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ABSTRACT

Retrotransposition amplifies LINE-1 (L1) to high copy
number in mammalian genomes. The L1 protein
encoded by ORF1 (ORF1p) is required for retro-
transposition. This dependence on ORF1p was
investigated by mutating three highly conserved
residues, R238, R284 and Y318 to alanine, thereby
inactivating retrotransposition. R284A and Y318A
were rescued by further substituting the alanine
with the appropriate conservative amino acid, e.g.
lysine or phenylalanine, respectively, whereas
R238K remained inactive. Quantification of the
steady-state levels of L1 RNA and ORF1p failed to
discriminate active from inactive variants, indicating
loss of L1 retrotransposition resulted from loss of
function rather than reduced expression. The two
biochemical properties known for ORF1p are
high-affinity RNA binding and nucleic acid chaper-
one activity. Only R238A/K exhibited significantly
reduced RNA affinities. The nucleic acid chaperone
activities of the remaining paired mutants were
assessed by single-molecule DNA stretching and
found to mirror retrotransposition activity. To
further examine ORF1p chaperone function, their
energetic barriers to DNA annealing and melting
were derived from kinetic work. When plotted
against each other, the ratio of these two activities
distinguished functional from non-functional ORF1p
variants. These findings enhance our understanding
of the requirements for ORF1p in LINE-1 retro-
transposition and, more generally, nucleic acid
chaperone function.

INTRODUCTION

Long interspersed element-1 (LINE-1, or L1) is a success-
ful and active retrotransposon in mammals. L1 sequence
directly accounts for 17% of the human and 19% of the
mouse genomes. L1 also mobilizes non-autonomous
elements including short interspersed elements (SINEs)
and processed pseudogenes, making it responsible for at
least 30% of mammalian DNA (1). The structure and
function of the genome is impacted by L1 at multiple
levels, which range from insertional mutagenesis to
altering gene expression and promoting recombination
[reviewed in ref. (2)].

A majority of the 660 000 L1 elements in the mouse
genome are truncated and therefore cannot retrotrans-
pose, but approximately 3000 are estimated to be compe-
tent for retrotransposition (3). Active mouse L1 is
characterized by a series of monomer promoter motifs
followed by a 5-UTR, two open reading frames (ORF1
and ORF2), a 3-UTR, poly-A signal and an A-rich
region, all embedded within a short target site duplication.
Retrotransposition begins with transcription of one of the
active elements, followed by translation of the two
Ll-encoded proteins, ORFlp and ORF2p. Both LI
proteins are essential for retrotransposition (4), and both
are required in cis (5). The L1 RNA ultimately serves as a
template for target-primed reverse transcription [TPRT,
(6)] resulting in a new L1 insertion in the genome.

The role of ORF1p in L1 retrotransposition is incom-
pletely understood. The protein forms a stable trimer via
an N-terminal coiled-coil domain (7), followed by an
RRM domain (8) and a CTD [(9), Figure 1A]. Two bio-
chemical properties of ORF1p are known: RNA binding
and nucleic acid chaperone activity. ORF1p from mouse
L1 is a high-affinity, non-sequence-specific RNA binding
protein (10), which is likely critical for packaging the L1
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RNA during retrotransposition (11-14). The RNA
binding region of the protein is C-terminal of the coiled-
coil, encompassing the RRM and CTD domains, which
are both required for high-affinity RNA binding (8,15).
ORFlp is also a nucleic acid chaperone protein, a
property which is required for retrotransposition (16),
and may facilitate TPRT (17,18). Mutations exist in
ORFlp that do not disrupt the high-affinity interaction
of the protein with RNA but nevertheless abolish retro-
transposition (16,17,19), consistent with a critical role for
the nucleic acid chaperone activity of ORFlp in LI
replication.

Nucleic acid chaperones paradoxically promote both
annealing of complementary single stranded (ss) and melt-
ing of double-stranded (ds) nucleic acids. A consequence
of these two fundamental activities is rearrangement of
nucleic acid secondary structure, a property that is essen-
tial in a variety of biological processes including retroviral
replication (20,21), functional splicing of the T4 phage
thymidylate synthase gene (22) and proper folding of a
yeast tRNA anticodon (23).

Single-molecule stretching is a sensitive assay of nucleic
acid chaperone activity. When single dsSDNA molecules are
stretched, the applied force facilitates melting of the DNA.
When the DNA molecule is relaxed, DNA reannealing
occurs. By measuring DNA stretching and relaxation in
the presence of nucleic acid chaperone proteins, the extent
to which the proteins facilitate DNA melting and annealing,
important components of nucleic acid chaperone activity,
can be determined [reviewed in refs (24,25)].

Here, we investigate the effect of six amino acid substi-
tutions in ORFIp on L1 retrotransposition, expression,
protein stability, RNA binding, the cooperativity of
DNA melting and the kinetics of ORFIp-mediated an-
nealing and strand exchange. We present a novel analysis
of the latter data, and use it to quantify the balance
between these two opposing components of nucleic acid
chaperone activity by comparing wild-type (wt) to mutant
proteins. Taken together, these data demonstrate that L1
retrotransposition is exquisitely sensitive to changes in
the biophysical properties of ORF1p that determine its
nucleic acid chaperone activity.

MATERIALS AND METHODS
Autonomous retrotransposition assay

Mutations were introduced into L1 ORF1 by site-directed
mutagenesis and assayed for effects on retrotransposition
in 143 B cells using eGFP expression as a marker of
retrotransposition as described (5,16).

DNA, RNA and protein analysis

Whole-cell lysates (WCL) were prepared from L1 trans-
fected 143 B cells every 24 h post-transfection as described
(17). Protein was quantified (Bradford assay, Bio-Rad)
and ORF1p was detected by western blotting in 20 pug of
WCL as described (17). hnRNP-Q was detected on the
same blots using a mouse monoclonal hnRNP-Q
antibody (Abcam). Blot images were captured on a GE
Typhoon 9400. L1 RNA was quantified by quantitative

real time PCR using primers with a probe specific to the
ORF?2 region. Total RNA was isolated from WCL using
TRIzol-LS (Invitrogen) and quantified (Nanodrop,
Thermo Scientific). RNA (2ug) was treated with RQI1
DNase (Promega) and cDNA was synthesized from 1 pg
using a High-Capacity cDNA Reverse Transcription kit
(Applied Biosystems). Two microliter cDNA were used
for quantitative PCR using TagMan probe assay with
5Y-CTCAGAATGAAAGGCTGGAAAAC as the
forward primer, 5¥-AGGATGGCTACTCCTGCTTGTT
as the reverse primer and 5-FAM-CCAAGCAAATGG
TATGAAG-NFQMGB as the probe. A standard curve
was generated using 10-fold dilutions of Ll-containing
plasmid. 18S rRNA was quantified using the TaqMan
Gene Expression assay for 18S rRNA (Applied
Biosystems). The quantities of L1 and 18S rRNA in the
cDNAs were calculated from their respective standard
curves using the absolute standard curve method
(Applied Biosystems) and then L1 RNA values were
normalized to 18S rRNA values.

Recombinant ORF1p purification

ORFlp coding sequences with single residue mutations
were cloned into a modified pFastBac bacmid and used
for recombinant expression in SF9 cells as before (18),
according to the Bac-to-Bac baculovirus expression
system protocol (Invitrogen). We replaced the 6His to
ORF1 AUG sequence of pFastBac with the corresponding
sequence from pBluBac to facilitate ORF1p purification
as described previously (7), except that the ammonium
sulfate precipitation was 27% NH4(SO,), followed by
73% NH4(SOy),.

Circular dichroism and thermal melt

Circular dichroism (CD) and melt scans were performed
on a Jasco 815 spectropolarimeter with purified ORF1p
between 2.1 and 4.2 uM trimer concentration in 50 mM
phosphate, pH 7.6; 250 mM NaCl and 0.1 mM EDTA,
and data were collected as the observed ellipticity in
millidegree. Thermal stability was determined by
observing the differential absorption at 222 nm while the
temperature was raised at a rate of 2°C per minute, from
4 to 70°C. Data were normalized to the 4°C data point.

RNA filter binding

Assays were performed in 250 mM NaCl and analyzed as
described previously (10). Differences in Kpgp, of 2- to
3-fold were not significant because of experimental
variation (16).

Single-molecule DNA stretching

A dual beam optical tweezers instrument was used to
stretch 5’ biotin-end-labeled bacteriophage 1 DNA as
described elsewhere in detail (26-28). Briefly, the DNA
was captured on streptavidin-coated polystyrene beads
(Bangs Labs), then stretched and relaxed after rinsing
out other DNA molecules. All stretching experiments
were performed at a pulling rate of 100nm/s in 10 mM
HEPES; 50mM Na'; pH 7.5 buffer. Specific protein



solutions were exchanged with the buffer around the DNA
molecule to probe protein—-DNA interactions. To quantify
the effects of protein on the DNA stretching curves, the
transition width was determined from the transition slope
at its midpoint as described previously (29). Significant
differences among protein groups were assessed by one
way ANOVA followed by Tukey’s pairwise comparisons
using KaleidaGraph 4.03 (Synergy Software).

Annealing and displacement assays

For annealing, ORFlp and two complementary, 48-nt
DNA oligonucleotides, one end-labeled with P, were
incubated at equimolar concentrations in 30 pl reaction
buffer 20mM HEPES pH 7.6; 25mM NaCl; 1mM
EDTA pH 8.0; ImM MgCl,; | mM dithiothreitol and
0.1% Triton-X 100 w/v). Reactions with ORFIp were
incubated at 1, 15, 22 and 37°C; those without protein
were incubated at 15, 22, 37 and 42°C. Aliquots (3 ul)
were taken at the noted times, mixed with 3pul stop
buffer (40 mM HEPES pH 7.6; 0.4 mg/ml tRNA; 0.2%
sodium dodecyl sulfate w/v; 10mM EDTA pH 8.0; 3%
Ficoll-400 w/v; 0.25% bromophenol blue w/v and 0.25%
xylene cyanol w/v) and placed on ice. Samples were
fractionated through a 15%, 19:1 bis:acrylamide gel at
4°C in 0.5x TBE, the gel dried and exposed to a storage
phosphor screen. Images were collected on a Typhoon
9400 and bands containing ss and ds oligonucleotides
were quantified with ImageQuaNT 5.2 (GE).
KaleidaGraph was used for curve fitting and graphical
representation of data.

Full duplex exchange experiments to quantify melting
catalysis facilitating strand exchange were performed by
mixing 1 nM 38-bp dsDNA, 5’ end-labeled with **P on one
of the strands, with 10nM of the identical unlabeled ss
oligonucleotide competitor and 10nM ORFlp trimer in
reaction buffer. This strand exchange assay differs from a
strand-exchange assay used previously to study ORFl1p
because the large thermodynamic advantage that drove
the previous reactions [replacement of a short (18) or im-
perfectly matched (16) strand in a preformed duplex with
the perfect complement, provided at 50x molar excess]
has been removed. Reactions were incubated with
ORFlp at 22, 27, 32 and 37°C, or 37, 40, 42, 45, 47 and
50°C for reactions without protein, and then treated as
described for the annealing reactions.

RESULTS

Previous studies demonstrated that retrotransposition of
mouse L1 was reduced or abolished by the substitutions
D159H and R297K in ORFlp (16,17). These residues lie
in the coiled-coil and CTD, respectively, far apart in the
primary sequence of ORFlp (Figure 1A). To further
probe the functional requirements for ORFlp in L1
retrotransposition we substituted alanine for three
conserved residues in the RRM and CTD domains of
the protein in the context of an otherwise active L1:
R238A, R284A or Y318A (Figure 1B). All three of these
mutations rendered L1 inactive for retrotransposition in a
cultured cell assay. Replacing the alanine to make the
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Figure 1. Mutations to conserved ORFlp residues in the murine
ORF1p sequence perturb retrotransposition. (A) Schematic of ORF1p
with single amino acid substitutions studied here (bold) or shown pre-
viously to affect nucleic acid chaperone activity (16,17). (B) Average
percent (£SD, n = 3) eGFP-expressing cells 6 days after transfection
with antisense intron-containing eGFP reporter in wt or ORFlp
mutant L1.

variants R284K and Y3I8F nearly or completely
restored retrotransposition, respectively, but R238K
remained inactive (Figure 1B). Retrotransposition
detected by eGFP fluorescence using flow cytometry was
confirmed by PCR amplification of the spliced eGFP from
genomic DNA (data not shown).

Single residue mutations may decrease protein stability
(30,31). Mutations in ORFI1p would likely interfere with
L1 retrotransposition if the protein became unstable or
unable to interact with L1 RNA, which might in turn
cause instability of L1 RNA. Therefore the steady-state
levels of L1 RNA and ORF1p were measured daily from
cells transfected with wt and mutant L1 constructs. Based
on qRT-PCR, L1 RNA was not reduced below wt levels in
any of the inactive mutants. Moreover, differences in
abundance of L1 RNA did not distinguish among active
and inactive elements (Figure 2A). The highest
steady-state levels of ORFI1p detected in the lysates by
western blotting were consistently observed 2 days
post-transfection. Small fold changes of ORFl1p abun-
dance among mutants again failed to distinguish
between active and inactive ORF1p variants (Figure 2B).
These data indicate the defects in retrotransposition must
be due to something other than instability or loss of L1
RNA or ORFlp.

Mutant proteins were purified (Supplementary
Figure S1A) in order to study their biochemical
properties. The final purification step is size exclusion
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Figure 2. Effect of ORF1p mutations on steady-state levels of L1 RNA and ORFlp in cells transfected with retrotransposition assay vectors. (A) L1
RNA normalized to 18 S rRNA measured by qRT-PCR on Days 1-5 following transfection of 143 B cells, average (£SD, n = 3). (B) Western blots
of ORF1p. Top panel, triplicate wt extracts Days 1-4 post-transfection as indicated; ORF1p is not detectable on Days 5 and 6 (data not shown).
Right arrow points to ORF1p, left arrow to signal obtained from 2.5ng his-tagged recombinant ORF1p (rORFl1p); (—) untransfected control cell
extract. Middle panel shows hnRNP-Q detected on the same blot. Below are triplicate lanes containing protein extracts on Day 2 post-transfection

with the indicated ORF1 mutants.

chromatography. All of the mutant proteins eluted in the
same fraction as wt ORF1p, indicating that they share its
homotrimeric asymmetric dumbbell-shaped structure (7).

Mutant proteins were characterized by their differential
absorption of circularly-polarized light. All mutant and wt
ORFI1p produced absorption patterns consistent with a
generally helical molecule (data not shown). If local sec-
ondary structure were perturbed by some of these muta-
tions, it was insufficient to affect the overall absorption
characteristics of the molecule. Additionally, the effect of
increasing temperature on elliptical absorption at 222 nm
revealed that the proteins denatured between 38 and 46°C
(Supplementary Figure S1B). Although R238K and
Y318F were more temperature sensitive than wt ORFlp,
this property was not correlated with retrotransposition
competence.

A nitrocellulose filter binding assay was used to assess
whether any of the ORFI1p mutants were compromised
for RNA binding. As shown in Figure 3, the relative
affinities were: Y318F > Y318A > wt > R284K > R284A
>> R238K > R238A. Because of experimental variation,
however, only the two substitutions at R238 were signifi-
cantly different than wt, each exhibiting an ~10-fold re-
duction in their apparent affinity for RNA. It is likely that
the retrotransposition defects in R238A and R238K are
due to their reduced affinity for RNA (19), however,
altered RNA binding does not explain the loss of retro-
transposition in R284A or Y318A. The inability of these
two mutants to retrotranspose cannot be explained by the
loss of L1 RNA or ORF1 protein, a failure to trimerize,
gross perturbation of secondary structure, decreased
thermal stability or altered Kp,p, for RNA. Thus, some
other property of ORFlp must be affected by these
mutations.

Single-molecule stretching experiments were used to
assess the nucleic acid chaperone activities of the paired
mutants at R284 and Y318. Figure 4A shows a stretching
and relaxation cycle for bacteriophage ADNA in the
absence of protein and in the presence of wt ORFlp

fraction bound

107 10% 10°
ORF1p, M

Figure 3. Binding of ORFlp variants to RNA. Nitrocellulose filter
binding assay with 25-50 pM 111 nt RNA and increasing amounts of
wt and mutant ORF1p. Points are averages of (+SD, n = 3). Lines are
fits as described previously (10). Most Kpgp, values fell in the low
nanomolar range (5.7-28nM), with the exception of R238K and
R238A (130 and 230nM, respectively).

using optical tweezers. In the absence of protein, very
little force is required to stretch the DNA to its full
contour length. Near the contour length the force in-
creases dramatically, reflecting the elasticity of the
double helix. The approximately constant force plateau
of ~60 pN represents a cooperative transition from
dsDNA to ssDNA, or a force-induced melting transition
(26,27,32,33). In addition, the force-extension curve in the
absence of protein was almost completely reversible,
showing little hysteresis, i.e. disagreement between
stretching and relaxation. The amount of hysteresis is
characterized by the area between the stretching and
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indicated ORF1p variants; blue lines are used for retrotransposition active variants and red lines for retrotransposition inactive variants. (A) wt,
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14.7 £ 1.2. (D) Change in the transition width of DNA force-induced melting in the presence of wt and variant

ORF1 proteins, where we have also subtracted the value of the transition width in the absence of protein (AF = §F — §F), with §Fy = 3.66 £0.16
PN (29). Error bars are standard error for at least three measurements. Significant differences among the five ORFIp variants were found by
ANOVA (P <0.001); the active and inactive pairs at each site are different, Y318F # Y318A (P = 0.036), R284K # R284A (P = 0.017), but the active

R284K is not distinguishable from the inactive Y318A (P = 0.658).

relaxation curves. In the presence of wt ORF1p, the tran-
sition was altered significantly, as also shown in Figure
4A. The DNA force-induced melting plateau was sloped,
indicating that the transition cooperativity was signifi-
cantly reduced. A reduction in melting cooperativity indi-
cates that DNA melting can be more easily initiated
and smaller regions of DNA can be melted at once to
facilitate DNA rearrangements. This change in shape
of the transition was quantified by measuring the transi-
tion width, as described in Figure 4A. A greater transi-
tion width indicates a less cooperative transition.
Therefore, when the transition width is greater, DNA
will more easily undergo conformational rearrangements,

as expected for a nucleic acid chaperone protein (28,34).
The amount of hysteresis observed in the presence of wt
ORFlp is greater than that observed for the nucleic acid
chaperone HIV-1 NC (25), but significantly less than that
observed for the slower nucleic acid chaperone protein
HTLV-1 NC (35) and ssDNA binding proteins like T4
gene 32 protein (36). Thus, wt ORF1p exhibits moderately
rapid kinetics, intermediate between other nucleic acid
chaperones.

While Y318F was similar to wt ORF1p, Y318A had
markedly less effect on DNA stretching (average
AF =14.7, 17.8 and 6.9, respectively, Figure 4B and D),
consistent with the relative retrotransposition results for
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this mutant pair. Likewise, R284A, which was also defect-
ive for retrotransposition, had the least effect on DNA
stretching while R284K strongly altered the DNA
stretching curve (average AF = 2.1 and 9.7, respectively,
Figure 4C and D). Thus, as observed with other mutations
in ORFlp (16,17), inactivation of L1 retrotransposition in
Y318A and R284A was correlated with loss of nucleic acid
chaperone activity as measured by single-molecule
stretching. Similarly, mutations that restored retrotran-
sposition also restored chaperone activity measured by
DNA stretching.

Although the results from single-molecule DNA stretch-
ing for the paired mutations at each site correlated well
with retrotransposition, the single-molecule data were not
able to distinguish within error between two mutants that
clearly differed in retrotransposition, R284K and Y318F
(Figure 4D). This result may be partially explained by
the fact that R284K is less active than wt and Y318F
(Figure 1B); however, our understanding of the relation-
ship between the nucleic acid chaperone activity of
ORFlp and L1 retrotransposition activity was clearly
incomplete.

Two aspects of nucleic acid chaperone function (37), the
kinetics of DNA annealing and melting, were then
examined in detail. To accomplish this, we developed
assays to measure the magnitude of the energetic barriers
to annealing and melting of complementary DNA
oligonucleotides in the presence of ORFIp. First,
complementary DNA oligonucleotides were incubated
for 2.5min at 21°C in the presence of increasing concen-
trations of ORF1p trimer to determine the mid-point and
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saturating nt:ORF1p ratio for annealing under these con-
ditions. The annealing rate saturated when the concentra-
tion of protein to nucleic acid was ~9:1, and the half-
maximal point was 1.15nM (Supplementary Figure S2).
Thus, all further experiments were performed with
equimolar protein and oligonucleotides.

The effect of wt and mutant ORF1p on DNA annealing
was determined at varying temperatures. The reaction can
be expressed as:

Kannel

Si+S, = §;S.. (1)

Here S; and S, are the ssDNA strands that anneal to form
duplex S;S, with total rate k,,neq- The fraction of labeled
oligonucleotide incorporated into duplex was plotted
against time and these points were fitted to a capped,
inverse exponential decay (Figure 5A):

() = froo x (1 — ¢~ x?), o

where fr is the fraction of labeled oligonucleotide
incorporated into duplex as a function of time, fro, is
the equilibrium fraction of annealed oligonucleotide, ¢ is
the reaction time in seconds and k,,ncq1 1S the reaction rate
constant in s™'.

To find the temperature dependence of the reaction rate,
the natural logarithm of the resulting rate coefficient was
then plotted against the inverse temperature according to
transition state theory (Figure 5B):
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Figure 5. Temperature dependence of ORF1p-mediated annealing catalysis. (A) Phosphorimage of complementary oligonucleotides, one labeled with
2P, annealing in the presence (inset, top), or absence (inset, bottom), of wt ORF1p, respectively. The fraction of duplex DNA formed in the presence
of wt ORFIp was plotted against time for each temperature and fit to an inverse exponential decay, Equation (2). (B) Natural logarithms for
the reaction rates were plotted against the inverse temperature, and points were fitted to a line for presence (circles) and absence (squares) of wt

ORFlp.



where R is the ideal gas constant, 8.31 J mol™' K™, Tis
the reaction temperature in Kelvin, kg is Boltzmann’s
constant, / is Planck’s constant, AS, is the entropic con-
tribution to the activation energy for annealing in J mol ™'
K~ !, and AH, is the enthalpic contribution to the activa-
tion energy for annealing in J mol™'. A line was fitted to
these points, allowing us to determine the enthalpic and
entropic activation energies for this process. Strand
exchange assays were used to determine the energetic
barrier to melting and subsequent strand exchange in
order to probe the other fundamental property of nucleic
acid chaperones. A complementary DNA duplex, one
strand labeled with *?P, was incubated with a 10-fold
excess of competing, unlabeled oligonucleotide and equi-
molar ORF1p, again varying only temperature. The excess
of unlabeled complementary oligonucleotide assured that
the displaced **P -labeled strand remained displaced for
quantification. The time dependence of the reaction could
only be fit to two exponentials, and was therefore biphasic:

k ks
S1+S5S3 :1(315233)* = 51S3+8,. 4

here S, is the unlabeled ssDNA strand and S,Ss is the du-
plex that contains the labeled ssDNA strand as well as one
unlabeled strand. The intermediate complex (S;S,S3)* will
be formed when an unlabeled strand encounters a partially
melted duplex. This represents the first step in the reaction,
which occurs with the faster rate k;. When the final duplex
S1S5 is formed, S, must be dissociated with rate k,. Based
on this model, the data points were fit to a two-factor
exponential decay (Figure 6A):

fI'([) - froo+(1 — froo)(P X (e_kIX[)+(1 _ P) x (e—kzxt)),
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where P is the fractional contribution to the overall rate
from the first rate, k; and k, are the first and second rates,
respectively, and the remaining factors are the same as
Equation (2).

Based on previous observations of a biphasic reaction
for DNA and RNA hairpin annealing (21,37), the fast rate
was assumed to be the primary DNA melting step
required for initial annealing of the complex. This hypoth-
esis is also supported by the observation that the fast rate
is similar to that observed for other reported chaperone-
mediated DNA-duplex melting reactions (21), whereas the
rate constant of the slow phase was two to three orders
of magnitude slower than that observed for other nucleic
acid chaperones. We will show later that the analysis of
the fast rates correlate with mutations in ORF1p, further
supporting our assumption that the fast rate involves
DNA melting needed to initiate strand transfer, a
process facilitated by nucleic acid chaperones. In
contrast, the slow rates did not depend significantly on
the presence of ORFl1p. The temperature dependence of
the fast rate was plotted and fit to the transition state
model as before (Figure 6B).

The enthalpic and entropic contributions to the activa-
tion energy for product formation were quantified from
Equation (3) (Table 1) for both annealing and exchange
and these terms were combined into a total free energy of
activation according to:

SAG, = SAH, — TSAS,, (6)

where §4H, is the difference in enthalpic contributions
between a particular mutant and the no protein condition,
84S, is the difference between entropic contributions

(5) between a mutant and no protein, 7 is the temperature
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Figure 6. Temperature dependence of ORFIp-mediated strand displacement catalysis. (A) Phosphorimages of a 3P labeled oligonucleotide melting
from duplex in the presence of wt ORF1p (top inset) or without protein (bottom inset) at 37°C for the indicated times. Graph plots duplex melted at
the four temperatures indicated in the presence of wt ORF1p, lines show fit to a two-factor exponential decay, Equation (5). (B) Plot of temperature
dependence of overall reaction rate. The natural logarithm of the found overall rate plotted against the inverse temperature, with fitted line for

presence (circles) and absence (squares) of wt ORF1p.
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Table 1. Slopes and y-intercepts of lines fitted to points plotted according to transition state theory

ORFlp Annealing (K+In s7') Annealing 1/7=0 Exchange (K+In s™!) Exchange 1/T=0
Wt —4060 + 340 (200) 8+1(1) —16800 £ 900 (500) 48 £3 (2)
R284A —3070 + 740 (430) S5+2(1) —20300 + 2200 (1300) 60 =7 (4)
R284K —3670 £+ 210 (120) 7+1(1) —17800 + 3000 (1700) 52 + 10 (6)
Y318A —3180 & 500 (290) 6+£2(1) —8200 £ 3900 (2300) 20 £ 13 (7)
Y318F —3540 + 300 (170) 7+1(1) —14800 + 3700 (1800) 42 £+ 12 (6)

No protein —5970 + 350 (200) 11+1(1) —42700 + 4100 (2900) 125+ 13 (9)

Slopes of lines fitted to points as graphed from Equation (3) express the temperature dependence of the reaction rate; more negative values denote a
more temperature-dependent reaction and thus a higher enthalpic barrier to product formation. Intercepts are used according to Equation (3) to
determine the relative magnitude of entropic contributions to energetic barriers. Values are expressed as =+ standard deviation and (standard error).
The points comprising these lines were derived for each mutant from experimental data collected as in Figures 5 and 6.

in K (here set to 310, or 37°C), and 4G, is the total
difference in the free energy of activation to product
formation in the presence of ORFlp.

All mutant and wt ORF1 proteins catalyzed both an-
nealing and strand displacement, although to differing
magnitudes. The activation energy for annealing was
reduced by 400-900 J mol~'bp~! compared to reactions
without protein, and the energetic barrier to strand dis-
placement was reduced by 9-15kJ mol~' bp~'.

The change in free energy of melting was plotted as a
function of that of annealing (Figure 7). This plot revealed
an optimum magnitude for ORF1p-mediated annealing
and strand-displacement catalytic activities in the
retrotransposition-competent elements. All of the tested
ORFlp variants exhibited an enhanced reduction in the
energetic barrier to annealing, i.e. improved catalysis of
annealing, compared to wt independent of retrotran-
sposition activity. However, the retrotransposition-active
mutants have both very similar reductions in the barrier to
melting and annealing. In contrast, R284A shows strongly
enhanced annealing and reduced melting. This strongly
enhanced annealing is unable to overcome the reduction
in the protein’s ability to melt nucleic acids, which is
clearly required for chaperone activity. Perhaps most
interesting is the result for Y318A, which shows strongly
enhanced melting and annealing, yet does not facilitate
retrotransposition. This demonstrates that optimum
melting and annealing is necessary for retrotransposition.
This optimum melting and annealing is restored by sub-
stituting to form Y318F, which shows melting and anneal-
ing kinetics in these studies that are similar to wt.

DISCUSSION

ORFl1p from mouse L1 is a robust nucleic acid chaperone
protein that is required for retrotransposition. Previously,
substitutions that compromise L1 retrotransposition were
mapped to single amino acids in either the coiled-coil (17)
or the CTD (16) domains (D159H and R297K in Figure 1A,
respectively). Both of these substitutions affected nucleic
acid chaperone activity and not RNA binding affinity.
Here, an additional three highly conserved amino acids,
two (R238, R284) in the recently described RRM domain
(8) and the third, Y318, in the CTD (9), were replaced with
alanine, and also found to inactivate L1 retrotran-
sposition. Two of these three new alanine mutations were
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Figure 7. Retrotransposition requires a precise ratio between the re-
ductions in the energetic barriers to strand displacement and annealing.
Average energetic reductions for displacement and annealing (values
from Table 1, multiplied by —R (gas constant) and normalized to oligo-
nucleotide length); ovals represent standard deviations (thin arcs) and
standard errors (thick arcs) in the x and y dimensions. The three
retrotransposition-competent ORFlp variants (bold, circles) group
closely together, with a generally observed upward trend given by the
regression line, slope = 2.57, R = 0.29, distinguishing them from the
inactivating mutants (squares) by at least one standard error.

rescued by substitution of the appropriate amino acid to
restore the basic (R284K) or hydrophobic (Y318F) char-
acter of the original arginine or tyrosine, whereas the third
(R238K) was not (Figure 1). Retrotransposition deficits
were independent of changes observed in steady-state
levels of L1 RNA or ORFlp, or aberrant ORF1p struc-
ture (Figure 2 and Supplementary Figure S1B). Both
RNA binding and nucleic acid chaperone activities of
ORFlp appear to be critical for L1 retrotransposition
because R238A and R238K compromised high-affinity
RNA binding (Figure 3), and R284A and Y3I8A
compromised nucleic acid chaperone activity based on
reduced cooperativity of DNA melting (Figure 4), and
poorly optimized annealing and strand displacement ca-
talysis (Figure 7).



Residues R238 and R284 lie in the RRM domain; the
structure of the corresponding fragment from human L1
ORFl1p has been solved by X-ray crystallography, reveal-
ing that R202 (homologous to R238 in mouse L1) forms a
salt bridge together with E169. Disruption of the salt
bridge is expected to destabilize ORFI1p (8). In the case
of mouse L1, this salt bridge does not appear to be im-
portant for ORFI1p stability because eliminating it with
R238A did not alter the thermal melting behavior
compared to wt (Supplementary Figure S1B) or reduce
its abundance in cells (Figure 2B). Moreover, the salt
bridge partner of R202, E169 (D204 in mouse), is
rotated to the outside of ORF1p in the modeled structure
(Supplementary Figure S3); thus it is unlikely that a salt
bridge can form between these two residues in the mouse
protein. Interestingly, R238K fails to restore the RNA
affinity of ORFI1p. Taken together, the available data
indicate that R238 is important for interactions between
ORFlp and nucleic acids, although the interactions
involve more than simple electrostatics.

The second residue of the RRM domain studied here,
R284, has not been examined previously. Based upon the
crystal structure of the human homolog, R284 is on the
surface of the RRM domain in the vicinity of several other
arginine residues that form electrostatic interactions with
RNA (8). The interpretation that this residue is important
for electrostatic interactions is supported by the observed
inactivation of retrotransposition by R284A and restor-
ation of activity by R284K. We were unable to measure
a significant reduction in RNA affinity in R284A,
although a reproducible trend in this direction was
observed. The nucleic acid chaperone activity of R284A
is, however, significantly altered by an imbalance of an-
nealing and displacement activities because of a markedly
decreased ability to catalyze the displacement reaction. In
contrast, R284K restores the wt balance between anneal-
ing and strand displacement, suggesting that the electro-
static interaction between R284 and nucleic acids is
important for the melting component of the nucleic acid
chaperone activity.

The final residue examined, Y318 in the CTD, is
conserved in placental mammals, marsupials and frogs.
The homologous site, however, is substituted with phenyl-
alanine in swimmer, a LINE element in Japanese medaka
(8), consistent with the observed retrotransposition with
Y318F here. Y318F also restored the balance between the
melting and annealing activities of ORF1p that was lost in
Y318A. Because annealing catalysis was not significantly
different between the alanine and phenylalanine variants
at residue 318, the biochemical problem with Y318A
appears to be its excessive basepair melting catalysis.
This residue is likely involved in hydrophobic or steric
interactions because the terminal hydroxyl group on
tyrosine is dispensable.

Based upon the results of earlier studies of wt and
mutant ORF1 proteins, we proposed that at least some
of the interactions involved in high-affinity binding of
ORFl1p to RNA are distinct from those involved in the
nucleic acid chaperone activity (16,17), i.e. that these re-
actions involve distinct sites on the protein. The present
results provide further support for this hypothesis. If the
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melting activity in the strand displacement assay is func-
tionally equivalent to the RNA binding affinity, then the
paired variants at residues 284 and 318 should have been
indistinguishable in the strand displacement assay as they
were in the RNA binding assay, but they were not.

A 3D structure of the intact trimer with nucleic acids
will be necessary to fully understand the relationship
between the structure of ORFl1p and its RNA binding
and nucleic acid chaperone activities. Nevertheless, it
seems unlikely that all of the residues that affect the chap-
erone activity of ORFI1p are closely juxtaposed in the
tertiary structure of the protein, because they are so
widely distributed along its primary structure. Instead
we predict that residues responsible for chaperone
activity are distributed in the folded structure as well as
the primary sequence of this protein.

When taken together and compared with retrotran-
sposition experiments, the in vitro single molecule and
solution experiments demonstrate the importance of the
finely balanced nucleic acid chaperone capabilities of
ORFlp for biological activity. They also show that the
nucleic acid chaperone activity of ORFI1p requires
optimal interactions with ssDNA and dsDNA that result
in a reduction in melting cooperativity, as well as an
optimal enhancement of strand annealing and strand dis-
placement capabilities. This enhancement of annealing
and displacement is likely a result of the combination of
the ability of ORF1p to facilitate strand attraction as well
as nucleic acid unwinding. Specific single amino acid sub-
stitutions in ORF1p inhibit this chaperone activity by
interfering with at least one of these capabilities, as
demonstrated by the properties of the mutations at R284
and Y318. A mutation that strongly enhanced both
melting and annealing (Y318A) inhibited retrotran-
sposition, but a compensatory mutation that reduced the
melting and annealing capabilities of ORF1p and restored
these properties to wt levels also restored retrotran-
sposition. Similarly, a mutation that enhanced annealing
but significantly reduced the ability of ORF1p to facilitate
melting also inhibited retrotransposition. A compensatory
mutation that restored the kinetics to wt values also
restored retrotransposition activity (Figure 7).

Other groups have published kinetic data on DNA or
RNA annealing (21,35,37-39), DNA melting as an inter-
mediate step to annealing (21), steady-state duplex desta-
bilization, and chaperone effects on force-induced DNA
melting (29,40,41). Although it has been suggested that the
melting and annealing activities of nucleic acid chaperones
are in a tightly constrained balance (42) this is, to our
knowledge, the first work to quantitatively determine an
optimum kinetics of strand displacement and annealing
that can be destroyed and restored with specific point
mutations.

Finally, it is noteworthy that all of the ORFIp muta-
tions that retained wt RNA affinity were nevertheless
nucleic acid chaperone proteins—all ORFl1p variants
tested accelerated both base pair annealing and melting,
and presumably allow for the rearrangement of secondary
structure as a consequence, regardless of their retrotran-
sposition competence. The property that discriminates
between biologically active and inactive variants of
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ORF1p, however, is the balanced ratio of the energetic
barriers to annealing and melting. This finding implies
that L1 retrotransposition depends upon an ORF1p that
provides the two optimized energetic reductions in specific
kinetic properties, consistent with observations that dis-
persed mutations in ORFlp could disrupt this finely
tuned balance and inactivate retrotransposition. These
quantities must have a basis in the specific nucleic acid
rearrangements that are required for L1 retrotran-
sposition. It may be a general feature of nucleic acid chap-
erone proteins to maintain specifically tuned energetic
reductions to annealing and melting that satisfy their bio-
logical function, as determined here for L1 ORFlp.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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