the lowest recall (0.48–

0.57), whereas Bayesian Networks have the highest recall (0.78–

0.79) with precision values between 0.74 and 0.79, which

correspond to average f-measures between 0.76 and 0.79. SVM,

Decision Tables and Multilayer Perceptron have performances

in between these with both recall and precision values clustered

around 0.70.

In molecular function, the highest precision is given by

Multilayer Perceptron at 0.70 for bestA, and Multilayer

Perceptron, SVM and Naive Bayes for bestB at 0.66–0.67. The

highest recall is found in bestB by Bayesian Networks at 0.83.

Best average f-measure is achieved by SVM at 0.66 for both

bestA and bestB.

In cellular component, there is a marked difference between the

performance in the depth term set and in the GOSlim set, with the

latter having in general a much lower recall, around 0.40, except

when using Bayesian Networks, where recall rises to around 0.7,

but at the cost of precision. There is also a visible difference

between term sets, with bestB having in general a lower precision

for the GOSlim set, which is not apparent in the depth term set. In

the depth term set the best performing algorithms are Decision

Tables and Bayesian Networks, with recall around 0.8 and

precision above 0.6. Decision Tables achieves the top performance

with an average f-measure of 0.72 for bestA.

Comparative Evaluation
To provide a basis for comparison, we implemented Stojano-

vic’s browsing uniformity measures [25] and evaluated them on

predicting ontology evolution for GO. For link usage we used

annotation frequency. Since this strategy does not identify targets

for extension, but rather ranks classes according to their

uniformity, we evaluated this strategy plotting precision-recall

curves for all ontology versions used. Figure 3 shows precision/

recall plots for children uniformity, using one version of the

ontology to calculate uniformity and predicting refinement for a

following version in our dataset, alongside the plots for our

prediction strategy best configuration (G, bestB). For both cases we

Table 6. Comparison of time parameters.

Term Sets
nVer = 1, DFC~1,
DTT~1 (B)

nVer = 1, DFC~2,
DTT~2 (E)

nVer = 3, DFC~1,
DTT~1 (F )

nVer = 3, DFC~2,
DTT~2 (G)

all 0.4919+0.03250 0.5301+0.01627 0.4890+0.03550 0.5301+0.01627

depth = 3 0.7896+0.05400 0.8177+0.05422 0.8152+0.04293 0.8005+0.07808

depth = 4 0.7083+0.03660 0.7520+0.03340 0.7267+0.04551 0.7437+0.04113

depth = 5 0.6348+0.04879 0.6962+0.04093 0.6526+0.04885 0.7101+0.03863

GOSlim 0.8637+0.05889 0.9020+0.07523 0.8264+0.06208 0.8869+0.08646

GOSlim leaves 0.8553+0.06710 0.9004+0.06908 0.8378+0.05228 0.9046+0.07896

GOSlim leaves 0.6529+0.06636 0.6748+0.07166 0.6624+0.06722 0.7021+0.04651

depth = 1

Values are average and standard deviation f-measure for all runs using the 15 ontology versions and a Decision Table algorithm, in the biological process hierarchy.
Extension mode: refinement, indirect.
doi:10.1371/journal.pcbi.1002630.t006

Table 7. Feature and feature sets performance for biological
process.

Term set

Features depth GOSlim

Single dirChildren 0.6723+0.02641 0.6662+0.04143

allChildren 0.7437+0.04113 0.7021+0.04651

height 0.7426+0.03482 0.6854+0.04387

sibsUniformity 0.5814+0.15741 0.5283+0.15760

parentsUniformity 0.6336+0.03964 0.5430+0.17153

childrenUniformity 0.6469+0.05440 0.5899+0.08983

dirAnnots 0.4857+0.15008 0.4964+0.06482

dirManAnnots 0.4838+0.10863 0.4748+0.05278

allAnnots 0.7335+0.03663 0.6821+0.03579

allManAnnots 0.7452+0.02882 0.6965+0.04940

PubMed 0.5960+0.03933 0.6552+0.04709

ratioAll 0.6850+0.04231 0.6192+0.03266

ratioDir 0.5735+0.11476 0.5856+0.03939

Sets all 0.7459+0.03675 0.7801+0.0525

structure 0.7431+0.02543 0.6906+0.04546

uniformity 0.6523+0.06109 0.5727+0.19389

annotations 0.7396+0.02893 0.6949+0.04771

direct 0.6661+0.03684 0.6569+0.05436

indirect 0.7641+0.03242 0.6883+0.06412

bestA 0.7415+0.04270 0.7704+0.04450

bestB 0.7550+0.03049 0.7750+0.04265

Values are average and standard deviation f-measure for all runs using the 15
ontology versions and a Decision Table algorithm. Time parameters: nVer~3,
DFC~2, DTT~2.
doi:10.1371/journal.pcbi.1002630.t007
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used the term set based on a depth of 4 and a distance between

training and testing of two versions.

For plotting our strategy instead of relying on the binary labels

output by the classifier, we used the probabilities for each instance

to be true (i.e. refined), so that the generated plots are more

directly comparable to those produced by the uniformity strategy,

allowing a more granular calculation of precision at different

recalls to allow for a threshold based evaluation. Consequently, the

presentation of the results of our strategy in these plots differs from

the presentation in previous tables.

The prediction results for all ontologies were combined together

in the plotting of the Precision/Recall plots to provide a better

visualization of results. As it is patent in the plots, our strategy has

a considerably improved performance in all three GO ontologies,

with curves closer to the top right corner, which are indicative of

both higher precision and recall. The uniformity strategy

performed worse in all cases, except at higher recall values in

molecular function.

The other uniformity strategies (parents and siblings) have an

even lower performance than that of children uniformity.

Discussion

Change capturing through prediction of ontology extension is a

complex issue, due to the inherently complex nature of ontology

extension itself. Ontology extension can be motivated by implicit or

explicit requirements, which have very different mechanisms.

Implicit requirements are in principle easier to predict since they

do not change between ontology versions, whereas explicit

requirements, which are created by experts to adapt the ontology

to a novel conceptualization or change in the domain, are much

harder to predict. Our strategy, by virtue of being based on learning

using past extension events, cannot distinguish between these two

types, and thus attempts to predict extension regardless of it being

motivated by implicit or explicit requirements. To capture both

kinds of requirements we use a set of ontology based features that

not only contemplate intrinsic features, such as structural ones, but

also extrinsic ones, such as annotations and citations.

The assumption that extension can be predicted based on

existing knowledge, either in the form of the ontology itself or its

usage, is acceptable regarding the more common extension events,

but is not applicable to extension events that are the result of deep

restructuring or revision of existing knowledge. These extension

events are part of a complex ontology change that also includes

deletions and modifications. As such, these more complex changes

are not the object of our strategy. In fact, one of our strategy’s

goals is to speed up the process of accomplishing the simpler

extensions, to give experts more time and resources to focus on the

more complex events.

One very relevant aspect of our evaluation strategy is that we

compare our results to the real extension events that occurred in

more recent versions of the ontology. This means that although

some of our predictions are conceptually correct, they may not

have yet been included in the ontology version used for testing and

will thus be considered incorrect. This will have an impact on

precision values, since we might be capturing needed but still

unperformed extensions, and then be considering them to be

incorrect in our evaluation. Due to this line of thought, we might

then give preference to strategies that increase recall even if at the

cost of precision. However, this could have the negative effect of

including many incorrect predictions in our output, which is not

desirable in a semi-automated ontology extension system. As such

we have chosen to base our evaluation on f-measure, to provide

balanced precision and recall.

A basic requirement of our strategy is to be able to access several

versions of the ontology to consider. The minimum set of ontology

versions it requires is two: one which will be used to calculate the

features, and a second one, more recent than the first, from which

we will extract the class labels to train the model. It then becomes

crucial to define the interval between the versions to use. In our

test case using the Gene Ontology we decided on versions with an

interval of at least 6 months, based on the intuition that a smaller

interval would not provide us with sufficient extension examples to

be able to train a model. This intuition was shown to be a good

approximation, since as seen in Text S1 and Table S1 in Text S1,

when using monthly versions we do in fact have a very low

number of positive examples.

Parameters
Due to the complexity of ontology extension, particularly in

such a large ontology as the Gene Ontology, our prediction

Table 8. Summary of feature and feature sets performance
for cellular component.

Term set

Features depth GOSlim

Single allManAnnots 0.7085+0.07487 0.6068+0.06908

allChildren 0.6800+0.11041 0.5650+0.09469

ratioAll 0.6604+0.04485 0.4636+0.02932

height 0.6450+0.08744 0.5248+0.08186

Sets bestB 0.7210+0.08485 0.5174+0.08370

bestA 0.7155+0.09198 0.4758+0.11213

annotations 0.7046+0.08523 0.6198+0.03661

all 0.6916+0.11118 0.4367+0.14839

structure 0.6890+0.13975 0.5985+0.04716

Values are average and standard deviation f-measure for all runs using the 15
ontology versions and a Decision Table algorithm. Time parameters: nVer~3,
DFC~2, DTT~2.
doi:10.1371/journal.pcbi.1002630.t008

Table 9. Summary of feature and feature sets performance
for molecular function.

Term set

Features depth

Single allChildren 0.6650+0.07957

allManAnnots 0.5898+0.07267

height 0.5633+0.08577

dirChildren 0.5577+0.06710

allAnnots 0.5572+0.08084

Sets bestA 0.6441+0.04625

indirect 0.6395+0.07485

bestB 0.6285+0.06971

all 0.6218+0.04873

structure 0.6168+0.06450

Values are average and standard deviation f-measure for all runs using the 15
ontology versions and a Decision Table algorithm. Time parameters: nVer~3,
DFC~2, DTT~2.
doi:10.1371/journal.pcbi.1002630.t009
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strategy has to account for several parameters that help

circumscribe our effort. One such parameter, extension type,

was designed to capture the different types of extension:

refinement and enrichment. We have found that refinement is

considerably easier to predict than enrichment, with refinement

having a greater average f-measure by between 0.3 and 0.7. There

are two likely explanations for this difference: on one hand, there

are many more refinement events between ontology versions than

there are enrichment events (see Table 5), which will provide a

better support for supervised learning; on the other, the features

used may be better correlated to refinement than to enrichment.

Another parameter related to extension, is its mode, direct or

indirect. Predicting direct extension, i.e. exactly which terms will

be extended in a future version, should be the ultimate goal of an

ontology extension prediction strategy. However this was proven

to be a difficult task, which is unsurprising given the multitude of

different processes that can lead to extension, and also the fact that

on average new terms correspond to about 5% of all terms in an

ontology version (see Table 1). This follows the trend found in our

previous work [24], where we analyzed the extension of GO and

found that insertions of new terms often occur together.

To address this issue we focused our prediction efforts in slices of

the ontology, and defined the extension that happens within the

subgraphs rooted in terms within these slices as indirect extension.

Focusing only on the term sets thus defined greatly improved the

performance of our strategy (Table 4), with average f-measures for

the prediction of refinement of biological process increasing from

0.49 to 0.65–0.86 depending on the term set considered.

Predicting for a subset of the ontology is supported by our

previous finding [24] that extension frequently happens by

branches and that introducing terms closer to the root has a large

impact on the overall structure of the ontology. Consequently,

determining which term sets to use must be a compromise between

enough specificity to be useful, but enough generality to provide a

good enough balance of positive and negative examples. We

determined six such subsets, following two distinct approaches:

based on distance to root and based on GO Slim general.

We chose distance to root for its simplicity in creating a middle

layer of GO terms. However, since terms at the same distance to the

root do not always have the same degree of specificity, we also used

GO Slim general as a basis for our other strategy. By using GO Slim

general we were attempting to capture a similar degree of specificity

among terms, specific enough to provide a useful prediction and

general enough to allow for branch extension prediction. We tested

three different sets within each approach, each yielding different

term set sizes. Since molecular function does not have a GO Slim

general, we only tested distance to root (depth) based sets.

For both approaches, the smaller the data set the better the

results. This can in did be due to the fact that in smaller data sets

there is a better balance of positive and negative instances, which

despite our use of SMOTE to balance the training sets, still has an

impact on training the models. However, we are not interested in

very small term sets, since they would not provide enough specificity

to change capturing for ontology extension. Considering this we

focused on the term set defined by terms at a distance of one from

GO Slim leaf terms, which corresponds to an average term set size

of 1189 for biological process and 758 for cellular component, and

on the term set defined by terms at a distance of four to the root,

which corresponds to sizes around 370, 460 and 100, for biological

process, molecular function and cellular component respectively.

Figure 2. Average precision and recall for several supervised learning algorithms using the bestA and bestB feature sets, depth and
GO Slim based term sets and nVer = 3, DFC~2, DTT~2 in all three GO hierarchies.
doi:10.1371/journal.pcbi.1002630.g002
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The final parameters in our strategy are those related with time:

nVer, DFC and DTT. We found that the influence of the number

of versions used to derive the features was minimal. Regarding the

intervals between versions for feature and class, and for training

and testing, we found that increasing those intervals from six

months to one year resulted in an increase in performance (about

0.03 to 0.06), which is likely due to the fact that the number of

positive examples is larger when considering a larger interval

between versions. Considering these results, we focused on the

setup of nVer = 3, DFC~2 and DTT~2.

Features
Although the parameters previously discussed represent the basis

of our strategy, by defining exactly on what the prediction is

focusing, it is the features used to support prediction that are

essential to be able to capture extension events. Using the best

parameter setup we investigated a set of thirteen single features, also

arranged into eight sets, and found some interesting trends. In the

depth term set, the single features allChildren and allManAnnots
were among the top performers for the three GO hierarchies. But in

the GOSlim for biological process feature sets performed better than

single features, whereas in cellular component this difference was

not apparent. However, the feature sets composed of the best single

features (bestA and bestB) were shown to provide the better

performances across the board, with the exception of the GOSlim

set in cellular component. It is interesting to note that although

using just structural or just annotation based features can provide in

most cases a performance comparable to combining them, which

can simplify our strategy, using a combination of the best single

features can in some cases improve performance.

Figure 3. Precision/Recall plots for refinement prediction based on Stojanovic’s children uniformity and our own strategy.
doi:10.1371/journal.pcbi.1002630.g003
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One of the most obvious patterns we get from these results is

that terms with a lot of children terms or a lot of total annotations

tend to be extended. It is arguable that for larger subgraphs, the

probability of an extension event occurring is greater, given that

there are more terms in it. However, to support the theory that the

only factor involved is indeed the number of terms in the subgraph

(i.e allChildren), we would have to consider that the probability of

extension for any given term is equal. Intuitively, this does not

appear to be a valid assumption, since it would mean that the

extension of GO does not follow any particular direction.

Nevertheless, we investigated this possibility by comparing the

distribution of real refinement events for allChildren intervals,

with the probability density function of a binomial distribution for

at least one success for the same allChildren intervals. Figure S3

shows that the two distributions are significantly different, thus

supporting the notion that although the number of children has an

influence in the refinement probability, the probability of

refinement is not the same for all terms. From these results we

can hypothesize that the number of children a term has is related

to its probability of refinement, because it reflects an increased

interest in that area of the ontology.

Furthermore, the total number of annotations is influenced by

the total number of children, since the annotations of the children

contribute to the total number of annotations of the parent. To

take this into account, we created the feature ratioAll to mitigate

the influence of the number of children on the annotation data.

Although this resulted in a decrease in f-measure of around 6%,

compared to either feature separately, it is still a better

performance than most other features. This gives further support

to the notion that areas which attract a larger interest (in this case

patent in the number of annotations) become the object of more

refinement events.

Although these simple notions appear quite intuitive, and we

could in principle derive a simple generic rule based on the

number of children, in order to support automated change

capturing, we need to establish the best separation possible

between targets and non-targets for refinement, which is best

achieved by employing supervised learning.

Supervised Learning
The results discussed so far were all based in Decision Tables, a

simple supervised learning algorithm. We also tested other

algorithms, but realized that although other algorithms such as

SVM, Neural Networks and Bayesian Networks were capable of

providing a better performance, and specifically in the case of

SVM and Neural Networks of being parametrized to privilege

either precision or recall, Decision Tables was still able to provide

generally good results comparatively, without requiring parameter

optimization.

We were particularly interested in the performance of Bayesian

Networks, since our attributes are not independent, but in fact are

temporally related when we consider multiple ontology version for

feature extraction. For instance the value of allChildren in one

version depends on its value in the previous one. However, we did

not find a marked difference between Bayesian Networks and

other approaches, so this dependency appears to not be very

relevant for our current strategy.

Another particularly interesting aspect is that most machine

learning algorithms, including the ones that were used, assume

that instances are all independent and identically distributed.

However, the dataset instances correspond to GO terms which are

hierarchically related through the GO structure. Although the

inclusion of features that describe the neighboring area tried to

capture this aspect (e.g. siblings, and all the uniformity features),

we still believe it was not properly contemplated by the proposed

setup. The hierarchical relations between instances may be

affecting the experiments considering the full set of terms, since

they are not being captured by the representation. In the subset of

terms dataset, their influence would not be as strong, since there

are fewer hierarchical relations between instances.

Comparative Evaluation
To complete our evaluation, we compared our strategy to the

one proposed by Stojanovic et al. [28] based on uniformity. In

general, the uniformity based strategy performed worse than our

own. This however is a consequence of Stojanovics approach

having been designed to support the manual extension of an

ontology that adapts to user’s needs, whereas in our setting we

have an ontology that models knowledge about a domain, whose

extension is caused by many different aspects. Curiously, when

transforming the uniformity metrics into features for classification,

we achieve a better performance (Table 7) than when using them

as intended by the authors, as a simple criteria for ranking.

Applying Extension Prediction
The output of our extension prediction methodology is a list of

ontology classes, which are the roots of subgraphs that correspond

to ontology areas which have been predicted as good candidates

for extension. Our methodology is applicable to the most simple

yet most frequent type of ontology change, the addition of new

elements. It is not suited to predict more complex changes such as

a reorganization of an entire branch of the ontology. As such, the

ontology extension prediction can be used to speed up the process

of extension in these simpler cases, by allowing ontology

developers and/or ontology learning systems to focus on smaller

areas of the domain. This frees the experts to spend more time

focusing on the more complex changes that cannot be predicted.

Automated ontology learning systems can also use the list to

focus their efforts on the identified areas. For instance, most

ontology learning systems employ a corpus of scientific texts as

input, and their performance is tightly coupled to the quality of

such corpora. If our candidate list is used to guide the creation of

specific corpora for the areas to extend, it can have a positive

impact on the performance of such strategies.

We have chosen to highlight three examples of the results given

by our ontology extension prediction system, two successful ones

(Figure 4 and Figure 5), where the predicted areas were in fact

extended in the version for which extension was predicted, and

one indirectly successful one (Figure 6), where although the

extension did not occur when predicted, it did in fact happen at

later versions of the ontology.

In Figure 4, extension was predicted for the subgraph rooted in

‘‘macromolecular complex assembly’’. Since we are predicting

indirect extension, the addition of new subclasses can occur at any

point in the subgraph. In this case, the GO term has four direct

subclasses, and all of them gained new subclasses in the future

version for which we were predicting. In Figure 5, extension was

predicted for the area of ‘‘cell pole’’. In the version used to train

the model, ‘‘cell pole’’ had two subclasses ‘‘apical pole of neuron’’

and ‘‘basal pole of neuron’’ but in the version for which extension

was predicted, ‘‘cell pole’’ gained a whole new branch rooted on a

new subclass for ‘‘cell tip’’. These two examples showcase two

different extension patterns: in the first, extension occurs

throughout the subgraph, whereas in the second it corresponds

to the addition of a single but large branch.

In Figure 6 extension was predicted in the subgraph of ‘‘lipid

transporter activity’’ for the version of January 2010, but no

extension took place. However in later versions of July 2010 and
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January 2011, extension did occur by the addition of two new sub-

subclasses. This is an example of how our evaluation strategy may

be too stringent when considering these cases false positives, since

they can eventually undergo extension at later versions.

Summary and Future Work
Ontologies are crucial to handle the challenges of an

increasingly data-driven world. However, ontologies themselves
face this challenge, since the effort to keep them updated in face of
the new knowledge that is produced on a daily-basis is never
complete. To support this effort, some of the processes involved in
ontology evolution can be automated, in order to reduce the time
and resource investment made by expert curators.

In this work we present such a strategy for the first step of

ontology evolution: change capturing. Our strategy is based on

predicting areas of the ontology that will undergo extension in a

future version, by applying supervised learning over features of

previous ontology versions. We applied our strategy to the Gene

Ontology, where we obtained encouraging results with average f-

measure reaching 0.79 for prediction of refinement for a subset of

relevant biological process GO terms.

In addition we defined a framework to better define extension in

an applicational context, that can be applied to ontologies with

versioning, as is the case of OBO ontologies and many of its

candidates. This framework is crucial to provide a better

Figure 5. Example of predicted extension in the Cellular Component hierarchy. Extension was predicted for the root term and occurred at
a distance of one edge, with the addition of a whole new branch.
doi:10.1371/journal.pcbi.1002630.g005

Figure 4. Example of predicted extension in the Molecular Function hierarchy. Extension was predicted for the root term and occurred at a
distance of two edges, in every subclass.
doi:10.1371/journal.pcbi.1002630.g004

Predicting the Extension of Biomedical Ontologies

PLOS Computational Biology | www.ploscompbiol.org 14 September 2012 | Volume 8 | Issue 9 | e1002630



understanding of the various nuances of ontology extension, and

as such support ontology extension prediction efforts.

We find that two particular characteristics of our strategy can be

improved, namely the selection of ontology versions to use and the

selection of the term set. Both of these can benefit from recent

works on ontology evolution [31,38] from which we can gather

useful information to guide the selection process. For the ontology

versions, as we have discussed above, there is a need for a

minimum of changes between versions to allow for the training,

and by using these works we can pinpoint ontology versions that

have enough changes between them. In what concerns the term

set, we can benefit from the identification of stable and evolving

regions of the ontology, and thus dynamically define distance to

root based on this criteria, i.e. for stable regions we predict for

terms further away from the root, whereas for evolving regions we

stay closer to the root.

Although we applied our strategy to the Gene Ontology, it is

applicable to any ontology with multiple versions available, which

is becoming increasingly prevalent, as ontologies in biomedicine

mature. The performance of our strategy on other ontologies is

still to be tested and the next logical testing ground for the

proposed methodology are smaller ontologies which lack the

maturity and funding of larger ontologies such as GO. Several

ontologies would be interesting to explore, such as the Pathway

Ontology or the Ontology of Physics for Biology, which provide

several versions but are much more recent and quite smaller than

GO. The success of our strategy on GO using simple structural

data is encouraging, since most ontologies lack such a rich

annotation corpus as GO’s, but all provide structural data which

can be explored.

Predicting the extension of an ontology can have a positive

impact in ontology evolution processes, be they manual or

automated, by focusing efforts and reducing the amount of new

information that needs to be processed. Moreover, OBO’s

principles of maintenance and orthogonality strongly advocate

for the existence of a single ontology for each domain that is

progressively enhanced, rather than a myriad of niche ontologies.

Consequently, strategies that aid in the evolution of existing

ontologies, as the one proposed here, present themselves as

relevant contributions to the end goal of ontologies in biomedicine.

Supporting Information

Figure S1 F-measure for refinement prediction for separate

ontology versions using Decision Tables with the bestA feature set

and nVer~3, DFC~2, DTT~2.

(EPS)

Figure S2 Percentage of positive examples for training models

for refinement prediction for separate ontology versions using

Decision Tables with the bestA feature set and nVer~3, DFC~2,

DTT~2.

(EPS)

Figure S3 Relation between number of allChildren and

refinement probability. The label ‘observed’ corresponds to the

real observed refinement events, whereas ‘expected’ to the

refinement proportion expectable following the binomial distribu-

tion. Presented values correspond to the GO version of June 2010,

but other versions present a very similar behavior. allChildren and

refinement values are averaged within intervals of size 10. These

intervals were calculated by ordering the terms according to the

their allChildren number in ascending order, and then generating

equal sized intervals.

(EPS)

Text S1 In the supplemental text we present two additional

studies: one on using consecutive monthly versions of the

ontologies instead of six-month separated ones, and another on

the evolution of prediction, to investigate whether prediction

performance is comparable through time.

(PDF)
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Figure 6. Example of predicted extension in the Biological Process hierarchy. Extension was predicted for the root term and although it did
not occur in the version for which it was predicted (January 2010), it did in fact occur in later versions, with the addition of one new sub-subclass in
July 2010 and another in January 2011.
doi:10.1371/journal.pcbi.1002630.g006
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Environment for Knowledge-Based Systems Development. Int J Hum-Comput

St 58: 189–123.

7. Day-Richter J, Harris Ma, Haendel M, Lewis S (2007) OBO-Edit–an ontology

editor for biologists. Bioinformatics (Oxford, England) 23: 2198–200.

8. Noy N, McGuinness D, Others (2001) Ontology development 101: A guide to
creating your first ontology. Technical report, Stanford University.

9. Tempich C, Pinto H, Staab S (2006) Ontology engineering revisited: An

iterative case study. The Semantic Web: Research and Applications 411: 110–
124.

10. Smith B, Ashburner M, Rosse C, Bard J, Bug W, et al. (2007) The OBO

Foundry: coordinated evolution of ontologies to support biomedical data
integration. Nat Biotechnol 25: 1251–5.

11. Noy NF, Klein M (2004) Ontology Evolution: Not the Same as Schema

Evolution. Knowl Inf Syst 6: 428–440.

12. Harris M, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The Gene

Ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258.

13. Frantzi K, Ananiadou S (2000) Automatic recognition of multi-word terms:. the
C-value/NC-value method. Int J Digit Lbr 3: 115–130.

14. Buitelaar P, Olejnik D, Sintek M (2004) A Protégé Plug-In for Ontology
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26. Castano S, Ferrara A, Hess G (2006) Discovery-driven ontology evolution. In:
The Semantic Web Applications and Perspectives, 3rd Italian Semantic Web

Workshop; 18–20 December 2006; PISA, Italy. SWAP. Citeseer, pp. 18–20.

27. Leenheer PD, Mens T (2008) Ontology evolution: State of the Art and Future
Directions. In: Hepp M, De Leenheer P, de Moor A, Sure Y, editors. Ontology

Management for the Semantic Web, Semantic Web Services, and Business
Applications, from Semantic Web and Beyond: Computing for Human

Experience. Springer. volume 2. pp. 1–47.
28. Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-driven ontology

evolution management. In: Knowledge Engineering and Knowledge Manage-

ment: Ontologies and the Semantic Web. Springer. volume 2473. pp. 133–140.
29. Haase P, Hotho A, Schmidt-Thieme L, Sure Y (2005) Collaborative and usage-

driven evolution of personal ontologies. The Semantic Web: Research and
Applications: 125–226.

30. Ceusters W (2009) Applying evolutionary terminology auditing to the Gene

Ontology. J Biomed Inform 42: 518–29.
31. Hartung M, Gross A, Kirsten T (2010) Discovering evolving regions in life

science ontologies. In: Data Integration in the Life Sciences. Springer. volume
6254. pp. 19–34. Available: http://www.springerlink.com/index/

AK240444Q9Q81302.pdf.
32. Pesquita C, Grego T, Couto F (2009) Identifying Gene Ontology Areas for

Automated Enrichment. In: Distributed Computing, Artificial Intelligence,

Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer. volume
5518. pp. 934–941. Available: http://www.springerlink.com/index/

B6J21M301137M471.pdf.
33. Mungall C, Bada M, Berardini T, Deegan J, Ireland A, et al. (2011) Cross-

product extensions of the Gene Ontology. J Biomed Inform 44: 80–86.

34. Alterovitz G, Xiang M, Hill DP, Lomax J, Liu J, et al. (2010) Ontology
engineering. Nat Biotechnol 28: 128–130.

35. Leonelli S, Diehl AD, Christie KR, Harris Ma, Lomax J (2011) How the Gene
Ontology Evolves. BMC Bioinformatics 12: 325.

36. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The
WEKA data mining software: an update. ACM SIGKDD Explorations

Newsletter 11: 10–18.

37. Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: synthetic
minority over-sampling technique. J Artif Intell Res 16: 321|–357.

38. Hartung M, Kirsten T, Gross A, Rahm E (2009) OnEX: Exploring changes in
life science ontologies. BMC bioinformatics 10: 250.

Predicting the Extension of Biomedical Ontologies

PLOS Computational Biology | www.ploscompbiol.org 16 September 2012 | Volume 8 | Issue 9 | e1002630


