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Purpose of review

The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much
higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine
the complexities of cancer development and pathophysiology. Each genetic defect may impose a different
pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer.

Recent findings

Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity,
senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more
than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects
perturb tumor immune surveillance in patients.

Summary

This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI
patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
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INTRODUCTION

Inborn errors of immunity (IEI, previously labeled as
primary immunodeficiency) are a group of diseases
constituted approximately 500 known monogenic
defects. One-third of identified genes have a direct
role in tumorigenesis and the development of differ-
ent types of cancer hallmarks.

Hallmarks of cancer were proposed with the
rationale of better understandinghumancancer etio-
logicalmultistepprocesses.Thesehallmarkshavealso
been further developed based on the cornerstone
mechanisms discovered in different human malig-
nancies. Currently, the last update of thesehallmarks
of cancer contains 14 major entities. There were 10
hallmarks proposed until 2011, which are 8 hallmark
capabilities: sustaining proliferative signaling,
evading growth suppressors, activating invasion
and metastasis, enabling replicative immortality,
inducing angiogenesis, resisting cell death [1], and
2 enabling characteristics: reprogramming cellular
metabolism and avoiding immune destruction.
Lately, additional two emerging hallmarks ‘Unlock-
ing phenotypic plasticity’ and ‘Senescent cells’
and two enabling characteristics ‘Nonmutational
epigenetic reprogramming’ and ‘Polymorphicmicro-
biomes’ have been proposed (Fig. 1) [2

&&

].
Previously, we mapped functional capabilities
among 450 IEI germlinemutations in 10 cancer-hall-
marks to the distinguishable steps of malignancy
pathogenesis [3

&&

]. In this review, the integrative
concept of new dimensions of four oncologic hall-
marks associated with IEI is presented. Moreover,
55 novel genes with enigmatic pathogenic roles in
different immune cell subsets have been discovered
recently and updated in the International Union of
immunological (IUIS) classification [4

&&

]. Therefore,
we introduce and link these new genes with all the
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KEY POINTS

� Among four new emerging cancer hallmarks patients
with monogenic inborn errors of immunity are more
predisposed to nonmutational epigenetic
reprogramming and polymorphic microbiomes.

� Epigenetic alteration is the most diverse and
complicated cancer hallmark, which can be because of
varied mutations affecting DNA methylation, histone
modification, telomerase regulation, and transcription
factor accessibility.

� Novel genes in inborn errors of immunity (updated
since January 2020) found in malignant patients
expands four main cancer hallmarks; mainly in
avoiding immune destruction and tumor-promoting
inflammation are predisposing patients to
lymphoproliferation and lymphoma.

FIGURE 1. Updates on recently discovered monogenic defects
monogenic inborn errors of immunity according to the Internation
Table1: immunodeficiencies affecting cellular and humoral immun
associated or syndromic features; IUIS --Table 3: predominant ant
dysregulation; IUIS -- Table 6: defects in intrinsic and innate immu
--Table 9: bone marrow failure. IUIS, International Union of Immun
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previous and new hallmarks of cancer in the follow-
ing section.
UNLOCKING PHENOTYPIC PLASTICITY
One of the main emerging hallmarks of cancer is
unlocking phenotypic plasticity. Cellular differentia-
tion is considered as a clear blockade for neoplasia.
The majority of neoplastic cells escape the terminal
differentiation through three main mechanisms
including blocked differentiation, de-differentiation
or trans-differentiation.
Blocked differentiation
Ofnote,manyknownIEIgeneshavea significant role
in both adaptive and innate immune cell differentia-
tion. Well described genes have been reported to be
associatedwith terminal lymphocyte differentiation,
including regulators of phosphoinositide 3-kinases
and newly described cancer hallmarks in different types of
al Union of Immunological Societies classification. IUIS --
ity; IUIS -- Table 2: combined immunodeficiencies with
ibody deficiencies; IUIS --Table 4: diseases of immune
nity; IUIS -- Table 7: autoinflammatory disorders; IUIS
ological Societies.
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Primary immune deficiency disease
(PI3Ks) pathway (PIK3CD and PIK3R1 required for
CD4þ T-cell differentiation through AKT andmTOR
pathway [5] and B-cell differentiation via FOXO acti-
vation [6–8]), the regulator of nuclear factor kappa B
(NF-kB) pathway (NFKB1 andNFKB2 are required for
plasmablast cell differentiation through the NF-kB
signaling pathway [9,10]), MCM4 and MCM10
(required for natural killer (NK) cell differentiation)
[11–13].Moreover, X-linked IPEX syndrome (FOXP3
deficiency) and CD25 deficiency (IL2RA) affect T-cell
differentiation into regulatory T cells and then result
in lymphoproliferation and, subsequently, lym-
phoma [14,15]. Therefore, monogenic mutations in
thegenes,whichcanblock thedifferentiationbutnot
proliferation might be a tumor-predisposing factor
because cancer cells enable to escape cell terminal
development and resume proliferative expansion
[16].
De-differentiation and trans-differentiation

Microphthalmia-associated transcription factor
(MITF) acts as a master of melanocyte differentiation
[17], and it has been clearly shown that low MITF
levels are related tomalignancy [18].Malignancies in
patients with PTEN deficiency might also be associ-
ated with MITF degradation and destabilization
through deregulating humoral immune response
via increasing the PI3K/AKT activity [19–21]. Trans-
differentiation (or metaplasia) can also be identified
inmanyIEImonogenicdefectsasapredisposingstage
to the development of neoplasia, mainly in nonhe-
matologic cancers [22]. IEI patients with chronic
tissue damage and the subsequent unregulated
inflammatory response can often lead to the forma-
tion of fibrotic tissue that prevents effective regener-
ationmainly in the lung (e.g. interstitial lung disease
in common variable immunodeficiency) and liver
(Tricho-Hepato-Enteric syndrome in TTC37 and
SKIV2L deficiencies). The proposed pathology for
this phenomenon linked the oxidative stress and
cytokines released from innate immune cells induc-
ing transdifferentiation of fibrogenicmyofibroblasts,
thereby contributing to fibrosis in the periportal
parenchyma [23]. Other changes in unlocking phe-
notypic plasticity and differentiation can also induce
IEI patients to develop malignancy via modification
of epigenetic alteration of hematopoietic stem cells,
which are separated in a distinct cancer hallmark.
NONMUTATIONAL EPIGENETIC
REPROGRAMMING

The aberration of epigenetic regulation (DNAmeth-
ylation, chromatin remodeling and histone modi-
fications) on tumorigenesis is crucial and now is well
described with hallmark abilities [24,25]. Fine-
354 www.co-allergy.com
tuning of epigenetic processes in the immune sys-
tem is required for punctual gene transcription dur-
ing differentiation of the hematopoietic stem cell
(HSC) and lymphoid and myeloid lineage commit-
ment. Genetic defects in some IEI genes potentially
can affect the DNA methylation signatures and
histone modification patterns and contribute to
the pathogenesis of clinical manifestations, includ-
ing malignancy phenotype [26]. Moreover, this
mechanism has been proposed as the main cause
of some unknown IEI disorders without monogenic
mutation but with high susceptibility to cancers
including common variable immunodeficiency or
IgA deficiency [27–29]. For instance, alteration in
DNA methylation associated with some transcrip-
tion factors (namely PAX5, E2F and EBF1) have been
shown to lead to the blockade of the early stages of
B-cell development (from pro-B to pre-B cells) in
selected patients with common variable immuno-
deficiency [30,31]. Moreover, studies on the DNA
methylome of these patients highlighted the gross
demethylation during the late stage of B-cell devel-
opment mainly in the memory B-cell stage [32].

Some other IEI genetic defects are because of
well known mutations in epigenetic factors includ-
ing DNAmethyltransferase 3 beta (DNMT3B) and its
associated molecules ZBTB24, CDCA7 and HELLS
[33]. These defects are classified as immunodefi-
ciency with centromeric instability and facial
anomalies (ICF) syndrome. Genomic instability of
pericentromeric and telomeric regions, and more
generalized whole-genome hypomethylation have
been observed. Although they are extremely rare
syndromes with few patients followed until adult-
hood, cancers and mainly lymphoma because of
abnormal early maturation of lymphocytes have
been reported in some ICF patients [34]. The other
two main IEI genes, which are controlling lympho-
cyte development and lineage commitment are acti-
vation-induced cytidine deaminase (AID) and Tet
methylcytosine dioxygenase 2 (TET2). AID is not
only responsible for converting cytosines in DNA to
uracil during class-switch recombination and
somatic hypermutation, but is also implicated in
the demethylation of 5-methylcytosines (5mC) to
thymine, particularly during early embryogenesis
[35]. Similarly, TET2 in HSCs can oxidize 5mC to
5-hydroxymethylcytosine (5hmC) essential for the
development of B and T cells [36]. Defects in both
genes also have been reported to predispose IEI
patients to hematological neoplasia [3

&&

].
Another level of epigenetic control at the DNA

level, which has been connected to IEI genetic
defects occurs at telomeric sequences. It is well
known that the double-stranded repeat structure
of telomeres protects genome stability together with
Volume 22 � Number 6 � December 2022
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heterochromatin domains of subtelomeric regions
during rapid-cell replications as one of the main
characteristics of highly proliferative immune cells.
Recombination between telomeric sequences or
activity of telomerase as reverse transcriptase pro-
tects telomeric repeats [37]. Some IEI monogenic
defects can lead to telomere decreasing to a critically
short length and result in epigenetic defects at sub-
telomeres mainly at histone and DNA modifica-
tions. These patients (with mutations in DKC1,
TERC, TERT, NOP10, NHP2 and TINF2 genes) are
known as dyskeratosis congenita or Hoyeraal Hrei-
darson syndrome with the main feature of bone
marrow failure and hematopoietic malignancies.
All these proteins function within the ribonucleo-
protein complex of telomerase including the cata-
lytic subunit (TERT), its RNA component (TERC),
and the fourmajor associated dyskerin proteins [38].

More recently, proteins that control the process
of histone modifications have been identified as
the main cause of syndromic IEI known as Kabuki
syndrome. The main two proteins associated with
this syndrome are histone KMT2Dmethyltransferase
(onH3K4position) andhistonedemethylaseKDM6A
(on H3K27 position) whose expression regulates
embryogenesis, particularly the development of lym-
phocytes [39,40]. On the other hand, the predomi-
nant gene deletion associated with IEI in DiGeorge
syndrome (22q11.2microdeletion) is TBX1 (T-box1),
which is also a methyltransferase (on H3K4 position
similar to KMT2D), and can lead to multiorgan
defects and immunodeficiency mainly because of
absenceof thymusandthymicdevelopmentofTcells
[41]. Both patients with Kabuki syndrome and
Digeorge syndrome were reported to suffer from
malignancies mainly lymphoma [3

&&

].
Moreover, several transcription factors (TFs) that

control the harmonic expression profile after specific
immune activation or synapses perform epigenetic
regulation on the promotors of targeted genes via
their motif. Mutation in these transcription factors
can be detected in certain types of IEIs [4

&&

]. These
monogenetic defects will influence the epigenetic
process, such as chromatin accessibility [42–44]
and posttranscriptional modification [45,46]. One
of the main TFs is IKAROS, encoded by the IKZF1
gene, which is considered a critical factor for early
B-cell development through the energy–stress sensor
AMPK pathway [47]. Mutations of IKZF1 are associ-
atedwithdefectivedevelopmentof T cells, B cells and
NK cells [48,49]. IKZF1 monogenic mutations are
considered the main predisposing reason for B-cell
acute lymphoblastic leukemia (B-ALL) transforma-
tion in these patients [50] and are classified as
‘sustaining proliferative signaling’ hallmarks [3

&&

].
As one of the proteins in the IKZF family, AIOLOS,
1528-4050 Copyright © 2022 The Author(s). Published by Wolters Kluwe
which is encoded by IKZF3, the AIOLOS-G159R var-
iant can cause defective IKAROS binding site
activity by forming IKAROS-AIOLOS-G159R hetero-
dimers, which are considered to cause heterodimeric
transcription interference [51]. With higher suscept-
ibility to Epstein–Barr virus (EBV) infection, patients
with AIOLOS-G159R autosomal dominant variant
developed B-cell lymphoma.
SENESCENT CELLS

Cellular senescence leads to ‘senescence-associated
secretory phenotype (SASP)’, including over-produc-
tionofchemokines,cytokines,chronic inflammation
and processes alteration of nonsenescent neighbor-
ing cells, which has been verified to promote tumor
development and malignant progression [52–55].
SASP is typically associated with the DNA damage
response (DDR). PersistentDDRcanpromote SASP by
increasing cytosolic chromatin fragments (CCFs)
[56]. Thus, monogenic diseases of DNA repair may
affect the induction of senescence markers [57]. For
example,ATMmutation isassociatedwithmitochon-
drial dysfunction-induced SASP by triggering the
STING-dependent pathway [58]. NBS1 mutation
modulates SASP in stress-induced signaling activa-
tion of the P38/MK2 pathway [59]. Similarly, HSCs
from IEI patients with telomeric dysfunction asmen-
tionedabovewithdyskeratosis congenitaorHoyeraal
Hreidarson syndromes can show high DNA damage
levels and become senescent [60].

Apart from the DNA repair syndrome, SASP is a
verycommonphenomenoninthediseaseof immune
dysregulation due to uncontrolled chronic inflam-
matory reactions. These continued activations and
inflammation lead to reduced expression of co-stim-
ulatory CD28 orCD27molecule onCD45RAþCD4þ
T cells and present a reduced antigen-dependent
proliferation but increased inflammatory cytokine
production. On the other hand, CD8þ T cells switch
fromthe typicalT-cell receptor (TCR)-mediatedactiv-
ity to an NK-like activity by expressing protein com-
plexes typical of NK cells [61,62]. A typical known
mutation associated with premature immunosenes-
cence and accelerated inflammation is Tripeptidyl
peptidase II (TPP2) deficiency. Thehomeostatic func-
tion of TPP2 is downstream of proteasomes in cyto-
solic proteolysis and contributes to antiapoptotic
phenotype, particularly in CD8þ T cells. Although
the majority of TPP2 cases are pediatric patients,
lymphoproliferative diseases are one of the main
manifestations of the disease [63,64].
POLYMORPHIC MICROBIOMES

Microbiomes, including commensal bacteria and
fungi, are recently expansively identified for their
r Health, Inc. www.co-allergy.com 355
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diverse impacts on the mucosal area of the gastro-
intestinal tract and respiratory system, and are con-
sidered to have an association with cancer
phenotypes [2

&&

]. Over 50% of IEI patients present
with gastrointestinal diseases, among which, CVID
is associated with higher susceptibility to diverse
complications, including chronic diarrhea, nodular
lymphoid hyperplasia, liver and biliary tract diseases
[65] and 10-fold increase in risk of gastrointestinal
cancer compared with immunocompetent individ-
uals [66]. NFkB1 expression is necessary for epithe-
lial cells to regulate the bacterial barrier [67].
Virulence factors produced by Helicobacter pylori
have been proposed as one of the driving reasons
leading to gastric cancer through aberrant Janus
kinase (JAK)-signal transducer and activator of tran-
scription (STAT) signaling and inflammatory medi-
ators by loss of NF-kB1[68]. Therefore, monogenic
diseases will influence the susceptibility to develop
malignancy, such as NFKB1 and NFKB2 deficiencies
[66,69–71].Microbiomesmaintain homeostasis and
avoidmicrobial translocation in the gastrointestinal
system through the production of antimicrobial
peptides (AMP) by a downstreamMyD88-dependent
pathway [72,73]. Of note, IEI genetic defects related
to the MyD88 pathway (such as TLR3, TLR7, TLR8,
IRAK4 and IKBA) may increase microbial transloca-
tion by dysregulating the immune system [74,75].

Microbiome-related metabolites influence the
innate immunity of homeostatic interaction in
the gastrointestinal system [76–79]. IEI monogen-
etic diseases have effects on the cellular pathways
among innate cells in the gastrointestinal system,
including monocytes, macrophages, innate lym-
phoid cells, gdT cells, and mucosal-associated invar-
iant T (MAIT) cells and NK cells. Interferon-gamma
(IFN-g) is critical for gastrointestinal innate immun-
ity against intracellular bacterial infections and
drives immunostimulatory impact. In the micro-
biome of mucosal area, macrophages are stimulated
and produce IL-1 and IL-23. gdT cells are activated by
the IL-2 and IL-23, then produce IL-17 for further
adaptive immunity [80]. MAIT cells particularly
respond to a wide range of microorganisms and pro-
duce IL-17 and IFN-g toperform immune stimulation
[81]. Of note, IFN-g receptor 1 (IFNGR1) deficiency
andIFN-g receptor2(IFNGR2)deficiencyare linkedto
EBV-associated lymphoma and intestinal pseudotu-
berculosis by impairing the downstream immune
cells binding and stimulating by IFN-g [65].

Adaptive immunity against the mucosal micro-
biome can be affected by the mutations associated
with Th17 cells, FOXP3þ regulatory T cells, B cells,
CD4þTcells,CD8þTcells, andfollicularhelperT(Tfh)
cells. Therefore, the monogenic diseases that affect V
(D)J recombination and class-switch recombination
356 www.co-allergy.com
and reduce thediversityof the secretory IgA repertoire
(eg. RAG1, RAG2, ATM, BLM andMSH6 deficiencies)
and thuspredispose towardsmicrobiotadysbiosis and
gastrointestinal tumorigenesis [65,79,82] Moreover,
the function of controlling intestinal inflammation
by IL-10 (IL10, IL10RA and IL10RB deficiencies) is of
importance for promoting gut homeostasis [83–85].
Moreover, hypomorphic defects of cellular immunity
by dysfunction of T cells can present long-term
chronic diarrhea and gastrointestinal cancer develop-
ment consequently due to dysbiosis.
NOVEL INBORN ERRORS OF IMMUNITY
GENES ASSOCIATED WITH HALLMARKS
OF CANCER

We reported that more than one-third of IEI mono-
genic defects have been linked with cancer hallmarks
according to the IUIS classification of 2020 [3

&&

,86].
Among 55 novel IEI genes discovered during the last
2 years [4

&&

], although the number of patients is still
very limited for each disease to guarantee the associ-
ation or dissociation from malignancy, we have
reportedhere15genesinwhichcancerisacomponent
of themain clinical phenotype observed among these
rare case reports and tried to classify themmechanis-
ticallybasedon theknowncancerhallmarks (Table1).
Avoiding immune destruction

Patients with DIAPH1 deficiency are predisposed to
EBV infection, whichmay progress to the subsequent
development of diffuse large B-cell lymphoma
(DLBCL). Mutations in genes that coordinate CD8þ

T-cell activation increase the susceptibility to herpes
virus family infections. Also, DIAPH1 has been sug-
gestedas anecessary genetic factor ofT-cell activation
and formation, which probably modulates T-cell
cytoskeletal regulation [87,88]. TET2 coordinates B-
cell transition activity to germinal centers via DNA
methylation by oxidizing 5mC and epigenetic con-
trolsasmentioned intheabovesection[89].However,
loss of functionof TET2 is associatedwithdefective B-
cell class-switch recombination and autoimmune
lymphoproliferation, which is considered as the pre-
disposition to B-lymphoma because of these abnor-
malities in the functionof immunecells [90]. SYK (the
spleen tyrosine kinase) plays a critical and complex
role in several immune cellular processes. Classical
immunoreceptors (BCRs, TCRs and FcRs) need SYK to
regulatedownstreamthroughITAMs-based (cytosolic
immunoreceptor tyrosine-based activation motifs)
signaling pathway, SYK is also involved in B-cell
development, innate pathogen recognition and
inflammasome activation [91]. SYK deficiency
increases the risk of developing DLBCLs [92].
Volume 22 � Number 6 � December 2022
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Primary immune deficiency disease
SLY, encoded by sterile alpha motif (SAM) and Src
homology-3 (SH3) domain-containing 3 (SASH3), is
a scaffolding protein with critical function in T-cell
proliferation, TCR signaling activation and T-cell
survival [93]. Patients with genetic defects in SASH3
present with immune dysfunction alongside tumor-
predisposition clinical phenotypes, including large
granular lymphocyte (LGL) proliferation and CD4þ
T-cell lymphopenia. Another novel IEI with impair-
ment in cytotoxic defects is because of the variants
in AIOLOS, encoded by IKZF3. This protein is
mainly expressed in B and T lymphocytes based
on several animal models, especially in immature
and recirculating B cells [94,95]. Patients with AIO-
LOS deficiency have abnormal T-cell subsets, com-
bined immunodeficiency and high susceptibility to
EBV infection, increasing the possibility of develop-
ing EBV-driven malignancy [51]. CD28 is an impor-
tant co-stimulatory signal for CD4þ T-cell
proliferation (via CD28/CD8 crosstalk) [96] and T-
helper type-2 (Th2) development [97]. CD28 defi-
ciency leads to the impairment of T-cell response
and reduced ability to combat EBV, cytomegalovirus
(CMV) and and human papillomavirus (HPV). Mul-
tifocal, benign epithelial tumor at a late stage has
been observed in patients with underlying CD28
deficiency [98]. Ras homology (RHO) GTPases can
be triggered by antigen receptor activation in lym-
phocytes via ERM (ezrin–radixin–moesin) kinases,
which are essential for normal hematopoietic cell
development, including lymphocytemigration,mor-
phological polarizationandadhesion [99–101]. Ithas
been shown that lack of nonredundant exocytosis
function in cytotoxic T cells and NK cells in patients
with RHOG deficiency, may result in the subsequent
development of lymphoproliferation and hemopha-
gocytic lymphohistiocytosis (HLH) [102].
Tumor-promoting inflammation

As a transcriptional repressor in lymphocytes,
Helios, encoded by IKZF2, has a significant role in
regulating effector T-cell activity, similar to the
previous function described for IKZF1 [103,104].
Patients with IKZF2 deficiency present with chronic
overactivation of proinflammatory cytokine pro-
duction with this being the most likely driver of
tumor predisposition [103] [mainly because of the
up-regulation in both interferon-gamma (IFN-g)
and interleukin-2 (IL-2) downstream signaling path-
ways] [103]. In this group of patients, a variable
clinical phenotype can be observed in different
mutation sites [103,105], and lymphoma has been
reported in patients with both underlying autoso-
mal dominant and recessive forms of IKZF2 defi-
ciency [103]. Suppressor Of Cytokine Signaling 1
360 www.co-allergy.com
(SOCS1) mutations lead to autoimmune diseases
by increasing the JAK-STAT pathway activation with
the production of IFN-g, IL-2 and IL-4. A patient
with heterozygous SOCS1 mutation has been
reported with Hodgkin lymphoma [106]. Toll-like
receptor 8 (TLR8), acts as an endosomal-sensing
receptor mainly expressed in neutrophils and
monocytes. Gain-of-function of TLR8 results in
increases in the proinflammatory cytokines (IL-18,
TNF-a and IFN-g) through NF-kB pathway activa-
tion. Patients with TLR8 gain-of-function mutation
developed T-LGL leukemia possibly through proin-
flammatory cytokines affecting the development of
neutrophil differentiation and B-cell maturation
[107]. PI3Kg, encoded by PIK3CG, is mainly
expressed in leukocytes. PI3Kg deficiency results
in immunoglobulin production impairment,
inflammatory diseases and HLH-like diseases, con-
sidered related to dysfunction of the PI3K–AKT–
mTOR pathway with abnormal cytokine and che-
mokine production and antigen receptor stimula-
tion [108,109].
Genome instability and mutation

Minichromosome maintenance complex compo-
nent 10 (MCM10) is involved in DNA replication
and cell-cycle progression, which functionally sta-
bilizes the replisome and maintains genome stabil-
ity. Loss of function of MCM10 results in increasing
chronic replication stress and decreasing cell viabil-
ity [110], and overexpressed MCM10 has been
described in a variety of cancer types [111]. Further-
more, MCM10’s additional role in NK-cell terminal
differentiation, maturation, and function has been
also verified [13]. The patients with MCM10 mono-
genic loss-of-function germline mutation result
in decreased numbers of NK cells with NK-cell dys-
function, severe CMV infections and developed an
HLH-like phenotype predisposing to malignancy
development [13]. The recently discovered AID-
interacting protein, CTNNBL1 plays an important
interaction in assisting intracellular trafficking of
AID and delivering AID to the appropriate Ig locus,
enabling class-switch recombination and somatic
hypermutation [112,113]. Biallelic defects of
CTNNBL1 may result in increased off-target effects
of AID, which may contribute to genome instability
and increase the possibility of malignant transfor-
mation by the activation of oncogenes and chro-
mosome translocations [114,115].
Activating invasion and metastasis

Monogenic IEI diseases underlying the susceptibil-
ity of various oncogenic viral infections have high
Volume 22 � Number 6 � December 2022



Cancers hallmarks in IEI Wang and Abolhassani
relevance to human malignancy. Among 55 novel
IEI genes, patients underlying IKZF3 deficiency have
a high susceptibility to EBV infections, which could
lead to B-lymphocyte immortalization and further
polyclonal proliferation through latent membrane
protein 1 (LMP1) activation [51,116]. Similarly,
NOS2 (encoding NO synthase) deficiency has atte-
nuated responses to herpes viruses including EBV,
which can directly induce metastasis in cancer cells,
and also result in a predisposition to severe CMV
viral infection [117]. CD28 deficiency is associated
with severe HPV infections, which can regulate the
P53 pathway through HPV E6 oncogene production
and regulate cell mobility and invasion [118].
Genetic defects on ZNFX1, which encode a dou-
ble-stranded RNA (dsRNA) sensor, will increase
the susceptibility to both RNA/DNA virus infections
and directly trigger HLH-like diseases [118].
CONCLUSION

The concept of cancer hallmark assignments in
patients with inborn errors of immunity is rapidly
growingduringrecentyears,andit is requiredthatthe
causes of cancer predisposition in these monogenic
diseases will be investigated using patient-oriented
experimental studies andmultiomics technologies to
prove these hallmarks. These basic findings and con-
firmatory functional assays will pave the way for the
acceleration of accurate prognosis estimation and
targeted treatment.
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