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This chapter is devoted to the hierarchical QSAR technology (HiT QSAR) based on
simplex representation of molecular structure (SiRMS) and its application to different
QSAR/QSPR tasks. The essence of this technology is a sequential solution (with the use
of the information obtained on the previous steps) of the QSAR paradigm by a series of
enhanced models based on molecular structure description (in a specific order from 1D to
4D). Actually, it’s a system of permanently improved solutions. Different approaches for
domain applicability estimation are implemented in HiT QSAR. In the SiRMS approach
every molecule is represented as a system of different simplexes (tetratomic fragments
with fixed composition, structure, chirality, and symmetry). The level of simplex descrip-
tors detailed increases consecutively from the 1D to 4D representation of the molecular
structure. The advantages of the approach presented are an ability to solve QSAR/QSPR
tasks for mixtures of compounds, the absence of the “molecular alignment” problem, con-
sideration of different physical-chemical properties of atoms (e.g., charge, lipophilicity),
and the high adequacy and good interpretability of obtained models and clear ways for
molecular design. The efficiency of HiT QSAR was demonstrated by its comparison with
the most popular modern QSAR approaches on two representative examination sets. The
examples of successful application of the HiT QSAR for various QSAR/QSPR inves-
tigations on the different levels (1D—4D) of the molecular structure description are also
highlighted. The reliability of developed QSAR models as the predictive virtual screening
tools and their ability to serve as the basis of directed drug design was validated by sub-
sequent synthetic, biological, etc. experiments. The HiT QSAR is realized as the suite of
computer programs termed the “HiT QSAR” software that so includes powerful statistical
capabilities and a number of useful utilities.
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AchE Acetylcholinesterase

CoMFA Comparative Molecular Fields Analysis QSAR approach

CoMSIA Comparative Molecular Similarity Indexes Analysis QSAR
approach

DA Applicability Domain

DSTP dispirotripiperazine

EVA Eigenvalue Analysis QSAR approach

GA Genetic Algorithm

HiT QSAR Hierarchical QSAR Technology

HQSAR Hologram QSAR approach

HRV Human Rhinovirus

HSV Herpes Simplex Virus

MLR Multiple Linear Regression statistical method

PLS Partial Least Squares or Projection on Latent Structures statistical
method

0> cross-validation determination coefficient

QSAR/QSPR  Quantitative Structure-Activity/Property Relationship

R? determination coefficient for training set

R% st determination coefficient for test set

SD Simplex Descriptor

SI Selectivity Index

SiRMS Simplex Representation of Molecular Structure QSAR approach

TV Trend-Vector statistical method

5.1. INTRODUCTION

Nowadays the creation of a new medicine costs more than one billion dollars and
the price of this process is growing steadily day by day [1]. During recent decades
different theoretical approaches have been used to facilitate and accelerate the pro-
cess of new drugs creation that is not only very expensive, but also is a multistep
and long-term activity [2]. The choice of approaches depends on a presence or
absence of information regarding a biological target and the substances interacting
with it. A situation, when we have a set of biologically active compounds (ligands)
and have no information about a biological target (e.g., receptor) is the most com-
mon. Different quantitative structure—activity relationship (QSAR) approaches are
used in this case. For many years, QSAR has been used successfully for the anal-
ysis of huge variety of endpoints, e.g., antiviral and anticancer activity, toxicity
[3—14]. Its staying power may be attributed to the strength of its initial postulate
that activity is a function of structure and the rapid and extensive development of
the methodology and computational techniques. The overall goals of QSAR retain
their original essence and remain focused on the predictive ability of the approach
and its receptiveness to mechanistic interpretation [15].

Many different QSAR methods [16-20] have been developed since the second
half of the last century and new techniques and improvements are still being created
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[21]. These approaches differ mainly by the principles and levels of representa-
tion and description of molecular structure. The degree of adequacy of molecular
structure models varies from 1D to 4D level:

* 1D models consider only the gross formula of a molecule (for example, glycine —
C>H4NO3). Actually, such models reflect only a composition of a molecule.
Obviously, it is quite impossible to solve adequately the “structure—activity” tasks
using such approaches. So, usually these models have an auxiliary role only, but
sometimes they can be used as independent virtual screening tools [22].

* 2D models contain information regarding the structure of a compound and are
based on its structural formula [20]. Such models reflect only the topology of
the molecule. These models are very popular [3, 23]. The capacity of such
approaches is due to the fact that the topological models of molecular struc-
ture, in an implicit form, contain information about possible conformations of
the compound. Our operational experience shows that 2D level of representation
of the molecular structure is enough for the solution of more than 90% of existing
QSAR/QSPR tasks.

* 3D-QSAR models [16, 17, 19, 20] give full structural information taking into
account composition, topology, and spatial shape of molecule for one conformer
only. These models are widespread. However, the choice of the conformer of the
molecule analyzed is mostly accidental.

The description of the molecular structure is realized more adequately by 4D-
QSAR models [10, 24]. These models are similar to 3D models, but compared to
them the structural information is considered for a set of conformers (conditionally
the fourth dimension), instead of one fixed conformation (also see Chapter 3).

The description of compounds from 1D to 4D models reflects the hierarchy of
molecular structure representation. However, it’s only one of the principles of HiT
QSAR. In this work the hierarchic strategy related to all the aspects of the QSAR
models development has been considered.

The developed strategy has been realized as a complex of computer programs
known as the “HiT QSAR” software. Innovative aspect and main advantages of HiT
QSAR involve

* Simplex representation of molecular structure that provides universality, diver-
sity, and flexibility of the description of compounds related to different structural
types.

* HiT QSAR that, depending on the concrete aims of research, allows for the con-
struction of the optimal strategy for QSAR model generation, avoiding at the
same time superfluous complications that do not result in an increase in the
adequacy of the model.

* HiT QSAR does not have the restrictions of such well-known and widely used
approaches as CoOMFA, CoMSIA, and HASL. Usage of such methods is limited
by the requirement for a structurally homogeneous set of molecules and the use
of only one conformer.
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e HiT QSAR does not have the HQSAR restrictions that are related to the
ambiguity of descriptor system formation.

* At every stage of HiT QSAR use, we can determine the molecular structural
features that are important for the studied activity and exclude the rest. It
shows unambiguously the limits of QSAR models’ complication and ensures that
resources are not wasted on needless calculations.

The efficiency of the HiT QSAR has been demonstrated through the example of
various QSAR tasks, e.g., given in [3, 10-12, 22, 25-37].

5.2. MULTI-HIERARCHICAL STRATEGY OF QSAR
INVESTIGATION

5.2.1. HiT QSAR Concept

In this chapter, the hierarchic QSAR technology (HiT QSAR) [31, 32, 36, 37] based
on the simplex representation of molecular structure (SiRMS) has been consid-
ered. This method has proved efficient in numerous studies for solving different
“structure—activity/property” problems [3, 10-12, 22, 25-37]. The essence of the
strategy presented is based on the solution of QSAR problems via the sequence of
the permanently improved molecular structure models (from 1D to 4D) (Figure 5-1).
Thus, at each stage of the hierarchical system, the QSAR task is not solved ab
ovo, but with the use of the information received from a previous stage. In fact,
it is proposed to deal with a system of permanently improved solutions. It leads
to more effective interpretation of the obtained QSAR models because the approach
reveals molecular fragments/models for which the detailed development of structure
is important.

The main feature of the strategy presented consists of the multiple-aspect
hierarchy (Figure 5-1), related to

* models describing molecular structure (1D — 2D — 3D — 4D);

* scales of activity estimation (binomial — nominal — ordinal — continual);

* mathematical methods used to establish structure—activity relationships [pattern
recognition — rank correlation — multivariate regression — partial least squares
(PLS)];

 final aims of the solution of the QSAR task (prediction — interpretation —
structure optimization — molecular design).

The set of different QSAR models that supplement each other results from the
HiT QSAR application. These models altogether, in combination, solve the prob-
lems of virtual screening, evaluation of the influence of structural factors on activity,
modification of known molecular structures, and the design of new high-potency
potential antiviral agents or other compounds with desired properties.

The scheme for HiT QSAR is shown in Figure 5-1. The information from the
lowest level QSAR models has been transferred (curved arrow) to the highest
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Figure 5-1. Scheme of the hierarchical QSAR technology

level models following corresponding statistical processing (‘““Statistic block” in
Figure 5-1), during which the most significant structural parameters have been
chosen. It is necessary to note that after the 2D modeling, the QSAR task is solved
at the 4D level, because there is no a priori information available about a “pro-
ductive” conformation (the conformer that interacts with a biological target most
effectively) for 3D-QSAR models. This information comes only after the develop-
ment of 4D-QSAR models and activity calculation for all conformers considered.
Then the information about the “productive” (the most active) conformation is trans-
ferred to the 3D-QSAR level. This is the main difference between HiT QSAR
and ordinary 3D-QSAR approaches, where the investigated conformers have been
chosen through a less vigorous process. When an investigated activity is mainly
determined by the interaction of the exact “productive” conformation (not by the set
of conformers) with a biological target, it is possible to construct the most ade-
quate “structure—property” models at this stage. In all cases (1D-4D), different
statistical methods can be used to obtain the QSAR models (the “Statistic block™
in Figure 5-1).

The principal feature of the HiT QSAR is its multi-hierarchy, i.e., not only the
hierarchy of different models but also that the hierarchy of the aims has been taken
into account (Figure 5-1, unit —“Final Aims”). Evidently, it is very difficult to obtain
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a model that can solve all the problems related to the influence of the structure of
the studied molecules to the property examined. Thus, to solve every definitive task,
it is necessary to develop a set of different QSAR models, where some of them are
more suitable for the prediction of the studied property, the others for the interpreta-
tion of the obtained relationships, and the third for molecular design. These models
altogether, in combination, solve the problem of the creation of the new compounds
and issue relating to the desired set of properties. The important feature of such an
approach is that the general results obtained from a few different independent mod-
els always are more relevant. It’s also necessary to note that these resulting QSAR
models have been chosen in accordance with the QECD principles for the validation
of (Q)SARs [38], i.e., they have a defined endpoint, an unambiguous algorithm, a
defined domain of applicability (DA), mechanistic interpretation, have good statis-
tical fit, and are robust and predictive. Thus, we assume that the proposed strategy
provides a solution to solve all problems dealing with virtual screening, modeling
of functional (biological) targets, advancement of hypotheses regarding mechanisms
of action, and, finally, the design of the new compounds with desired properties.

5.2.2. Hierarchy of Molecular Models

5.2.2.1. Simplex Representation of Molecular Structure (SiRMS)

In the framework of SiRMS, any molecule can be represented as a system of differ-
ent simplexes (tetratomic fragments of fixed composition, structure, chirality, and
symmetry) [29, 31, 32, 39] (Figure 5-2).

ID models. At the 1D level, a simplex is a combination of four atoms con-
tained in the molecule (Figure 5-2). The simplex descriptor (SD) at this level is
the number of quadruples of atoms of the definite composition. For the compound
(AyBpCcDyEcFt. . .), the value of SD (A;B;C/D,,) is K = f{i)-f(j)-f(1)-f(im), where,
for example Eq. (5-1),
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The values of f{j), f{(l), flm) have been calculated analogically. It is possible to
define the number of smaller fragments (“pairs,” “triples”) by the same scheme. In
this case some of i, j, /, m parameters are equal to zero.

2D models. At the 2D level, the connectivity of atoms in simplex, atom type, and
bond nature (single, double, triple, aromatic) has been considered. Atoms in simplex
can be differentiated on the basis of different characteristics, especially

» atom individuality (nature or more detailed type of atom);

 partial atom charge [40] (see Figure 5-2) (reflects electrostatic properties);

¢ lipophilicity of atom [41] (reflects hydrophobic properties);

* atomic refraction [42] (partially reflects the ability of the atom to dispersion
interactions);
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Figure 5-2. Examples of simplex descriptors generation for alanine at the 1D—4D levels
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» amark that characterizes the atom as a possible a Hydrogen donor or acceptor (A
— Hydrogen acceptor in H-bond, D — Hydrogen donor in H-bond, I — no bond).

For atomic characteristics, which have real values (charge, lipophilicity, refrac-
tion, etc.) the division of values range into definite discrete groups is carried out at
the preliminary stage. The number of groups (G) is a tuning parameter and can be
varied (as a rule G = 3-7).

The usage of sundry variants of simplex vertexes (atoms) differentiation repre-
sents an important part of SIRMS. We consider that specification of atoms only by
their nature (actually reflects atom identity, for example, C, N, O) realized in many
QSAR methods limits the possibilities of pharmacophore fragment selection. For
example, if the -NH- group has been selected as the fragment (pharmacophore)
determining activity and the ability of H-bond formation is a factor determining
its activity, H-bonds donors, for example, the OH-group will be missed. The use
of atom differentiation using H-bond marks mentioned above avoids this situation.
One can make analogous examples for other atomic properties (lipophilicity, partial
charge, refraction, etc.).

Thus, the SD at the 2D level is a number of simplexes of fixed composition and
topology. It is necessary to note that, in addition to the simplex descriptors, other
structural parameters, corresponding to molecular fragments of different size, can be
used for 1D and 2D-QSAR analysis. The use of 1-4 atomic fragments is preferable
because further extension of the fragment length could increase the probability of
the model overfitting and decrease its predictivity and DA.

2.5D models. 1t’s well known that the stereochemical moieties of the inves-
tigated compounds could affect biological activity to at least at the same level
as their topology. Although the most adequate description of stereochemistry of
compounds is possible only on 3D and 4D levels of molecular structure model-
ing, 2D models of molecules can also provide stereochemical information. In the
case when a compound contains a chiral center on the atom X (X = C, Si, P,
etc.), the special marks XA, XR XS (A — achiral X atom, R — “right” surrounding
of X atom, S — “left” surrounding of X atom) can be used to reflect the stereo-
chemistry information of such a center. In each case, the configuration (R or S)
of a chiral center can be determined by the Kahn-Ingold—Prelog rule [43]. For
example, in the situation where atom X has been differentiated to three different
types depending on its stereochemical surroundings, i.e., X, XR, X5, the differ-
ent types are analyzed in the molecular model as separate atoms. Conventionally,
such molecular models can be considered as 2.5D because not only topologi-
cal (molecular graph) but also stereochemical information has been taken into
account. If simplex vertexes (X atoms) have been differentiated by some physical—
chemical properties (e.g., partial charges, lipophilicity) then the differences between
atoms X2, XR, X3 will be leveled as in normal 2D models. For subsequent
QSAR analysis, the simplexes differentiated by atom individuality have been
used separately and in combination with those differentiated by physical-chemical
properties.
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3D models. At the 3D level, not only the topology but also the stereochemistry
of molecule is taken into account. It is possible to differentiate all the simplexes as
right (R), left (L), symmetrical (S), and plane (P) achiral. For example:

H H
| | Ne” —c
o n N i T

|
Br Br

R P
R) O ) P)

The stereochemical configuration of simplexes is defined by modified Kahn—
Ingold-Prelog rules [39]. A SD at this level is a number of simplexes of fixed
composition, topology, chirality, and symmetry.

4D models. For the 4D-QSAR models, each SD is calculated by the summation
of the products of descriptor values for each conformer (SDy) and the probability of
the realization of the corresponding conformer Eq. (5-2) (Pk).

N

SD = Z (SDy. - Py), (5-2)
k=1

where N is a number of conformers being considered.
As is well known [44], the probability of conformation Py is defined by its energy
equation (5-3):

1
—(E: — E
Pe={1+) EXP (%) LY Pe=1, (5-3)
i#k k

where E; and Ej are the energies of conformations i and k, respectively.

The conformers are analyzed within an energy band of 5-7 kcal/mol. Thus,
the molecular SD at the 4D level takes into account the probability of the real-
ization of the 3D-level SD in the set of conformers. At the 4D level the other
3D whole-molecule parameters, which are efficient for the description of spatial
forms of the conformer (e.g., characteristics of inertia ellipsoid, dipole moment),
can be used along with SD. An example of the representation of a molecule as
sets of simplexes with different levels of structure detailed (1D—4D) is depicted in
Figure 5-2.

Double nD models. The interaction of a mixture with a biological target can-
not normally be described simply as the average between interactions of its
parts, since the last interactions have different reactivity. It is also applicable for
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mixtures of compounds with synergetic or anti-synergetic action [45]. Because
of these issues, the SiRMS approach has been developed and improved in order
to make this method suitable for the execution of QSAR analysis for molecular
mixtures and ensembles. With this purpose it’s necessary to indicate whether the
parts of unbound simplexes belong to the same molecule or to a different one.
In the latter case, such unbound simplex will reflect the structure not of a single
molecule, but will characterize a pair of different molecules. Simplexes of this kind
are structural descriptors of the mixtures of compounds (Figure 5-3). Their usage
allows for the analysis of synergism, anti-synergism, or competition in the mix-
ture’s interaction with the biological target. Obviously, such an approach is suitable
for different nD-QSAR models, where n = 1-4!. If in the same task both mixtures
and single compounds have been considered, it’s necessary to represent individ-
ual compounds as the mixture of two similar molecules for the correct description
of such systems [46]. Thus, this approach has been named by authors as “double
nD-QSAR.” Although such methodic is suitable only for binary mixtures, it can be
easily extended to more complicated tasks. For molecular ensembles (associates), it
is necessary to use one more simplex type — simplexes with intermolecular bonds.

2\ N

- A'B \
-
— A'B o A+B
Simplexes Simplexes
corresponding to characterizing the
A > individual molecules ~A+B mixture only
Aand B
G~ (&
e
—* )

Figure 5-3. Example of structure description of the mixture of antagonists of histamine H3 — receptors
(A-imphetamine, B-iodoproxiphane)

I For 1D-QSAR models unbounded simplexes characterize only the mixtures.
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In this chapter, the application of the “double nD-QSAR” approach is demonstrated
with the example of chiral AChE inhibitors [46] (see Section 5.4.4).

5.2.2.2. Lattice Model

The lattice model (LM) approach has been developed by the authors [19] using
similar principles as CoMFA and CoMSIA (see Chapter 4), which utilize a more
elaborated description of the molecules and consider parameters reflecting peculiar-
ities of the intermolecular interaction of the compounds analyzed and their spatial
structure. However, in addition, molecular properties are described with a vari-
ety of complementary parameters. The whole set of parameters generated ranges
from the most simple, such as the presence or absence of particular atoms in the
molecule, to more sophisticated parameters that could be used for the considera-
tion of the stereochemistry of the analyzed molecule and its interaction with the
environment.

The description of compounds includes several steps. In the first, the spa-
tial structure of the analyzed molecules is obtained from experimental data (i.e.,
X-ray analysis) or from quantum mechanical calculations. In the case of flexible
molecules, it is necessary to select one of the stable conformations. This may be
achieved using a conformational search [47] or some complementary information
regarding the biologically active conformation of the molecule. The conformation
of each molecule is placed into a lattice of cubic cells. The size of a cell can be
varied, by default it equals 2 A, that corresponds approximately to the average van
der Waals radius of an organogenic atom. The invariant disposition of the molecule
in the lattice is achieved by the superposition of the center of mass of the molecules
with the origin of the coordinates. In addition, the principal axes of inertia of the
molecule are also superimposed with the coordinate axes of the lattice. If the ana-
lyzed structures contain a large common structural fragment, their alignment is
carried out mainly according to this fragment.

All structural parameters in the LM can be classified as follows:

* Integral parameters describing properties of the whole molecular structure;
* Local parameters describing the separate fragments of the molecule;
 Field parameters describing the influence of the molecule on the enclosing space.

Integral parameters are characteristics of inertia ellipsoid, dipole moment,
molecular refraction, lipophilicity, parachor, and average polarizability. If avail-
able, some information about the environment and mutual disposition of the
pharmacophores can be also included into the analysis [48].

Local parameters were used to describe the properties of cells occupied by
atoms. They include parameters corresponding to the presence or absence of some
atoms in the cell (i.e., the presence of C or O), average lipophilicity, refraction,
polarizability, electrostatic charge, and electronegativity of fragments and atoms.
All charge characteristics were calculated using the Jolly-Perry [40, 49] method of
smoothing of electronegativity.
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Field parameters describe the characteristics of vacant cells. They include

(1) An electrostatic potential in the vacant cell [Eq. (5-4)]:

EP; = Z 4 (5-4)

Tij

where i is the number of the cell, j is the number of the atom, g; is the charge
of the atom j [40, 49], and 7;; is the distance between the atom j and the

cell ;
(2) A lipophilicity potential [S0] in the vacant cell [Eq. (5-5)]:
fi
LP; = — (5-5)
’ ; (14 ry)

where i is the number of the cell, j is the number of the atom, f; is the lipophilic-
ity of the atom (group), and r;; is the distance between the atom j and the
cell i;

(3) A probability of an occupancy of a vacant cell by different atoms i, k (“probe-
atoms”) or probability of it to be empty [Eq. (5-6)]:

-1
Py = 1+ZEXP< (Bi — Ek)) L Y P=1 (56
k

i#k

where E; or Ej is the energy of interaction between the molecule and the
corresponding probe-atom i or & in the analyzed cell.

A set of atoms Csp3, Nsp3, Osp3, Cspz, Nspz, Osp2 Cl, H and the absence
of any atom (“vacuum”) were used as probes. If CoMFA [16] uses energy
attributes to characterize the analyzed cells, in LM the probabilities of the
occupancy of a cell represents a different approach for the description of inter-
actions between the molecule and the biological target. It might be argued
that a probability-based scheme offers improvements over an energy-based
method.

(4) A possibility of the presence of hydrogen bond donor or acceptors in the cell.
It is assumed that such a hydrogen bond can be formed between this donor or
this acceptor and the analyzed molecule.

All structural parameters, i.e., integral, local, and field parameters contain an
exhaustive description of the molecular structure. Thousands of descriptors (their
exact number depends on the characteristics of the lattice) are generated within
the proposed approach for each analyzed molecule. This reduces the probability of
missing the most significant parameters required to correlate activity of the analyzed
molecules with their structure.
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The efficiency of the LM approach has been demonstrated on different tasks, e.g.,
[19, 48, 51, 52].

5.2.2.3. Whole-Molecule Descriptors and Fourier Transform of Local
Parameters

SDs at all levels of differentiation (1D-4D) are the fragmentary parameters which
describe not a molecule as a whole, but its different parts. In order to reflect the
structural features of a whole molecule, it is necessary to carry out the Fourier trans-
formation [53] for the spectrum of structural parameters. The spectrum of structural
parameters is the discrete row of values arranged in a determined order. The mode of
ordering is not crucial (frequently descriptors are lexicographically ordered), but it
must be the same for all compounds of an investigated task. As a result of the Fourier
transformation, the high-frequency harmonics characterize small fragments while
the low-frequency harmonics correspond to the global molecule properties. The
Fourier transformation of a discrete function of parameters P(i) can be presented
as Eq. (5-7):

S

T, k(i — 1) 2wk — 1) ,
PG)=—+ ag €08 ————— + by sin ——— ) +ay2 cos (7w (i — 1))
2 P N N
(5-7)
where
N . N .
2 2w - k-(i—1) 2 (2 -k-(—1)
akﬁ‘Z;Pi'COS<T>, bk:]v';Pi'Sln(T)
= =
(5-3)
or in an alternative form [Eq. (5-9)]
M—1 .
) [ 2rk(i—1) .
pi) = % + Z (Qk sin [— + I/IkD +gnpcos[m(i—1D],  (5-9)
k=1 N

The amplitudes and phase angle in Eq. 5-9 are defined as follows:

Amplitudes: gy = /a? + b, Phase angle: v = arctan ((ax)/by). (5-10)

where k is the number of harmonics, N is the total number of simplex descriptors,
M = int(N-1)/2 is the total number of harmonics, a; and by are the coefficients of
expansion procedure, g,» = 0 for even N.
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Values of amplitudes (ay, bk, gi) can be used as the parameters for the solution of
QSAR tasks [19, 54]. PLS equations containing amplitudes a; and by can be mech-
anistically interpreted, because they can be represented as a linear combination of
source structural parameters (5-7). Amplitudes g have poor mechanistic interpreta-
tion because of the more complex dependence from the source structural parameters
(5-9). However, all the amplitudes (ax, bx, i) separately or together allow for well-
fitted, robust, and predictive models to be obtained; hence, they can be used as an
additional (completely different) tool for the virtual screening.

Such whole-molecule parameters, such as characteristics of inertia ellipsoid
(moments of inertia Ix, Iy, Iz and its ratio Ix/ly, Iy/lz, Ix/Iz), dipole moment,
molecular refraction, lipophilicity, also can be used for different levels of represen-
tation of the molecular structure.

All mentioned integral parameters can be united with SD which usually leads
to the most adequate model that unites the advantages of molecular descriptors of
every mentioned type.

5.2.3. Hierarchy of Statistical Methods

As was mentioned above, different statistical methods have been used in HiT
QSAR to establish the structure—activity relationship depending on the scale of the
investigated property (binomial — nominal — ordinal — continual).

5.2.3.1. Classification Trees

The classification tree (CT) approach is a non-parametric statistical method of
analysis [55]. It allows for the analysis of data sets regardless of the number of
investigated compounds and the number of their characteristics (descriptors). In the
CT approach, the models obtained represent the hierarchical sets of rules based on
descriptors selected for the description of the investigated property. The rule rep-
resents “IF-THEN” logical construction. For example, a simple rule can be “IF
lipophilicity > 3 THEN compound is active.” In fact, such model is presented by
a set of consecutive nodes, and each of them contains certain sets of compounds
which correspond to this node rule. The CT method has several advantages: obtain-
ing of intuitively understandable models using natural language, quick learning and
predicting processes, non-linearity of obtained models, and the ability to develop
models using ranked values of the activity (it allows for the analysis of sets of
compounds with heterogeneous experimental activity values).

The usage of CT methods for QSAR analysis is limited due to the poor mecha-
nistic interpretation of the models. It is difficult to make quantitative estimation of
the influence of descriptors used in the model and to determine structural fragments
interfering or promoting activity.

A new approach for the interpretation of CT models, based on a trend-vector
procedure (see Section 5.2.3.3), has been proposed to solve this problem. It allows
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for the determination of the quantitative influence of descriptors used in the model
built on the investigated property [Eq. (5-11)]:

|
T; = m Zl [(Ai — Amean)] (5-11)

where Tj is the relative influence of jth descriptor on investigated property, m is the
number of compounds in the certain node, A; is the activity rank of ith compound,
and Amean 1 the mean value of activity rank for the whole set of compounds.

The relative influence (7)) of each descriptor used in the CT model are calcu-
lated by applying Eq. (5-11) to each node of the model (excepting the root node).
Furthermore, each calculated influence has a corresponding range of descriptor val-
ues (D) according to node rule, within which this influence has been implemented.
As a result of such analyses, ranges of descriptor values and corresponding relative
influences can be determined. When descriptor has several overlapping ranges of
values then the relative influence values should be summarized in the overlapping
interval.

The approach described is valid only for models with classification scale of activ-
ity. It can be considered as a restriction of the method. However, estimation of
activity level is an appropriate result in many cases relating to the investigation of
biological activity. In the case of the usage of simplex (fragmentary) descriptors for
the representation of molecular structure, 7; values obtained in this manner are the
cumulative influences of all simplexes of a certain type in the molecule. It allows
for the calculation of the relative atomic influences for each investigated compound
according to Eq. (5-12).

T, = —L (5-12)

where T, is the relative influence of each atom included in the jth simplex of certain
molecule, 7; is the relative influence of the jth simplex, 4N; is the number of jth
simplexes (value of jth descriptor) in certain molecules multiplied by four (number
of atoms in a simplex).

Calculated relative atom influences can be visualized on the investigated com-
pounds. They allow for the determination of the relative influences of separate
molecular fragments by summarizing the influences of individual atoms included
in certain fragments.

5.2.3.2. Trend-Vector

The trend-vector (TV) procedure [19, 56, 57] does not depend on the form of cor-
responding dependence and can use many structural parameters. This method can
predict the properties of analyzed molecules only in a rank scale and can be used
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if biological data are represented in an ordinal scale (see Figure 5-1). Similar to a
dipole moment vector, TV characterizes a division of “conventional charges” (corre-
sponding to active and inactive classes) in the multi-dimensional space of structural
parameters S;; (I = T,n — number of molecules, Jj = 1,m — number of structural
parameters). Each component of a TV is determined by Eq. (5-13)

1 & -
T = -.§ (Ai — A) - Sy, 5-13
i= ( ) - Sij (5-13)

i=1

and reflects a degree and direction of influence of the jth structural parameter on the
magnitude of a property A. The prediction of activity is obtained using the following
relation:

m
rank(4;) = rank | ) " T;Sj; (5-14)
j=1

It is important to note that each component of the TV is calculated independently
from the others and its contribution to a model is not adjusted. Thus, the influence
on the reliability of the model of the number of structural parameters used is not
so critical, as in the case of the regression methods. The quality of the structure—
property relationship can be estimated by the Spearman rank correlation coefficient
calculated between ranks of the experimental and calculated activities A;.

The search for models using the TV method in HiT QSAR is achieved by the
methods of exhaustive or partial search after the removal of mutual correlations.
It was discovered by the authors [10, 32] that descriptors involved in the best TV
models (several decades of models with approximately identical quality) form a
good subset for the subsequent usage in PLS. Noise elimination can be one of the
probable explanations of the success of the TV procedure.

5.2.3.3. Multiple Linear Regression

The greatest number of QSAR/QSPR investigations has been made using linear
statistic methods [58]. In such approaches, the investigated property is represented
as a linear function of calculated descriptors [Eq. (5-15)]:

n
Y =ao+ ) aii (5-15)
i=1

where y' is the calculated values of investigated property (y), x; is the structural
descriptors (independent variables), a; is the regression coefficients determined dur-
ing the analysis by the least squares method, n is the number of variables in the
regression equation.
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The use of linear approaches is very convenient for investigations because the
theory of selection of the most important attributes and obtaining of the final equa-
tions is well developed for such methods. The quality of the obtained model is
estimated by the correlation coefficient R between the observed values of the inves-
tigated property (y) and those predicted by Eq. (5-15) (/). The R? value is explained
by regression measure of the part of common scatter relative to average y. The term
of adequacy of the obtained regression model with the chosen level of risk o will be
F [Eq. (5-16)] [58]:

2
:%z&p (n—1,m—n,a), (5-16)
where m is the number of molecules in the training set and Fy, (n—1, m—n, 1-a) is
the percent points of the F-distribution for given level of significance 1-«.

The relative simplicity of regression approaches is also their shortcoming;
they show poor results during the extrapolation of complicated structure—activity
relationships. Their usage is further hampered in the case of large numbers of
descriptors, since the total number of descriptors in a MLR equation must be at
least ten times fewer than the number of training set compounds [59].

5.2.34. Partial Least Squares or Projection to Latent Structures (PLS)

A great number of simplex descriptors have been generated in HiIT QSAR. The PLS-
method has proved efficient for working with a great number of variables [60—62].
The PLS regression model may be written as Eq. (5-17) [62]:

N
Y =bo+ ) b (5-17)

i=1

where Y is an appropriate activity, b; are the PLS regression coefficients, x; is the ith
descriptor value, and N is the total number of descriptors.

This is not apparently different from MLR (see Section 5.2.3.3), except that the
values of the coefficients b are calculated using PLS. However, the assumptions
underlying PLS are radically different from those of MLR. In PLS one assumes the
x-variables to be collinear and PLS estimates the covariance structure in terms of a
limited number of weights and loadings. In this way, PLS can analyze any number
of x-variables (K) relating to the number of objects (N) [62].

5.2.4. Data Cleaning and Mining

The removal of highly correlated and constant descriptors, the use of genetic algo-
rithms (GA) [63], trend-vector methods [56, 57], and automatic variable selection
(AVS) strategies that are similar to interactive variable selection (IVS) [61] and evo-
lutionary variable selection (EVS) [60] have been used for selection of descriptors in
PLS. The removal of highly correlated descriptors is not necessary for PLS analysis,
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since descriptors are reduced to series of uncorrelated latent variables. However, this
procedure frequently helps to obtain more adequate models and reduce a number of
used variables up to five times. During this procedure one descriptor from each pair
having a pair correlation coefficient r satisfying || > 0.90 has been eliminated.

5.24.1. Automatic Variable Selection (AVS) Strategy in PLS

The AVS strategy in PLS is used to obtain highly adequate models by removing the
“noise” data, i.e., systematic variations in X (descriptors space) that are orthogonal
to Y (investigated property). This strategy is similar to IVS [61], EVS [60], OSC
[64], and O-PLS [65] and has the same objective but uses different means.

The essence of AVS consists of the following: at the first step of the AVS the
model containing all descriptors is obtained. Then variables with the smallest nor-
malized regression coefficients (b;, Eq. (5-17)) are excluded from the X-matrix
and in the next step the PLS model is obtained. This procedure has been repeated
stepwise until the amount of variables equals 1. The AVS strategy can be used
either for all structural parameters or after different variable selection procedures
(e.g., removal of highly correlated descriptors, TV procedure, GA). An application
of the AVS procedure resulted in the decreasing of the model complexity (num-
ber of descriptors and latent variables) and an increase in model predictivity and
robustness.

5.2.4.2. Genetic Algorithms

GA imitates such properties of living nature as natural selection, adaptability, hered-
ity. The use of the heuristic organized operations of “reproduction,” “crossing,” and
“mutation” from casual or user-selected starting “populations” generates the new
“chromosomes” — or models. The utility of the GA is its flexibility. With adjust-
ment of the small set of algorithm parameters (number of generations, crossover
and mutation type, crossover and mutation probability, and type of selection), it is
possible to find a balance between the time for search and the quality of decision. In
the HiT QSAR, GA is used as a tool for the selection of adequate PLS, MLR, and
TV models. Descriptors from the best model obtained by the preliminary AVS pro-
cedure have usually been used as the starting “population.” GA is not a tool for the
elucidation of the global maximum or minimum, and very often a subsequent AVS
procedure and different enumerative techniques allow one to increase the quality of
the obtained PLS models.

5.2.4.3. Enumerative Techniques

As mentioned above, the usage of the methods of exhaustive or partial searching
(depending on the number of selected descriptors) after AVS or GA very often allow
one to increase the quality of the obtained models (PLS, MLR, and TV). After the
statistical processing model or models with the best combinations of statistic charac-
teristics (R%, 0%) have been selected from the obtained resulting list, and they may be
submitted for subsequent validation using an external test set. The general scheme
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Figure 5-4. General scheme of the PLS models generation and selection applied in the HiT QSAR

of the PLS model generation and selection applied in the HiT QSAR is presented
in Figure 5-4. This procedure can be repeated several times using as input an initial
set of SD of different levels of molecular structure representation (usually 2D-4D)
and/or with various kinds of atom differentiation (see above) with the purpose to
develop several resulting “predictive” QSAR models for consensus modeling. This
approach is believed to yield more accurate predictions.

5.2.5. Validation of QSAR Models

To have any practical utility, up-to-date QSAR investigations must be used to make
predictions [66]. The statistical fit of a QSAR can be assessed in many easily avail-
able statistical terms (e.g., correlation coefficient R2, cross-validation correlation
coefficient Qz, standard error of prediction S).

Cross-validation is the statistical practice of partitioning a sample of data into
subsets such that the analysis is initially performed on a single subset, while the
other subset(s) are retained for subsequent use to confirm and validate the initial
analysis. The initial subset of data is called the training set; the other subset(s) are
called validation sets. In QSAR analysis, only two types of cross-validation are used:

(1) K-fold cross-validation. In K-fold cross-validation, the original sample is parti-
tioned into K subsamples. Of the K subsamples, a single subsample is retained
as the validation data for testing the model and the remaining K — 1 subsamples
are used as training data. The cross-validation process is then repeated K times
(the folds), with each of the K subsamples used exactly once as the validation
data.
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(2) Leave-one-out cross-validation. As the name suggests, leave-one-out cross-
validation (LOOCYV) involves using a single observation from the original
sample as the validation datum and the remaining observations as the training
data. This is repeated such that each observation in the sample is used once as
the validation data. This is the same as a K-fold cross-validation with K being
equal to the number of observations in the original sample.

The determination coefficient (Q?) calculated in cross-validation terms is the
main characteristic of model robustness. Q2 is calculated by the following formula:

Z (Ypred - Yactual)2
Y

Q*=1-
Z (Yactual - Ymeam)2
Y

(5.18)

where Ypreq is a predicted value of activity, Yacwal is an actual or experimental value
of activity, and Ypean is the mean activity value.
The shortfalls of cross-validation are the following:

(1) The training task must be solved N times leading to substantial calculative
expenses in time and resources.

(2) The estimation of cross-validation assumes that the training algorithm is already
given. It has no idea how to obtain “good” algorithms and which properties must
be inherent to them.

(3) An attempt to use cross-validation for training as an optimizable criterion leads
to loss of its unbiasedness property and there is a risk of overfitting.

At the same time statistical fit should not be confused with the ability of a model
to make predictions. The only method to obtain a meaningful assessment of statisti-
cal fit is to utilize the so-called “test set”. During this procedure a certain proportion
of the data set molecules (10-85%) are removed to form the test set before the mod-
eling process begins (remaining molecules form the training set). Once a model has
been developed, predictions can be made for the test set. This is the only method by
which the validity of a QSAR can be more or less truly assessed. However, one must
understand that sometimes it means only the model ability to predict the certain test
set. It is important that both training and test sets cover the structural space of the
complete data set as much as possible.

In the HiT QSAR, the following procedure has been used for the formation of
the test set: a dissimilarity matrix for all initial training set molecules has been
developed on the basis of relevant structural descriptors. Such a descriptor set can
be obtained using different procedures for descriptor selection (for example, see
Chapter 4) or directly from the model generated for all investigated compounds. In
our opinion the use of the whole set of descriptors generated at the very beginning
is not completely correct, because during QSAR research we are interested not in
structural similarity by itself, but from the point of view of the investigated activity
and the descriptor selection will help the avoidance of some distortions caused by
the insignificance of structural parameters from the initial set for this task.
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A dissimilarity matrix is based on the estimation of structural dissimilarity
between all investigated molecules. A measure of the structural dissimilarity for
molecules M, M’ can be calculated using the Euclidean distance in the multidimen-
sional space of structural parameters S [Eq. (5-19)]:

SDWM, M) = (5.19)

where 7 is the a number of molecules in data set.

Thus, total structural dissimilarity toward the rest of initial training set com-
pounds could be calculated for every molecule from a sum of the corresponding
Euclidean distances. In the meanwhile, all the compounds were divided into groups
depending on their activity, where the number of groups equals the number of
molecules that one wants to include into test set. Then one compound from each
group has been chosen to go to the test set according to its maximal (or mini-
mal) total Euclidean distance from the other molecules in this group, or by random
choice. Most likely, the use of several (three is the enough minimum) test sets con-
structed by different principles and subsequent comparison and averaging of the
obtained results is more preferable than the use of only one set for the model valida-
tion. In that way, the first test set has been constructed to maximize its diversity from
the training set, i.e., the compounds with maximal dissimilarity were chosen. This
is the most rigorous estimation, sometimes it can lead to the elimination of all of
the dissimilar compounds from the training set, i.e., such splitting of the training set
when the test set structures would not be predicted correctly by the developed model
and would be situated outside of DA. The second test set is created in order to min-
imize its diversity from the training set, i.e., less dissimilar compounds from each
group were removed. The last test set has been chosen in random manner taking into
account activity variation only.

5.2.6. Hierarchy of Aims of QSAR Investigation

HiT QSAR provides not only hierarchy of molecular models, systems of descrip-
tors, and statistical models, but also the hierarchy of the aims of QSAR investigation
(Figure 5-1). Targets of the first level are activity prediction or virtual screening. Any
descriptors could be used here, even those that are only poorly interpretable or non-
interpretable, e.g., different topological indices, informational-topological indices,
eigenvalues of various structural matrices. In other words, at this level descrip-
tors which are not expected to be used for subsequent analysis of structural factors
promoting or interfering with activity can be used.

The aims of the second level must include the interpretability of obtained
QSAR models. Only descriptors which have clear physico-chemical meaning, e.g.,
reflecting such parameters of the molecule such as dipole moment, lipophilic-
ity, polarizability, van der Waals volume, can be used at this level. Analysis of
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QSAR models corresponding to this level allows one to reveal structural factors
promoting or interfering with the investigated property. Such information can be
useful for the generation of hypotheses about mechanisms of biological action
and assumptions about the structure of biological target. Finally, the presence of
information useful for molecular design is expected from QSAR models corre-
sponding to the third level of purposes. As a rule, fragmentary descriptors have
been used in such models. In this case, the analysis of the degree and direction
of influence of such descriptors on activity can give immediate information for
the optimization of known structures and design of novel substances with desired
properties.

5.2.6.1. Virtual Screening (Including Consensus Modeling and DA)

As mentioned above, QSAR investigations must be used to make predictions for
compounds with unknown activity values (so-called “virtual screening”). In order to
increase the quality of predictions, these authors recently started to apply consensus
QSAR modeling which has become more and more popular [67]. It also represents
one of the crucial concepts of HiT QSAR [31, 36] and can be briefly described by
the statement “More models that are good and different.” The efficiency of this tech-
nique can be easily explained by the fact that nearly the same predictions obtained
by different and independent methods (either statistical or descriptors generation)
are more reliable than single prediction made by even the best fitted and predictable
model.

From another aspect, in order to analyze the predictivity of PLS models and
according to the OECD QSAR principles [38], different DA procedures have been
included in the HiT QSAR. The first procedure is an integral DA called “ellipsoid”
developed by the authors [11]. It represents a line at the 1D level; an ellipse at
the 2D level; an ellipsoid at the 3D level; and multidimensional ellipsoids in more
complicated n-dimensional spaces. Its essence consists of the following: the dis-
tribution of training set molecules in a space of latent variables T{—Ta (axes of
coordinates) can be obtained from PLS. For each coordinate axis (T| and T in our
case) the root-mean-square deviations St; and St have been determined. DA rep-
resents an ellipsoid that is built from the molecules of the training set distribution
center (T = 0; T, = 0) with the semi-axes length 3ST; and 3St,, respectively [11]
(Figure 5-5). Further, the correct positions in relation to this center have been cal-
culated for every molecule (including molecules from prediction set). If a work set
molecule does not correspond to the DA criteria, it is termed “influential,” i.e., it has
unique (for given training set) structural features that distinguish it from the other
compounds. If a new molecule from the prediction set is situated out of the DA
(region outside ellipsoid), its prognosis from the corresponding QSAR model is less
reliable (model extrapolation). And, naturally, the prognoses for molecules nearest
to the center of the DA are most reliable.

The second approach — the integral DA rectangle has been also developed by the
authors [11]. Two extreme points (so-called virtual activity and inactivity etalons)
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Figure 5-5. Different domain applicability procedures in the HiT QSAR: integral (ellipsoid, rectangle)
and local

are determined in a space of structural features. The first one has maximal val-
ues of descriptors (training set data) promoting activity and minimal interfering.
This point corresponds to a hypothetic molecule — the peculiar activity etalon. The
second point, analogically, is an inactivity etalon, i.e. contains maximal values of
descriptors interfering activity and minimal promoting. Vectors that unite these
points (directed from inactive to active) depict the tendency of activity change in
the variable space. This vector is a diagonal for the rectangle that determines DA
[11] (Figure 5-5). All the mentioned trends concern the “influential” points from
the training set and model extrapolation for new molecules from the prediction set
remain and for the DA rectangle approach.

The third method is based on the estimation of leverage value h; [68]. It has
been visualized as a Williams plot [69] and is described in detail in [70]. For lever-
age, a value of 3 is commonly used as a cut-off value for accepting predictions,
because points that lie &3 standard deviations from the mean cover 99% of the
normally distributed data. For training set molecules high leverage values do not
always indicate outliers from the model, i.e., points that are outside the model
domain. If high leverage points (h; > h.,, separated by vertical bold line) fit the
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model well (i.e., have small residuals), they are called “good high leverage points”
or good influence points. Such points stabilize the model and make it more pre-
cise. High leverage points, which do not fit the model (i.e., have large residuals)
are called “bad high leverage points” or bad influence points. They destabilize the
model [70]. A new molecule is situated out of the DA (model extrapolation) if it has
h; > her = 3(A+1)/M, where A — number of the PLS latent variables and M — number
of molecules in a work set.

Recently, a local (Tree) approach for DA estimation has been developed by
authors in order to avoid the inclusion of hollow space into the DA that is the lack
of integral DA methods. The following are required for its realization:

(1) Obtaining of a distance matrix between the training set molecules in the struc-
tural space of descriptors of the QSAR model. The molecules in the given
approach have been analyzed in the coordinates of the latent variables of the
PLS model considered.

(2) Detection of the shortest distances between molecules using the above-
mentioned matrix. Building of an extreme short distance tree for all training
set molecules.

(3) Finding of average distance (d,y) and its root-mean-square deviation (o) for
inclusion in the tree average values. Such a distance is the characteristic of
average density of molecules distribution in the structural space.

Following this procedure, all the points corresponding to test set molecules have
been taken into account in the structural space. If any of test set molecules have
been situated on the distance bigger than d,y+30 from the nearest training set point,
it means that this test set molecule is situated outside DA. Respectively, molecules
belonging to the DA are situated on the distance less than dyy+30 from the training
set points. The scheme of DA estimation has been depicted in Figure 5-5.

Such an approach for DA estimation is similar, to some extent, to methods
described in [70]. As opposed to integral approaches, e.g. [11], where the convex
region (polyhedron, ellipsoid) which could contain vast cavities has been deter-
mined in the structural space, the approach presented here is local. The space of
the structural parameters has been analyzed locally, i.e., regions around every train-
ing set point are analyzed. The presence of cavities in the structural space which
correspond to DA is undesirable and it has been eliminated in the given approach.

Summarizing, it’s necessary to note that if a new structure is lying inside the DA,
it is not a final argument for a correct prediction; rather, it is an indication of the
reduced uncertainty of a prediction. In exactly the same way, the situation of the
compound outside the DA does not lead to the rejection of the prediction; it is just
an indication of the increased uncertainty of the subsequent virtual screening predic-
tion. Naturally, such compounds could be predicted (by model extrapolation) with
great accuracy, but it will be more by co-incidence than design. Unfortunately, there
is currently no unbiased estimation of prognosis reliability, and the relative character
of any DA procedure was reflected in [11, 70]. Thus, it should be remembered that
the DA is not a guide to action but only a probable recommendation.
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All of the mentioned DA procedures together, or separately, are applied to
selected single models before being averaged in consensus model. The accuracy
of the DA consensus model has been compared with the adequacy of consensus
models without DA consideration. The authors recommend the use of consen-
sus DA models for subsequent virtual screening excepting the case of substantial
loss of coverage of training and prediction sets with only a limited benefit in
predictivity.

5.2.6.2. Inverse Task Solution and Interpretation of QSAR Models

Using Eq. (5-15) it is not difficult to make the inverse analysis (interpretation of
QSAR models) in the frameworks of the SIRMS approach. The contribution of each
J-atom (C;) in the molecule can be defined as the ratio of the sum of the PLS regres-
sion coefficients (b;) of all simplexes this atom contains (M) to a number of atoms
(n) in the simplex (or fragment) [Eq. (5-20)]:

M
1
Ci = - ; b;, (forsimplexn = 4) (5-20)

According to this formula, the atom contribution depends on the number of sim-
plexes which include this atom. This value (number of simplexes) is not constant;
it varies in different molecules and depends on other constituents (surroundings),
and hence, this contribution is non-additive. Atoms that have a positive or negative
influence on the studied biological activity of compounds can be colored. It helps
to present the results and to determine visually (additionally to the automate search)
the groups of atoms affecting the activity in different directions and with varying
strength. The example of the representation of the obtained results on the molecule
using color-coding according to the contribution of atoms into antirhinoviral activity
[11] is represented in Figure 5-6. Atoms and structural fragments reducing antiviral
activity are colored in red (dark gray in printed version) and that enhance antiviral

Figure 5-6. Color-coded structure according to atoms contributions to activity against HRV-2 [11].
Atoms and structural fragments reducing antiviral activity are colored in dark gray and that enhancing
antiviral activity in light gray and white
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activity in green (light gray and white in printed version). Atoms and fragments
with no effect are colored in gray.

The automatic search procedure for pre-defined fragments from the data set and
their relative effect on activity has been realized in HiT QSAR. The procedure of
the fragment searching in molecule is based on a fast algorithm for solving the
maximum clique problem [71]. Some molecular fragments promoting and interfer-
ing anti-influenza activity [12, 29, 34] are represented in Table 5-1 as well as their
average relative influence on it.

Table 5-1. Molecular fragments governing the anti-influenza activity change (A 1gTIDs() and their
average relative influence on it [12, 29, 34]

Enhance the activity

o o

3.0 2.4 1.9

N_, .~
\(;:’JN —(CH;,),—O0— 4&
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Decrease the activity

*(CHZ)n*NH*
X
| —CO—NH,
N
n=2-3
-0.3to -0.4 -0.2 -0.2

5.2.6.3. Molecular Design

It is possible to design compounds with a desired activity level from the SIRMS via
the generation of allowed combinations of simplexes determining the investigated
property. The simplest way is soft drug design [72] that consists of replacing of
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undesired substituents by more active ones, or by the insertion of fragments, pro-
moting the activity instead of non-active parts of molecule or hydrogen atoms. The
use of this technique allows one to retain newly designed compounds in the same
region of structural space as the training set compounds. The accuracy of progno-
sis can be estimated using the DA techniques (see below). However, the use of soft
drug design keeps within the limits of the initial chemical class of training set com-
pounds. More drastic drug design is, certainly, more risky, but it allows for much
more dramatic results. Almost certainly, new structures would lie outside the DA
region. That, however, does not mean uncertainty of prediction, but extrapolation
of the model predictivity and a certain lack of any DA procedure. However, at the
same time, we can receive compounds of completely different (from initial training
set) chemical classes as the output of such design. It was demonstrated in [12, 28,
29], where, in searching for a new antiviral and anticancer agents, we started our
investigations from macrocyclic pyridinophanes and through several convolutions
of QSAR analyses came out with nitrogen analogues of crown ethers in the first and
acyclic aromatic structures with the azomethine fragment in the second case.

5.2.7. HiT QSAR Software

The HiT QSAR software for Windows has been designed and developed as
an instrument for high-value QSAR investigations including the solution of the
following tasks:

* Creation of QSAR projects;

 Calculation of lipophilicities and partial atom charges;

* Molecules superposition in the lattice approaches;

* Generation of different integral, simplex, lattice (local and field), and harmonic
descriptors;

* Data mining (see Section 5.2.4);

» Obtaining of statistical models by PLS, MLR, and TV approaches with the usage
of total and partial enumeration methods, GA, AVS strategy, etc.

* Inverse task solution — interpretation of the equations developed as color-coded
diagrams for the molecules or their fields;

* Determination of the contributions (increments) of the fragments in the property
investigated;

* Consensus modeling of the property investigated taking into account the DA of
the model.

Graphic visualization of molecules, the atoms’ influence on the investigated
properties, lattice models, different fields, etc. was implemented using the open
graphic language (OpenGL) library from Silicon Graphics©. HiT QSAR software
is accessible on your request. Please contact the authors if you have any questions
about its usage. Summarizing the information above, the HiT QSAR workflow
(Figure 5-7) has recently been developed and used by authors for the solution of
different QSAR/QSPR tasks.
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Figure 5-7. HiT QSAR workflow

As was mentioned above, the proposed technology operates on a set of different
models. At the preliminary stage “Model 0” (Figure 5-7) is generated for the initial
division of investigated molecules into training and test sets. Subsequent generation
of sets 1-K is required for the development of consensus QSAR models. In all cases,
such statistical characteristics as R?, QZ, R? s have been taken into account as well
as the model DA.

5.3. COMPARATIVE ANALYSIS OF HiT QSAR EFFICIENCY

The HiT QSAR based on SiRMS has proved efficient in numerous studies
to solve different “structure—activity/property” problems [3, 10-12, 25-30, 33,
35] and it has been interesting to compare it with the other successful QSAR
approaches and software. The results of a comparative analysis are shown in
Table 5-2. Obviously, HiT QSAR does not have the problem of the optimal
alignment of the set of molecules considered that is inherent to CoMFA and its
analogues [16—19]. The SiRMS approach is similar to HQSAR [20] in certain
ways, but has none of its restrictions (only topological representation of molecu-
lar structure an ambiguity of descriptor formation during the molecular hologram
hashing). In addition, contrary to HQSAR, different physical and chemical prop-
erties of atoms (charge, lipophilicity, etc.) can be taken into account in SiRMS
(Table 5-2).
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CoMFA
CoMSIA
HASL CODESSA
Criterion HiT QSAR | GRID DRAGON | HQSAR
1D - 4D
1 2D
-~
i g o]
i | 3D H,C. 2D
Adequacy of £ 4 E:}OH 0
representation 1D-4D -~ i g ch})LOH
of By .,:.':-‘ t o NH.
v 1 ‘
molecular b § 3D Lt
structure r'."'.
Absence of
"molecular Yes No Yes Yes
alignment"
problem
Explicit con g o to @
sideration of i B \-t &
[ | Yes Partly No No
stereochem Vg | ¢y
istry and chirality i g
Consideration charge, lipophilicity,
of physical- polarizability etc. Yes Partly Partly No
chemical
properties of
atoms
Possibility of molecular Yes Partly No Partly

design

Thus, main advantages of the HiT QSAR are the following:

* The use of different (1D—4D) levels of molecular modeling;

* The absence of the “molecular alignment” problem;
» Explicit consideration of stereochemical features of molecules;

* Consideration of different physical and chemical properties of atoms;
e Clear methods (rules) for molecular design.

5.3.1. Angiotensin Converting Enzyme (ACE) Inhibitors

After such a theoretical comparative analysis, it was logical to test the efficiency
of the proposed HiT QSAR on real representative sets of compounds. All such
sets only contain structurally similar compounds to avoid the “molecular align-
ment” problem and, therefore, to facilitate the usage of the “lattice” approaches
(CoMFA and CoMSIA). One hundred and fourteen angiotensin converting enzyme
(ACE) inhibitors [73] represent the first set. Different statistic models obtained by
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HiT QSAR have been compared with those published in [73]. The structure of
enalaprat — a representative compound from the ACE data set is displayed below:

COOH

0  COOH

The ability of ACE inhibition (pICsp) has been investigated. The training set
consists of 76 compounds and 38 structures were used in a test set [73]. In the given
work, we have compared the resulting PLS-models built with the use of descriptors
generated from the following QSAR approaches:

(a) CoMFA - comparative molecular fields analysis [16];

(b) CoMSIA — comparative molecular similarity indexes analysis [18];

(c) EVA - eigenvalue analysis [74];

(d) HQSAR - hologram QSAR [20];

(e) the Cerius 2 program (Accelrys, Inc., San Diego, CA) — method of traditional
integral (whole-molecule) 2D and 2.5D? descriptors generation;

(f) HiT QSAR based on SiRMS [3, 11, 32].

Because all the mentioned approaches compare parameters generated at 2D or
3D levels of molecular structure representation, the corresponding SD, the Fourier
parameters, and united models with mixed (simplex + Fourier) parameters were
taken for comparison. The advantage of HiT QSAR over other methods is revealed
by the comparison of such statistical descriptions of the QSAR models, as the
determination coefficient for training (R?) and test (thest) sets; the determination
coefficient calculated in the cross-validation terms (Q%) as well as the standard
errors of prediction for both sets (see Table 5-3). For example, for SIRMS 0*=
0.81-0.87, for the Fourier models Q2= 0.73-0.80, and for the other methods
0% = 0.65-0.72. It is necessary to note that the transition to 3D level allows
for the improvement of the quality of the QSAR models obtained. At the same
time, the usage of the Fourier parameters does not lead to good predictive mod-
els (thest = 0.37-0.51) for this task. United models (simplex + Fourier) have the
same predictive power as the simplex ones, but, because of the presence of inte-
gral parameters, they are sufficiently different to provide another aspect of the

property.

5.3.2. Acetylcholinesterase (AChE) Inhibitors

The second set used for comparative analysis consisted of 111 acetylcholinesterase
(AChE) inhibitors. The structure of E2020 — a representative compound from the
AChE data set is displayed below:

2 This classification is offered by the authors of Cerius2.
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The ability to model AChE inhibition (pICsg) has been investigated. The train-
ing set consists of 74 compounds and 37 structures were used as a test set [73].
The methods compared and the principles of comparison are similar to the ones
described above. The main trends revealed for the ACE set were also the same
for the AChE inhibitors. The advantage of HiT QSAR over other methods have
been observed with all statistical parameters (Table 5-3), but especially on predic-
tivity of the models: for SIRMS R? s = 0.74-0.82, for the Fourier models R? g
= 0.59-0.61, and for the other methods R%est = 0.16-0.47. As in the previous
case, consideration of the spatial structure of investigated compounds improved the
quality of the models obtained.

Table 5-3. Statistical characteristics of the QSAR models obtained for ACE and AChE data sets by
different methods

R? 0? R? (st Sws Stest A

QSAR

method ACE AChE ACE AChE ACE AChE ACE AChE ACE AChE ACE AChE
CoMFA* 0.80 0.88 0.68 052 049 047 104 041 154 095 3 5
CoMSIA(basic)* 0.76 0.86 0.65 045 0.52 044 1.15 045 148 098 3 6
CoMSIA(extra)* 0.73 0.86 0.66 0.46 049 0.44 122 045 153 098 2 4
EVA* 0.84 096 070 041 036 028 093 023 172 1.11 4 4
HQSAR* 0.84 072 0.72 033 030 037 095 064 180 101 4 5
Cerius 2* 0.82 038 072 03 051 016 100 095 150 12 4 1
Simplex 2D 0.87 081 0.81 065 073 074 086 053 1.13 067 2 2
Simplex 3D 092 089 0.87 084 085 082 068 041 085 056 2 2
Fourier 2D 0.83 0.71 0.80 0.61 037 061 09 066 17 082 5 4
Fourier 3D 078 081 073 071 051 059 11 053 15 084 4 4
Mix** 2D 0.86 0.81 0.80 0.69 0.75 0.74 09 053 1.07 067 2 2
Mix** 3D 090 0.89 0.88 084 085 082 074 04 083 056 2 2
where

R? — correlation coefficient

Q2 — cross-validation correlation coefficient (10-fold, see Chapter 5)
R2test — correlation coefficient for test set

Sws — standard error of a prediction for training set

Stest — standard error of a prediction for test set

A —number of PLS latent variables

*Statistic characteristics from [73] were shown

**Mix = Simplex + Fourier descriptors
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Summarizing, it is necessary to note that we understand that the advantage of
simplex descriptors generated in HiT QSAR may be partially a result of some of
the differences in the statistical approaches applied (e.g., in addition to GA, TV and
AVS procedures have been used). However, these mathematical differences are not
responsible for all the improvements in the investigated approaches. Thus, it is obvi-
ous from the results obtained that HiT QSAR simplex models are well-fitted, robust
and, in the main, they are much more predictive than QSAR models developed by
other approaches.

54. HiT QSAR APPLICATIONS

The application of HiT QSAR for the solution of different QSAR/QSPR tasks on
different levels of representation of molecular structure is highlighted briefly below.
The PLS method has been used for the development of QSAR models in all the
cases described below.

54.1. Antiviral Activity

Because a lot of different viral serotypes and strains exist, vaccine development for
prevention of a wide variety of viral infections is considered to be impracticable. The
present treatment options for such infections are unsatisfactory [75-77]. However,
there are ongoing attempts to develop antiviral drugs [78—84]. That is why compu-
tational approaches, which can distinguish highly active inhibitors from less useful
compounds and predict more potent substances, have been used for the analysis of
antiviral activity for many years [4, 6, 7, 12, 13, 29].

54.1.1. Antiherpetic Activity of N,N'-(bis-5-nitropyrimidyl)
Dispirotripiperazine Derivatives® (2D)

HiT QSAR was applied to evaluate the influence of the structure of 48 N,N'-(bis-

S-nitropyrimidyl)dispirotripiperazines (see structures below) on their antiherpetic

activity, selectivity, and cytotoxicity with the purpose to understand the chemico-

biological interactions governing their activities, and to design new compounds with

strong antiviral activity [3].

o K e (OO
\_/\_/\_/ N\J\ N
20r 2Cr

3 The authors express sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O.
Riabova, Mr. N. Kovdienko and Mr. A. Hromov for fruitful cooperation that made the development of
this task possible.



Virtual Screening and Molecular Design 159

The common logarithms of 50% cytotoxic concentration (CCso) in GMK cells,
50% inhibitory concentration (ICs) against HSV-1, and the selectivity index (SI =
CCs0/ICs0) were used to develop 2D-QSAR models. Spirobromine — a medicine
with a nitrogen-containing dispiro structure possessing anti-HSV-1 activity was
included in the training set. The statistic characteristics of QSAR models obtained
are quite high (R?> = 0.84-0.91; Q% = 0.61-0.68; R%st = 0.68-0.71) and allow
for the prediction of antiherpetic activity, cytotoxicity, and selectivity of new
compounds. Electrostatic factors (38%) and hydrophobicity (25%) were the most
important determinants of antiherpetic activity (Figure 5-8). The results of the
QSAR analysis demonstrate a high impact of individual structural fragments for
antiviral activity. Molecular fragments that promote and interfere with antiviral
activity were defined on the basis of the models obtained. Thus, for example,
the insertion of non-cationic linkers such as N-(2-aminoethyl)ethane-1,2-diamine,
ethylenediamine, or piperazine instead of dispirotripiperazine leads to a complete
loss of activity while the presence of methyloxirane leads to a strong increase. Using
the established results and observations, several new dispirotripiperazine deriva-
tives — potential antiviral agents — were computationally designed. Two of these new
compounds (1 and 2, Table 5-4) were synthesized. The results of biological tests
confirm the predicted high values of antiviral activity and selectivity (they are about
two logarithmic units more active and one order more selective than spirobromine)
as well as low toxicity of these compounds.

atom
individuality
(nature) 19%
electrostatic;
38%
dispersion
: Q
hydrophobic; H-bonding; 8%

25%

Figure 5-8. Relative influence of some physico-chemical factors on variation of anti-HSV-1 activity
estimated on the basis of QSAR models

5.4.1.2. Antiherpetic Activity of Macrocyclic Pyridinophanes®

The antiherpetic data set was similar to that for the anti-influenza study and was also
characterized by essential structural variety: different macrocyclic pyridinophanes
and their acyclic analogues plus well-known antiviral agents including acyclovir as
a reference compound:

4 Anti-influenza and antiherpetic investigations described below were carried out as a result of fruitful
cooperation with Dr. V.P. Lozitsky, Dr. R.N. Lozytska, Dr. A.S. Fedtchouk, Dr. T.L. Gridina, Dr. S. Basok,
Dr. D. Chikhichin, Mr. V. Chelombitko and Dr. J.-J. Vanden Eynde. The authors express sincere gratitude
for all mentioned above colleagues.
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Table 5-4. Perspective potent compounds — results of computer-assisted molecular design
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The antiherpetic activity against HSV-1 strain US was expressed as a percentage
of the inhibition of HSV reproduction in treated cell cultures (Hep-2) in comparison
with untreated ones. As in previous cases, the antiherpetic study has a multistep
cyclic character: synthesis — biological tests — QSAR analysis — virtual screening
and computer-assisted drug design — synthesis —, etc. [25, 28, 29, 34]. Initially, 14
compounds (mostly macrocyclic pyridinophanes and their acyclic analogues) have
been investigated for antiherpetic activity [29]. At the present stage [25], after the
several QSAR convolutions, 37 compounds were divided between training and test
sets (26 and 11 compounds respectively) and the set of QSAR models with different
adequacy levels (2D, 4D, and 3D) has been obtained as a result of the investigations.
All the obtained QSAR models were well fitted, robust, predictive (R2 =0.82-0.90,
Q2 = 0.60-0.65, R% (et = 0.70-0.78), and have a defined DA and clear mechanistic
interpretation. For the 3D-QSAR investigations the set of “productive” conformers
has been used. They were determined as the most active from the results of 4D-
QSAR modeling.

All the models developed (2D-4D) indicate the impact of hydrophobic (~50%)
and electrostatic (~20%) factors on the variation of antiherpetic activity. The strong
promotion of antiherpetic activity by aminoethylene fragments was revealed. It was
also discovered that an important factor for the HSV inhibition is the presence of
an amino group connected to aliphatic fragment. A tendency of antiviral activity
increasing with the strengthening of acceptor properties of compound’s aromatic
rings was revealed. This information was used for the design of potent antiherpetic
agent 1 (Table 5-4). The use of SiRMS allows to progress in searching for new
antiherpetic agents starting from macrocyclic pyridinophanes [29] and finishing
in symmetric piperazine containing macroheterocycle 1,4,7,10,13,16,19,22,25,28-
Decaaza-tricyclo[26.2.2.2*13,16* tetratriacontane (1).

5.4.1.3. [(Biphenyloxy)propyl]isoxazole Derivatives — Human Rhinovirus
2 Replication Inhibitors® (2D)

QSAR analysis of antiviral activity of [(biphenyloxy)propyl]isoxazole derivatives

\

N—O

was developed using HiT QSAR based on SiRMS to reveal chemico-biological
interactions governing their activities as well as their probable mode of action, and to
design new compounds with a strong antiviral activity [11]. The common logarithms

5 The authors express sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O.
Riabova and Ms. Volineckaya for fruitful cooperation that made possible the development of this task.
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of 50% cytotoxic concentration (CCsg) in HeLa cells, the 50% inhibitory concen-
tration (ICsp) against human rhinovirus 2 (HRV-2), and the selectivity index (SI =
CCs0/ICsp) of [(biphenyloxy)propyl]isoxazole derivatives were used as cytotoxic-
ity, antiviral activity, and selectivity assessments, respectively. The set of molecules
consists of 18 compounds including pleconaril as a reference compound. They have
not been divided into training and test sets because of the low number of com-
pounds (i.e., the structural information contained in each molecule in this case is
unique and useful). The statistic characteristics of the resulting 2D-QSAR models
are quite satisfactory (R? = 0.84-0.92; Q2 = 0.70-0.87) for the prediction of CCs,
ICs0, and SI values and permit the virtual screening and molecular design of new
compounds with high anti-HRV-2 activity. The results indicate the high influence of
atom’s individuality on all the investigated properties (~40%), electrostatic factors
on selectivity (~50%), where these factors along with atom individuality play the
determining role, and hydrophobic interactions on the antiviral activity (~40%). The
presence of terminal 5-trifluoromethyl-1,2,4-oxadiazole and p-fluorophenyl frag-
ments in a molecule leads to strong enhancement of its useful properties, i.e.,
increase of activity toward HRV-2 as well as selectivity and decrease of cytotoxic-
ity. An additional terminal aromatic ring — naphthalene or phenyl — strongly reduces
activity toward HRV-2 and, to a lesser degree, SI. The virtual screening and molec-
ular design of new well-tolerated compounds with strong anti-HRV-2 activity has
been performed on the basis of QSAR results. Three different DA approaches (DA
rectangle and ellipsoid as well as leverage) give nearly the same results for each
QSAR model and additionally allow for the estimation of the quality of the predic-
tion for all designed compounds. A hypothesis to the effect that external benzene
substituent must have negative electrostatic potential and definite length L (approx-
imately 5.5-5.6 A) to possess strong antiviral activity has been suggested. Most
probably, the fluorine atom in the para-position of terminal aromatic ring (com-
pounds 2-4, Table 5-4) is quite complementary (L = 5.59 A) to the receptor cavity
for such an interaction. It is necessary to note that pleconaril (L = 5.54 A) com-
pletely satisfies the indicated criteria. In the case of nitroaromatics, the accumulation
of nitro groups in the region of receptor cavity will lead to strengthening of elec-
trostatic interactions with the biological target and, therefore, to an increase in
activity.

Several new compounds have been designed computationally and predicted as
having high activity and selectivity. Three of them (2—-4, Table 5-4) were syn-
thesized. Subsequent experimental testing revealed a strong coincidence between
experimental and predicted anti-HRV-2 activity and SI. Compounds 2—4 are similar
in their cytotoxicity level to plecanoril, but they are more active and selective.

5.4.14. Anti-influenza Activity of Macrocyclic Pyridinophanes* (2D—4D)

All the advantages of HiT QSAR were demonstrated during the investigation of
anti-influenza activity on the data set possessing structural variety: different macro-
cyclic pyridinophanes, their acyclic analogues, and well-known antiviral agents
(deiteforin, remantadine, ribavirin, ambenum, and others) [12, 29]:
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Anti-influenza activity (virus A/Hong Kong/1/68 (H3N2)) was expressed in
1gTID5( and reflected the suppression of viral replication in “experimental” samples
in comparison with “controls.” The structures investigated were divided between
training and test sets (25 and 6 compounds, respectively).

In accordance with the hierarchical principles of the approach offered, the
QSAR analysis was solved sequentially on the 2D, 4D, and 3D levels.® The set
of QSAR models with different adequacy levels (2D, 4D, and 3D) was obtained
as a result of the investigations. All the obtained QSAR models were well fitted,
robust, predictive (R? = 0.94-0.98, 0% = 0.85-0.95, and R?cs; = 0.98-0.99)7, and
have defined DA and clear mechanistic interpretation. For 3D-QSAR investigations
the set of “productive” conformers has been used. They were determined as the
most active from the results of 4D-QSAR modeling. The results indicate the great
impact of atom individuality on the variation of anti-influenza activity (37-50%).
Hydrophobic/hydrophilic and electrostatic interactions also played an important role
(15-22%). The shape of molecules (4D and 3D models) also effects anti-influenza
activity but has the smallest influence (11 and 16%, respectively). The cylindrical
form of molecules (Ix/ly — 1) with small diameters (Iy — min) promotes anti-
influenza activity. The molecular fragments governing the change of anti-influenza
activity and their average relative influence (Table 5-1) were determined. For
example, the presence of oxyethylene or 2-iminomethylphenol fragments promotes
antiviral activity and aminoethylene fragments decreases it.

The purposeful design of new molecules 5-7 (Table 5-4) with adjusted activ-
ity level was developed by obtained results. The high level of all predicted (all
the resulting 2D-4D models show the strong coincidence of predictions) val-
ues of anti-influenza activity was confirmed experimentally. Thus, during the
QSAR investigations [12, 29] the search for active compounds began from macro-
cyclic pyridinophanes and finally results in benzene derivatives containing the
2-iminomethyl-phenol fragment (5-7, Table 5-4).

ribavirin

remantadine

© In this and antiherpetic research 1D modeling were not performed.

7 We are aware that these models can approximate not only variation of activity but also variation of
experimental errors. The high values of RZ(es¢ can be explained by the fact that test compounds are very
similar to those in the training set, that there are only few compounds in test set, by high quality of
obtained models, by simple good luck or by combination of all mentioned factors.
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5.4.2. Anticancer Activity of MacroCyclic Schiff Bases® (2D and 4D)

The investigation of influence of the molecular structure of macrocyclic Schiff bases
(see structures below) on their anticancer activity has been carried out by

us)

means of the 4D-QSAR SiRMS approach [10]. The panel of investigated human
malignant tumors includes 60 lines of the following nine cell cultures: leukemia,
CNS cancer, prostate cancer, breast cancer, melanoma, non-small cell lung cancer,
colon cancer, ovarian cancer, and renal cancer. Anticancer activity was expressed
as the percent of the corresponding cell growth. The training set is very structurally
dissimilar and consists of 30 macrocyclic pyridinophanes, their analogues, and some
other compounds.

The use of simple topological models generated by EMMA [85] allows the
description of the anticancer activity of macrocyclic pyridinophanes (MCP) for only
five cell cultures [86]. These studies show that even within the simple topological
model it is possible to detect some patterns of the relationship between the struc-
ture of MCP and their activity. The consideration of spatial structure improves the
situation, but only at the 4D level reliable QSAR models (R?> = 0.74-0.98; Q? =
0.54-0.84) were obtained for all of the investigated cells (except leukemia, where
0? <0.5; however, even in this case the designed compound was predicted correctly)
and averaged activity (most of lines and cells are highly correlated) that indicate
the importance of not the most active or favorable single conformer but the set of
interacting conformers within the limits of energy gap of 3 kcal/mol. It was dis-
covered that the presence of the N!' ,N3-dimethylenepropane-1,3-diamine fragment
strongly promotes anticancer activity. This fragment was used as a linker between
two naphthalen-2-oles that leads to the creation of universal anticancer agent active
against all mentioned tumors except prostate cancer. It is necessary to note that the
use of SiRMS allow one starting from 12 macrocyclic pyridinophanes [86] in the
search for anticancer agents to finally result in symmetric open-chained aromatic
compounds connected by above-mentioned linker [10].

7" The authors express sincere gratitude to Dr. V.P. Lozitsky, Dr. R.N. Lozytska and Dr. A.S. Fedtchouk
for fruitful cooperation during the development of this task.
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54.3. Acute Toxicity of Nitroaromatics

5.4.3.1. Toxicity to Rats® (1D-2D)

HiT QSAR based on 1D and 2D simplex models and some other approaches for
the description of molecular structure have been applied for (i) evaluation of the
influence of the characteristics (constitutional and structural) on the toxicity of 28
nitroaromatic compounds (some of them belonging to a widely known class of
explosives, see structures below); (ii) prediction of the toxicity of new nitroaromatic
derivatives; (iii) analysis of the effects of substitution in nitroaromatic compounds
on in vivo toxicity

NO
R=H, F, Cl, OH, NO,,
R COOH, CH,, CH,Cl

The 50% lethal dose to rats (LDsg) has been used to develop the QSAR models
based on simplex representation of molecular structure. The preliminary 1D-QSAR
results show that even the information on the composition of molecules reveals the
main characteristics for the variations in toxicity [87].

A novel 1D-QSAR approach that allows for the analysis of the non-additive
effects of molecular fragments on toxicity has been proposed [87]. The necessity
of the consideration of substituents’ impact for the development of adequate QSAR
models of nitroaromatics’ toxicity was demonstrated.

The statistic characteristics for all the 1D-QSAR models developed, with the
exception of the additive models, were quite satisfactory (R* = 0.81-0.92; Q% =
0.64-0.83; R%iet = 0.84-0.87). Successful performance of such models is due to
their non-additivity, i.e., the possibility of taking into account the mutual influence
of substituents in a benzene ring which governs variations in toxicity and could be
mediated through the different C—H fragments of the ring.

The passage to 2D level, i.e., consideration of topology, allows for the improve-
ment of the quality of the obtained QSAR models (R* = 0.96-0.98; 0% = 0.91-0.93;
R% et = 0.89-0.92) to predict the activity for 41 novel compounds designed by the
application of new combinations of substituents represented in the training set [37].
The comprehensive analysis of variations in toxicity as a function of the position and
nature of the substituent was performed. Among the contributions analyzed in this
work are the electrostatic, hydrophobic, and van der Waals interactions of toxicants
to biological targets. Molecular fragments that promote and interfere with toxicity
were defined on the basis of models obtained. In particular, it was found that in
most cases, insertion of fluorine and hydroxyl groups into nitroaromatics increases
toxicity, whereas insertion of a methyl group has the opposite effect. The influence

8 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. M. Quasim for
fruitful cooperation during the development of this task.
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of chlorine on toxicity is ambiguous. Insertion of chlorine at the ortho-position to
the nitro group leads to substantial increase in toxicity, whereas the second chlorine
atom (at the para-position to the first) results in a considerable decrease in toxicity.
The mutual influence of substituents in the benzene ring is substantially non-additive
and plays a crucial role regarding toxicity. The influence of different substituents on
toxicity can be mediated via different C—H fragments of the aromatic ring.

The correspondence between observed and predicted toxicity obtained by the
1D and 2D models was good. The single models obtained were summarized in the
most adequate consensus model that allows for an improved accuracy of toxicity
prediction and demonstrate its ability to be used as a virtual screening tool.

5.4.3.2. Toxicity to Tetrahymena Pyriformis9 (2D)

The present study applies HiT QSAR to evaluate the influence of the structure of
95 various nitroaromatic compounds (including some widely known explosives, see
structures below) to the toxicity to the ciliate 7. pyriformis (QSTR — quantitative
structure—toxicity relationship); for the virtual screening of toxicity of new nitroaro-
matic derivatives; analysis of the characteristics of the substituents in nitroaromatic
compounds as to their influence on toxicity.

NO,

R =H, F, Cl, OH, NO,,

R COOH, CH;, OAL,
CHO, CN, NH2, etc.

The negative logarithm of the 50% inhibition growth concentration (IGCs) was
used to develop 2D simplex QSTR models.

During the first part of the work the whole initial set of compounds was divided
into three overlapping sets depending on the possible mechanism of action [88].
The 2D-QSTR PLS models obtained were quite satisfactory (R> = 0.84-0.95; 0% =
0.68-0.86). The predictive ability of the QSTR models was confirmed through the
use of three different test sets (maximal similarity with training set, also minimal
one and random choice, taking into account toxicity range only) for any obtained
model (R?cg = 0.57-0.85).

The initial division into different sets was confirmed by the QSTR analysis,
i.e., the models developed for structures with one mechanism (e.g., redox cyclers)
cannot satisfactorily predict the others (e.g., those participating in nucleophilic
attack). However, the reliable predictive model can be obtained for all the com-
pounds, regardless of mechanism, when structures of different modes of action are
sufficiently represented in the training set.

In addition, the classification and regression trees (CRT) algorithm has been used
to obtain models that can predict possible mechanism of action. The quality of the

9 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb, Dr. M. Quasim and Prof.
A. Tropsha for fruitful cooperation during the development of this task.
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CRT models obtained is also quite good. The final models had only 15-20% mis-
classification errors. The obtained models have correctly predicted mechanism of
action for compounds of the test set (76-81%).

The comparative analysis of similarity/difference of all nine selected QSAR
models has been carried out using the correlation coefficient and Euclidean distance
between the sets of toxicity predicted values. It has been shown that all of them are
quite close between themselves and the vector of observed activity values. Hence,
T. pyriformis toxicity by nitroaromatic compounds is complicated and multifactorial
process where, most probably, factors determining penetration and delivery of tox-
icant to biological target play the most important role. Reactivity of nitroaromatics,
seemingly, only has an auxiliary role. This was confirmed by the absence of any cor-
relation between toxicity and Hammett constants of substituents. In this regard, the
difference in the mechanisms of toxicant interaction with biomolecules (reactions
of nucleophylic substitution or radical reduction of nitro group) is important but do
not determine for the value of its toxicity.

Molecular fragments that promote and interfere with toxicity were defined
using the interpretation of the PLS models obtained. For example, oxibutane and
aminophenyl substituents promote the toxicity of nitroaromatics to 7. pyriformis but
carboxyl groups interfere with toxicity. It was also shown that substituent interfer-
ence in the benzene ring plays the determining role for toxicity. Contributions of
the substituents to toxicity are substantially non-additive. Substituents interference
effects the activation of aromatic C—H fragments with regard to toxicity.

The structural factors of nitroaromatics which characterize their hydrophobicity
and ability to form electrostatic interactions are the most important for the toxic
action of the compounds investigated; local structural characteristics (presence of
one or other fragments) are more important than integral (whole-molecule) ones.

All the nine selected models were used for consensus predictions of toxicity of
an external test set which consists of 63 nitroaromatics. PLS models based on com-
pounds from one mechanism of action were used for consensus predictions only
in the case when the CRT model was able to predict such a mechanism. Thus, the
predictivity of the consensus model on the external test set was quite satisfactory
(R* st = 0.64).

5.4.4. AChE Inhibition!? (2.5D, Double 2.5D, and 3D)

HiT QSAR has been used for the consensus QSAR analysis of AChE inhibition
by various organophosphate compounds. SIRMS and LM QSAR approaches have
been used for descriptor generation. Different chiral organophosphates represented
by their (R)- and (S)-isomers, racemic mixtures, and achiral structures (totally 42
points) have been investigated. A successful consensus model (R? = 0.978) based
on 14 best QSAR models (R? = 0.91-0.99; 0? = 0.86-0.98; R%.st = 0.82-0.97),

10 The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. J. Wang for fruitful
cooperation during the development of this task.
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obtained using different QSAR approaches and training sets for several levels and
methods of molecular structure representation (2.5D, double 2.5D, and 3D), was
used for the prediction of AChE inhibition of new compounds. The trend established
on the training set compounds [(S)-isomers are more active than (R)-ones] applies
to all new predicted structures.

Atom individuality (including stereochemistry of the chiral surroundings of the
asymmetric phosphorus atom) plays the determining role in the variation of activity
and is followed by the dispersion and electrostatic characteristics of the OPs.
The molecular fragments promoting or interfering with the activities investigated
were determined. Identical fragments in the achiral compounds have smaller
contributions to activity in comparison with their role in chiral molecules. The
influence of phosphorus on the AChE inhibition has a wide range of variation and
is very dependent on its surroundings. The substitution of oxygen in > P = O by
sulfur leads to decreasing AChE inhibition. The presence of the 2-sulphanylpropane
fragment facilitates a decrease in activity. Oxyme-containing fragments are
actively promoting with activity. The most active predicted compound (2-[(E)-
({[cyano(cyclopentyloxy)phosphoryl]oxy }imino)methyl]-1-methylpyridinium)
contains oxyme and cyclopentyl parts and is more toxic than oxyme-containing
OPs from the training set.

It was also shown in the given work that the topological models of molecular
structure (2.5D and double 2.5D) with the identification of stereochemical center
of investigated compounds allow for the description of the OPs’ ability to inhibit
AChE.

5.4.5. 5-HT 4 Affinity (1D-4D)'!

This work was devoted to the analysis of the influence of the structure of N-alkyl-
N'-arylpiperazine derivatives (see structures below) on their affinity for the 5-HT 5

receptors (5-HT1aR).
X
O
n n=1-6

Several PLS and MLR models have been obtained for the training set contain-
ing 42 ligands of 5-HTaR represented on the 1D—4D levels by SiRMS [32]. All
the models obtained have acceptable statistical characteristics (R* = 0.71-0.96, Q*
= 0.66-0.88). There is improvement in the models from 1D — 2D — 4D — 3D.
Molecular fragments which have an influence on the affinity for 5-HTsR have
been identified. Analysis of the spatial structure of “productive” conformers deter-
mined according to 4D-QSAR model shows considerable similarity to the existing
pharmacophore models [§9-91] and has allowed for improvement.

1" The authors express sincere gratitude to Academician S.A. Andronati and Dr. S.Yu. Makan for
fruitful cooperation during the development of this task.
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The 2D-QSAR classification task has been solved using the PLS and CRT meth-
ods for the set of 364 ligands of 5-HTjoR (284 in the training set and 62 in the
test set) [92]. The PLS model showed a 65% accuracy for the prediction of test
set compounds and the CRT model — 74%. The results of these models have a
considerable correspondence between each other that additionally confirmed their
validity. It has been shown that, in general, a polymethylene chain comprising three
or fewer CH; groups has a negative influence on affinity for 5-HT sR and a chain
comprising four or more CH; groups has a positive influence. Electron-donating
substituents (0-OCH3z, 0—OH, 0-Cl) at the ortho-position of phenyl ring strongly
promoted affinity. A 2,3-dihydrobenzodioxin-5-yl residue has a similar influence
on affinity. Electron-accepting substituents (m-CF3) in phenyl have high affinity.
Electron-accepting substituents at the para-position of the phenyl ring (p-NOy, p-F)
have a stronger negative influence on affinity to 5-HT1aR than electron-donating
ones (p—OCH3). The following conclusions have been made about the influence of
the terminal fragments (substituents of N-alkyl group) on affinity. Saturated poly-
cyclic fragments and small aromatic residues demonstrated positive influence on
affinity and larger aromatic fragments show a negative effect. According to the fol-
lowing analysis, the optimal van der Waals volume for the terminal moiety must be
approximately 500 A3 or less.

Molecular design and virtual screening of new potential ligands of 5-HT AR has
been developed on the basis of the obtained results. Several most promising com-
pounds have been chosen for subsequent investigations, two of them are represented
in Table 5-4 (8 and 9).

5.4.6. Pharmacokinetic Properties of Substituted Benzodiazepines (2D)

The influence of the structure of substituted benzodiazepines (27 compounds, see
below)!? on the variation of their pharmacokinetic properties including bioavailabil-
ity, semi-elimination period, clearance, and volume of distribution in the organism
of man has been studied [94].

N
X=0,5.NH, 2H
O \/&RZ RI=H, Alc, efc.
R4

—N R2=H, OH, COOH, OCOAIc

R3,R4=H, halogen
O R3

Simplex descriptors in addition to some integral parameters generated by the
Dragon software [93] were used for the development of statistic models.

12 The authors express sincere gratitude to Dr I.Yu. Borisyuk and Acad. N.Ya. Golovenko for a fruitful
collaboration.
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Reasonably adequate quantitative “structure-pharmacokinetic properties” rela-
tionships were obtained using the PLS and MLR statistical approaches (R*> =
0.91-0.95, Q2 = 0.81-0.94) [94]. Structural factors affecting the change of phar-
macokinetic properties of substituted benzodiazepines were revealed on the basis of
the obtained models.

Bioavailability. Although there is no correlation between absolute bioavailability
(F) and lipophilicity (R~0), the trend of increasing of molecular fragments’ con-
tribution to common bioavailability alongside with increasing of its lipophilicity is
observed quite clearly. This trend is the most evident in case of aromatic fragments.
Pentamerous aromatic heterocycles have the greatest influence on bioavailability.

Thus, the presence of benzene rings in a molecule increases its bioavailability in
a series of substituted benzodiazepines and substitution on the aromatic rings leads
to a decrease in bioavailability. Also one can note that the more oxygen atoms in
a molecule, the lower the bioavailability. It has been determined that the oxygen
atoms are hydrogen bond acceptors. This is in agreement with Lipinski’s “rule of
five” [24], whereby good bioavailability is observed when the drug corresponds to
the following physico-chemical characteristics: molecular weight < 500; log P < 5;
number of groups — proton donors < 5; number of groups — proton acceptors < 10.

Clearance. For clearance (Cl) of the investigated series, the trend is opposite to
that for bioavailability. Thus, the presence of H-donors in a molecule, substitution
in aromatic rings as well as an increase of molecule saturation leads to an increase
in clearance.

Time of semi-elimination. The influence of structural fragments on the variation
of the time of semi-elimination is similar to that described for bioavailability. Thus,
all lipophilic aromatic fragments have high values for increasing semi-elimination
time.

Volume of distribution. During the analysis of the influence of structure of ben-
zodiazepines on their volume of distribution, the same trends as for clearance
were revealed. Thus, refraction (electronic polarizability) increases the volume of
distribution and high aromaticity and hydrophilicity decrease it.

The resulting PLS models have been used for the development of virtual screen-
ing of pharmacokinetic properties of novel compounds belonging to bezdiazepines
family [94].

54.7.  Catalytic Activity of Crown Ethers'3 (3D)

HiT QSAR was applied to develop the QSPR analysis of the phase-transfer catalytic
properties of crown ethers in the reaction of benzyl alcohol oxidation by potassium
chlorochromate:

Crown Ether

3PhCH,0OH + 2KCrO3Cl ————  3PhCHO + 2KCl1 + Cr,03 + 3H,0 (5-21)

CH,Cl,

13 The authors express sincere gratitude to Prof. G.L. Kamalov, Dr. S.A. Kotlyar and Dr. G.N. Chuprin
for fruitful cooperation during the development of this task.
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The objects of the investigation were 66 structurally dissimilar crown ethers,
their acyclic analogues and related compounds. The compounds were not divided
into training and test sets. Catalytic activity was expressed as the percentage of
conversion acceleration.

The distinctive feature of this study is the absence of any reliable relationship
between topololgical (2D) structure of crown ethers and their catalytic properties.
At the 4D level a not very robust (0% = 0.46) relationship was obtained and, only
at the 3D level, after the selection of the conformations with the most acceptable
formation of complexes with potassium, was a reliable model formed (R2 =0.87; Q2
= 0.66). Alongside the positive effect of biphenyl and diphenyloxide fragments on
catalytic activity of the investigated compounds, the slight preference of “transoid”
on cis-conformations of crown ethers containing mentioned fragments was shown.
The undesirability of the cyclohexyl fragment was determined as well as the certain
limits of crown ether dentacy (4-8). These findings, as well as the predominant role
of electrostatic factors in investigated process (~50%), correspond to the known
mechanisms of catalytic action of the crown ethers. Two potent catalysts 10 and 11
(Table 5-4) were designed and introduced as a result of the QSPR analysis.

54.8.  Aqueous Solubility'* (2D)

This work was devoted to the development of new QSPR equations which will accu-
rately predict S,, for compounds of interest to the US Army (explosives and their
metabolites) using the SIRMS approach with subsequent validation of the obtained
results using a broad spectrum of available experimentally determined data.

The series of the different QSPR models that supplement each other excludes the
application of additive schemes and provides a solution to the problems of virtual
screening, the evaluation of influence of the structural factors on solubility, etc., have
been developed and used with the consensus part of hierarchical QSAR technology.

The training set consists of 135 compounds and the test set includes 156
compounds. Two-dimensional simplex and derived from them Fourier integral
descriptors have been used to obtain the set of well-fitted, robust, and predictive
(internally and externally) QSPR models (R> = 0.90-0.95; 0% = 0.85-0.91; R? g =
0.78-0.87). External validation using four different test sets also reflects a high level
of predictivity (R?est1 = 0.7-0.87; R%es2 = 0.82-0.88; R (3 = 0.66-0.76; R?es4
= 0.86-0.91). Here test; — mixed set of 27 compounds from different chemical
classes; testy — set of 100 pesticides; test3 — McFarland set of 18 drugs and pesti-
cides; and tests — Arthursson set of 11 drugs. When all 156 compounds have been
united in one external set, R%y = 0.87 has been reached. The application of DA
estimated by the two different approaches (Ellipsoid DA and Williams Plot) leads to
aloss of coverage but does not improve the quality of the prediction (R? sy = 0.87).

14" The authors express sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. M. Quasim for
fruitful cooperation during the development of this task.
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Special attention was paid to the accurate prediction of the solubility of polynitro
military compounds, e.g., HMX, RDX, CL-20. Comparison of the solubility values
for such compounds predicted by our QSPR results and EPI SuiteTM and SPARC
techniques indicates that both DoD and Environmental Protection Agency will have
considerable advantage using the SIRMS models developed here.

5.5. CONCLUSIONS

In summary, it can be concluded that the QSAR technology considered is a universal
instrument for the development of effective QSAR models which provide reliable
enough virtual screening and targeted molecular design of various compounds with
desired properties. This is a result of its hierarchical structure and wide descriptor
system.

The comparative analysis of HiT QSAR with the most popular modern QSAR
approaches reflects its advantage, especially in predictivity. The efficiency of HiT
QSAR was demonstrated on various QSAR/QSPR tasks at different (1D-4D)
levels of molecular modeling. HiT QSAR is under permanent development and
improvement. Currently the system of descriptors devoted to adequate description
of structure of nanomaterials on the basis of carbon polyhedrons (fullerenes, nan-
otubes, etc.), algorithms of consensus modeling, and procedures for QSAR analysis
of complex mixtures are under development. The technology developed has been
realized as a complex of computer programs “HiT QSAR.” The trial version is
available on request for everyone who is interested in it.
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