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Abstract: Five new compounds named asperpenes A-C (1–3), 12,13-dedihydroversiol (4), and methyl
6-oxo-3,6-dihydro-2H-pyran-4-carboxylate (5), along with 10 known compounds (6–15), were isolated
from the fermentation broth of Aspergillus sp. SCS-KFD66 associated with a bivalve mollusk,
Sanguinolaria chinensis, collected from Haikou Bay, China. The structures of the compounds,
including the absolute configurations of their stereogenic carbons, were unambiguously determined
by spectroscopic data, single-crystal X-ray diffraction analysis, and electronic circular dichroism
(ECD) spectral analysis, along with quantum ECD calculations. The growth inhibitory activity of the
compounds against four pathogenic bacterial (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC
6538, Listeria monocytogenes ATCC 1911, and Bacillus subtilis ATCC 6633), their enzyme inhibitory
activities against acetylcholinesterase and α-glucosidase, and their DPPH radical scavenging activity
were evaluated.
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1. Introduction

In the past few decades, natural products have occupied a very important position in modern
drug research and development, providing more efficient means for human health care, nutrition,
medical care, and other aspects [1]. From 1940 to 2014, 175 new anticancer drugs were approved
worldwide, 75% of which came from natural products or their derivatives [2]. Therefore, the study of
natural products is of great significance for drug development. Because of the special environmental
conditions, marine fungi have been proven to be a rich source of various types of compounds with
complex structures and remarkable activities, thereby attracting the attention of for which many
natural product chemists turned their attention to them [3,4].

Our previous research on secondary metabolites from marine animal-derived fungi have
led to the isolation and identification of a series of structurally new and biologically active
natural products, including new quorum-sensing inhibitors from Penicillium sp. SCS-KFD08,
chlorinated meroterpenoids with anti-H1N1 activity from Penicillium sp. SCS-KFD09, and helvolic
acid derivatives with potent antibacterial activity from Aspergillus fumigatus HNMF0047 [5–9].
In the course of our ongoing research, Aspergillus sp. SCS-KFD66 was isolated and
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identified from a bivalve mollusk, Sanguinolaria chinensis, from Haikou Bay, Hainan province,
in China. The chemical investigation on the EtOAc extract of the fungal fermentation broth
led to the isolation and purification of five new compounds, named asperpenes A-C (1-3),
12,13-dedihydroversiol (4), and methyl 6-oxo-3, 6-dihydro-2H-pyran-4-carboxylate (5), as well
as 10 known compounds, i.e., versiol (6) [10], (E)-4-oxonon-2-enoic acid (7) [11], ergosta-5,
7,22-triene-3β-ol (8) [12], β-sitosterol (9) [13], (22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (10) [14],
15α-hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one (11) [15], volemolide (12) [16], oxaline
(13) [17], fumitremorgin B (14) [18], and helvolic acid (15) [19] (Figure 1). Herein, the structure
and bioactivities of these compounds are reported.

Figure 1. Structures of compounds 1–15.

2. Results and Discussion

Compound 1 was obtained as a colorless crystal, and its molecular formula C15H20O4 was
established from the HRESIMS m/z 263.1283 [M − H]−. The IR absorptions at 3422, 1695,
and 1622 cm−1 revealed the presence of a hydroxyl and a conjugated carboxylic group, respectively,
which was further confirmed by a characteristic UV λmax at 221 nm. The 1H and 13C NMR spectra
(Supplementary Materials, Figures S1 and S2) in combination with the HSQC spectra (Supplementary
Materials, Figure S4) revealed the presence of two methyls, four sp3 methylenes, three sp3 methines,
two sp3 non-protonated carbons, one tri-substituted double bond, and two carboxylic groups. These
data were closely related to those of russujaponol H [20], suggesting that 1 was also an illudoid
sesquiterpene. The COSY correlations (Supplementary Materials, Figure S5) revealed the connectivities
from in CH-1–CH-2–CH-9–CH2-10, CH-8–CH-9, and CH2-4–CH2-5–CH-6. These structure fragments
were assembled into a whole structure on the basis of the HMBC correlations (Supplementary Materials,
Figure S6) from H3-12 (δH 1.25) to C-2 (δC 47.0), C-3 (δC 49.2), C-4 (δC 26.6), and C-6 (δC 37.2), from
H3-15 (δH 1.18) to C-1 (δC 39.8), C-10 (δC 44.5), C-11 (δC 39.0), and C-14 (δC 182.4), from H-6 (δH

2.54) to C-5 (δC 30.7) and C-7 (δC 133.9), and from H-8 (δH 6.82) to C-13 (δC 170.3) (Figure 2). ROESY
correlations from H-6/H-1β (δH 0.96)/H3-15 and H-8 (δH 6.82)/H-10β (δH 1.59) (Figure 3) suggested
that H-6 and H3-15 were on the same face of the ring system, and H-2 (δH 1.98) and H-9 (δH 2.92) were
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on the opposite face of the molecule (Figure 3). To support the above deduction and determine the
absolute configuration of 1, a single-crystal X-ray diffraction pattern was obtained using the anomalous
scattering of Cu Kα radiation (Figure 4), allowing an explicit assignment of the absolute structure as
2S, 3R, 6R, 9S, and 11R. This was further corroborated by electronic circular dichroism (ECD) quantum
chemical calculations in Gaussian 03 [7]. The experimental and calculated ECD spectra for (2S, 3R, 6R,
9S, 11R)-1 showed good agreement (Figure 5). Thus, 1 was elucidated and named asperpene A.

Figure 2. Key COSY (
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Compound 2 was obtained as a colorless powder, whose molecular formula was established
as C15H22O3 by HRESIMS m/z 273.1455 [M + Na]+. Comparison of the 1H and 13C NMR data
(Supplementary Materials, Figures S9 and S10) of 2 with those of 1 revealed the presence of a
hydroxymethyl group (δC/H 72.1/3.3, C-14) and a carboxylic group in 2 instead of two carboxyl groups
as in 1. The above data, together with HMBC correlations from H3-15 (δH 0.96) to the hydroxymethyl
carbon (δC 72.1), indicated that the carboxylic group in 1 was replaced by a hydroxymethyl in 2.
In the ROESY spectrum (Figure 3), correlations from H2-14 (δH 3.31, 3.33)/H-1α (δH 1.56), H-6 (δH

1.91)/H-1β (δH 0.85), and H-9 (δH 2.88)/H-4α (δH 1.86) suggested that 2 shared the same configuration
at the stereogenic C-2, C-3, C-6, C-9, and C-11. Thus, the structure of 2 was established and named as
asperpene B.

Compound 3 possessed the same molecular formula as 2, as determined by HRESIMS data.
The 1H and 13C NMR data of 3 (Supplementary Materials, Figures S17 and S18) were also quite similar
to those of 2. However, in the HMBC spectrum of 3 (Figure 2), correlations from H3-15 (δH 1.26) to the
carbonyl (δC 201.5) and from H2-13 (δH 4.01, 4.03) to C-7 (δC 139.5) and C-8 (δC 125.5) suggested the
positions of the carboxylic acid and the hydroxymethyl groups at C-11 and C-7, respectively, which is
resulted different from those of 2. ROESY correlations (Figure 3) of H-10β (δH 1.57)/H-8 (δH 5.49) and
H3-15/H-1β (δH 1.09)/H-6 (δH 1.99) suggested that 3 had the same configurations of its stereogenic
carbons as 2.

Compound 4 was obtained as a yellow oil, and its molecular formula was determined as C16H20O3

on the basis of the HRESIMS data, implying seven degrees of unsaturation. The 1H and 13C NMR
data (Supplementary Materials, Figures S25 and S26) of 4 indicated the presence of three methyls,
one methylene, eight methines (including five olefinic and one oxygenated), and four non-protonated
carbons (including one ketone carbonyl, one olefinic, and one oxygenated sp3). These data were quite
similar to those of versiol (6) [10], suggesting that they were structurally related, and the only difference
was that one disubstituted double bond in 4 was saturated to two vicinal methylenes in 6, as supported
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by HMBC correlations from H-13 (δH 7.22) to C-8 (δC 85.9) and from H-12 (δH 5.46) to C-11 (δC 198.8).
ROESY correlation between H-2β (δH 1.19) and H-10 (δH 2.69) suggested their cofacial relationship,
while the absence of ROESY correlations from H3-14 (δH 1.46) and H3-15 (δH 1.17) to H-10 suggested
that H3-14 and H3-15 were on the opposite face with respect to H-10. Considering that versiol (6) and
4 were biosynthetically related and a relatively large amount of versiol (6) was isolated, we crystalized
versiol (6) successfully and subjected it to a single-crystal X-ray diffraction experiment (Figure 4),
finally allowing an explicit assignment of the absolute structure of versiol (6) as 1S, 3S, 8S, 9R, and 10S.
The absolute configurations of the stereogenic carbons of 4 were also suggested to be 1S, 3S, 8S, 9R,
and 10S on the basis of a biosynthetic consideration. The experimental ECD spectrum (Figure 5) of
4 showed characteristic exciton CDs absorption bands at 261 (-0.31) and 230 (+0.14) nm due to the a
negative couplet of the α,β-unsaturated carbonyl and the conjugated double-bond moieties, which
further confirmed the absolute configuration assignment. Moreover, the experimental and calculated
ECD spectra for 4 also matched well (Figure 5).

Compound 5 was isolated as a colorless oil, whose molecular formula was established as C7H8O4

by HRESIMS m/z 179.0316 [M + Na]+. The 1H, 13C, and HSQC NMR spectra (Supplementary
Materials, Figures S33, S34, and S36) of 5 showed signals for two ester carbonyls (δC 165.0, 163.6), one
tri-substituted double bond (δC/H 126.1/6.77, 145.3), two sp3 methylenes, one of which is oxgenated
(δC/H 66.7/4.46), and one methoxyl group (δC/H 53.1/3.87). COSY correlations (Supplementary
Materials, Figure S37) of H2-2 (δH 4.46)/H2-3 (δH 2.71) and HMBC correlations (Supplementary
Materials, Figure S38) from H2-2 (δH 4.46) and H-5 (δH 6.77) to C-6 (δC 163.6) and C-4 (δC 145.3) and
from H2-3 and H3-8 (δH 3.87) to C-7 (δC 165.0) led to the determination of the full structure of 5,
as shown in Figure 1.

Compounds 1–15 were tested for their antibacterial activity against Escherichia coli ATCC 25922,
Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 1911, and Bacillus subtilis ATCC 6633 by
the 96-well microtiter plates method [21]. The results (Table 1) revealed that 7, 8, 12, and 13 showed
inhibitory activities against B. subtilis ATCC 6633, with MIC values of 4, 128, 128, and 128 µg/mL,
respectively, whereas 7, 8, 14, and 15 showed inhibitory activity against S. aureus ATCC 6538, with MIC
values of 16, 128, 128 and 2 µg/mL, respectively; 15 also had inhibitory activity against L. monocytogenes
ATCC 1911, with MIC value of 128 µg/mL. None of these compounds showed inhibitory activity
against E. coli ATCC 25922.

Table 1. Antibacterial activities of compounds 7, 8, and 12–15.

Compound
MIC (µg/mL)

Staphylococcus aureus
ATCC 6538

Listeria monocytogenes
ATCC 1911

Bacillus subtilis
ATCC 6633

7 16 >128 4
8 128 >128 128
12 >128 >128 128
13 >128 >128 128
14 128 >128 >128
15 2 128 >128

Ampicillin a <1 <1 <1
a Positive control.

Additionally, the DPPH radical scavenging activity and the acetylcholinesterase and α-glucosidase
inhibitory activities of all the isolated compounds were evaluated by the DPPH method [22], Ellman
colorimetric method [23], and PNPG method [24], respectively. None of these compounds showed
inhibitory activities against α-glucosidase and acetylcholinesterase. However, 1, 3, 4, 8, 11, and 15
showed weak DPPH radical scavenging activity, with IC50 values of 1.8, 0.6, 1.1, 0.6, 1.2, and 0.7 mM
(ascorbic acid as positive control, IC50 0.04 mM).
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3. Experimental Section

3.1. General Experimental Procedure

Optical rotations were measured with a JASCO P-1020 digital polarimeter. The IR spectra were
obtained on with a Nicolet Nexus 470 spectrophotometer as KBr discs. The UV spectra were obtained
from with a Beckman DU 640 spectrophotometer. ECD data were measured collected on using a
JASCO J-715 spectropolarimeter. The NMR spectra were recorded on a Bruker AV-500 spectrometer
with TMS as an internal standard. ESIMS, HRESIMS, and HREIMS data were acquired on a Micromass
Autospec-Ultima-TOF, API QSTAR Pulsar 1, or Waters Autospec Premier spectrometer. The sea
salt was produced by evaporation of seawater collected in Laizhou Bay, Weifang, China (Weifang
HaiHua Yu Feng Chemical Factory). Semi-preparative HPLC separation was used octadecyl silane
(ODS) columns (YMC-pack ODS-A, 10 × 250 mm, 5 µm, 4 mL/min) and Ph column (YMC-pack
Ph, 10 × 250 mm, 5 µm, 4 mL/min) for separation. Thin-layer chromatography (TLC) and column
chromatography (CC) were carried out on precoated silica gel GF254 (10–40 µm, Qingdao Marine
Chemical Inc., Qingdao, China) and silica gel (200–300 mesh, Qingdao Marine Chemical Inc., Qingdao,
China), respectively.

3.2. Fungal Material and Fermentation

The strain SCS-KFD66 was isolated from a bivalve mollusk, Sanguinolaria chinensis, collected
from Haikou Bay, Hainan province, in China. After grinding, the sample (1 g) was diluted to 10−2 g/mL
with sterile H2O, 100 µL of which was spread on a PDA (200 g potato, 20 g glucose, 20 g agar per liter of
sea water collected in Haikou Bay, China) plate containing chloramphenicol (100 µg/mL) as a bacterial
inhibitor. Fungal identification was carried out by its examining the morphological characteristics and
18S rRNA gene sequences (GenBank accession No. MK085984, Supporting Information) with of the
single coloniesy. A reference culture of Aspergillus sp. SCS-KFD66 is deposited in our laboratory and
which maintained at −80 ◦C. The isolate was cultured on slants of PDA medium at 28 ◦C for 5 days
and then transferred to two hundred 1 L Erlenmeyer flasks containing solid rice medium (80 g rice,
3.96 g sea salt, 120 mL tap water, pH 7.0), used for fermentation. The flasks were incubated under
static conditions at room temperature for 30 days.

3.3. Extraction and Isolation

The fermented cultures were extracted with three-fold volumes (3 × 300 mL) of EtOAc,
then filtered through a cheesecloth to separate the rice from the mixture. After repeating the procedure
three times, the EtOAc extracts were evaporated under a reduced pressure to produce 409.6 g of a
crude extract. The extract was fractionated by a silica gel VLC column using different solvents of
increasing polarity, from petroleum ether to EtOAc, to yield seven fractions (Frs. 1−7). Fr. 3 (5.3 g)
was further purified by HPLC using an octadecyl silane (ODS) silica gel column and eluted with in a
MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0) gradient to afford 8 (3.5 mg), 9 (14.0 mg), and three subfractions (Sfrs.
3-1–Fr. 3-3). Sfr. 3-2 (289.7 mg) was subjected to VLC on silica gel and eluted with an EtOAc/petroleum
ether stepwise gradient (from 1:10 to 2:1) to afford 4 (3.6 mg). Fr. 4 (8.0 g) was separated into seven
subfractions (Sfrs. 4-1–Fr–4-7) by HPLC using an ODS silica gel column with a gradient elution
of MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0). Sfr. 4-1 (16.5 mg) was purified by a semipreparative HPLC
(YMC-pack ODS-A, 5 µm; 10 × 250 mm; 35% MeCN/H2O; containing 0.1% TFA; 4 mL/min) to
afford 7 (tR 18.4 min; 1.7 mg). Fr. 5 (3.7 g) was chromatographed on an ODS silica gel column with
a gradient elution of MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0) to yield 14 (3.0 mg), 15 (4.1 mg), 10 (5.2 mg),
and four subfractions (Sfrs. 5-1–Fr. 5-4). Sfr. 5-4 (13.3 mg) was purified by a semipreparative HPLC
(YMC-pack ODS-A, 5 µm; 10 × 250 mm; 40% MeCN/H2O; containing 0.1% TFA; 4 mL/min) to afford
6 (tR 9.8 min; 6.0 mg). Fr. 6 (4.0 g) was fractionated on an ODS silica gel column with a gradient elution
of MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0) to yield six subfractions (Sfrs. 6-1–Fr. 6-6). Sfr. 6-4 (69.9 mg) was
subjected to semipreparative HPLC (YMC-pack Ph, 5 µm; 10 × 250 mm; 30% MeCN/H2O; containing
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0.1% TFA; 4 mL/min) to afford 1 (tR 15.6 min; 24.5 mg), 2 (tR 18.4 min; 2.5 mg), and 3 (tR 21.5 min;
3.7 mg). Purification of Fr. 7 (28.3 g) by a silica gel VLC column with a stepwise gradient with of
MeOH/CHCl3 (from 10:90 to 100:0) gave 13 (78.5 mg) and eight fractions (Sfrs. 7-1–Fr. 7-8). Sfr. 7-1
(119.2 mg) was applied to ODS silica gel with a gradient elution of MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0)
to yield 12 (2.0 mg). Sfr. 7-2 (199.4 mg) was purified by ODS silica gel column with a gradient elution
with of MeOH/H2O (1:5, 2:3, 3:2, 4:1, 1:0) to give 11 (3.0 mg). Sfr. 7-4 (184.9 mg) was purified by
Sephadex LH-20 chromatography and eluted with MeOH to give three subfractions (Sfrs. 7-4-1–Fr.
7-4-3). Sfr. 7-4-1 (149.6 mg) was finally purified by semipreparative HPLC (YMC-pack ODS-A, 5 µm;
10 × 250 mm; 40% MeOH/H2O; 4 mL/min) to obtain 5 (tR 4.4 min; 9.3 mg).

Asperpene A (1): Colorless crystal; mp 194–195 ◦C; [α]25
D +8 (c 0.1, MeOH); UV (MeOH) λmax (log

ε): 203 (3.54) nm; ECD (MeOH) λmax 221 (+0.34) nm; IR (KBr) νmax (cm−1): 3422, 2930, 2851, 1695, 1626,
1453, 1390, 1254, 1121. 1H NMR data, Table 2; 13C NMR data, Table 3; HRESIMS m/z 263.1283 [M −
H]− (calcd for C15H19O4, 263.1289).

Table 2. 1H NMR data (500 MHz, δ in ppm, J in Hz) of 1–5.

Position 1 a 2 b 3 b 4 b 5 b

1 2.11, dd (12.9, 7.1) 1.56, dd (12.8, 7.5) 2.12, dd (12.8, 7.3) 3.95, m
0.96, dd (12.9, 12.1) 0.85, dd (12.8, 12.8) 1.09, dd (12.7, 12.7)

2 1.98, m 2.60, m 2.24, m 1.96, m 4.46, t (6.2)
1.19, ddd (12.6, 12.6, 1.7)

3 2.64, m 2.71, td (6.2, 1.7)
4 2.49, m 1.86, m 1.96, m 5.81, d (2.0)

1.42, m 1.48, m 1.48, m
5 1.90, m 2.51, m 2.41, m 6.77, t (1.7)

1.46, m 1.48, m 1.48, m
6 2.54, m 1.91, overlap 1.99, m 6.31, d (9.6)
7 5.48, d (9.6)
8 6.82, d (2.3) 6.97, d (2.2) 5.49, d (2.0) 3.87, s
9 2.92, m 2.88, m 2.81, m
10 2.66, dd (13.6, 8.9) 1.95, dd (13.7, 8.9) 2.59, dd (13.5, 8.2) 2.69, m

1.59, dd (13.6, 1.9) 1.50, overlap 1.57, dd (13.5, 1.6)
12 1.25, s 1.24, s 1.22, s 5.46, d (6.0)
13 4.01, br d (14.3) 7.22, d (6.0)

4.03, br d (14.3)
14 3.31, d (16.5) 1.46, s

3.33, d (16.5)
15 1.18, s 0.96, s 1.26, s 1.17, s
16 1.04, d (7.2)

a Taken in CD3OD, b Taken in CDCl3.

Asperpene B (2): White powders; [α]25
D −6 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 213 (3.14) nm,

215 (3.14) nm; ECD (MeOH) λmax 295 (-0.06), 255 (+0.02), 229 (-0.08) nm; IR (KBr) νmax (cm−1): 3446,
2932, 2867, 1692, 1638, 1455, 1393, 1255, 1049. 1H NMR data, Table 2; 13C NMR data, Table 3; HRESIMS
m/z 273.1455 [M + Na]+ (calcd for C15H23O3Na, 273.1461).

Asperpene C (3): White powders; [α]25
D +5 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 202 (3.34) nm;

IR (KBr) νmax (cm−1): 3415, 2959, 1708, 1456, 1184, 1122. 1H NMR data, Table 2; 13C NMR data, Table 3;
HRESIMS m/z 273.1457 [M + Na]+ (calcd for C15H22O3Na, 273.1461).

12,13-Dedihydroversiol (4): Yellow oil; [α]25
D −8 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 260 (3.46)

nm, 234 (3.58) nm, 219 (3.66) nm; ECD (MeOH) λmax 310 (+0.02), 261 (-0.31), 230 (+0.14) nm; IR (KBr)
νmax (cm−1): 3445, 2930, 1723, 1655, 1605, 1454, 1385, 1266, 1108. 1H NMR data, Table 2; 13C NMR data,
Table 3; HRESIMS m/z 283.1297 [M + Na]+ (calcd for C16H20O3Na, 283.1305).

Methyl 6-oxo-3, 6-dihydro-2H-pyran-4-carboxylate (5): Colorless oil; UV (MeOH) λmax (log ε):
218 (3.45); IR (KBr) νmax (cm−1): 2927, 1726, 1641, 1441, 1260, 1219, 1084. 1H NMR data, Table 2; 13C
NMR data, Table 3; HRESIMS m/z 179.0316 [M + Na]+ (calcd for C7H8O4Na, 179.0315).
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Table 3. 13C NMR data (125 MHz, δ in ppm) of 1–5.

Position
1 a 2 b 3 b 4 b 5 b

δC, Type δC, Type δC, Type δC, Type δC, Type

1 39.8, CH2 36.7, CH2 38.9, CH2 66.8, CH
2 47.0, CH 35.8, CH 36.7 CH 38.4, CH2 66.7, CH2
3 49.2, C 38.3, C 38.2, C 25.4, CH 23.7, CH2
4 26.6, CH2 30.0, CH2 30.4, CH2 138.2, CH 145.3, C
5 30.7, CH2 25.7, CH2 24.7, CH2 129.6, C 126.1, CH
6 37.2, CH 45.4, CH 46.6, CH 134.9, CH 163.6, C
7 133.9, C 132.0, C 139.5, C 124.9, CH 165.0, C
8 143.3, CH 145.1, CH 125.5, CH 85.9, C 53.1, CH3
9 40.8, CH 40.2, CH 38.8, CH 50.9, C

10 44.5, CH2 42.2, CH2 44.3, CH2 40.8, CH
11 39.0, C 42.9, C 48.3, C 198.8, C
12 26.5, CH3 26.2, CH3 27.5, CH3 104.6, CH
13 170.3, C 171.2, C 65.5, CH2 161.0, CH
14 182.4, C 72.1, CH2 184.7, C 19.2, CH3
15 27.8, CH3 26.8, C 26.3, CH3 13.5, CH3
16 21.2, CH3

a Taken in CD3OD, b Taken in CDCl3.

X-ray Crystal Data for 1 and 6: Colorless crystals of 1 and 6 were obtained in the mixed solvent of
MeOH and H2O. Crystal data of 1 and 6 were obtained on a Bruker D8 QUEST diffractometer (Bruker)
with graphite monochromated Cu Kα radiation (λ = 1.54178 Å). Crystallographic data for 1 and 6 have
been deposited with in the Cambridge Crystallographic Data Center as supplementary publication
numbers CCDC 1875828 and 1875827. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for 1. Orthorhombic, C15H20O4; space group P 21 21 21 with a = 7.2684(6) Å,
b = 9.6858(7) Å, c = 19.5962(15) Å, V = 1379.58(18) Å3, Z = 4, Dcalcd = 1.273 g/cm3, µ = 0.747 mm−1,
and F(000) = 568. T = 296(2) K. R1 = 0.0583 (I > 2σ(I)), wR2 = 0.1409 (all data), S = 0.978. Absolute
structure parameter: 0.0 (4). The structures were solved using ShelXS. The structural solutions were
found by direct methods and refined using the ShelXL package by least-squares minimization. The final
structures were examined using the Addsym subroutine of PLATON to assure that no additional
symmetry could be applied to the models. All non-hydrogen atoms were refined with anisotropic
thermal factors.

Crystal data for 6. Orthorhombic, C16H22O3; space group P 21 21 21 with a = 6.0879(2) Å, b =
9.1456(3) Å, c = 25.1933(9) Å, V = 1402.70(8) Å3, Z = 4, Dcalcd = 1.237 Mg/m3, µ = 0.674 mm−1, and F(000)
= 564. T = 296(2) K. R1 = 0.0339 (I > 2σ(I)), wR2 = 0.0793 (all data), S = 1.060. Absolute structure
parameter: 0.08(12). The structures were solved using ShelXS. The structural solutions were found
by direct methods and refined using the ShelXL package by least-squares minimization. The final
structures were examined using the Addsym subroutine of PLATON to assure that no additional
symmetry could be applied to the models. All non-hydrogen atoms were refined with anisotropic
thermal factors.

4. Conclusions

In conclusion, five new compounds (1–5) and 10 known compounds (6–15) were isolated from
the fermentation broth of Aspergillus sp. SCS-KFD66 which was isolated from a bivalve mollusk,
S.anguinolaria chinensis, collected from Haikou Bay, China. The structures of the isolated compounds
were unambiguously determined by spectroscopic data, single-crystal X-ray diffraction analysis,
and comparison of the calculated and experimental ECD spectra. Compounds 7, 8, 12, and 13
showed antibacterial activity against Bacillus subtilis, with MIC values of 4, 128, 128, and 128
µg/mL. Compounds 7, 8, 14, and 15 exhibited antibacterial activity against S.taphylococcus aureus,

www.ccdc.cam.ac.uk/data_request/cif
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with MIC values of 16, 128, 128, and 2 µg/mL, while 15 also showed inhibitory activity against
L.isteria monocytogenes, with MIC value of 128 µg/mL. Compounds 1, 3, 4, 8, 11, and 15 showed a weak
DPPH radical scavenging activity, with IC50 values of 1.8, 0.6, 1.1, 0.6, 1.2, and 0.7 mM (ascorbic acid
as positive control, IC50 0.04 mM).

Supplementary Materials: The following are available online in http://www.mdpi.com/1660-3397/16/12/468/
s1, Figures S1–S39: HRESIMS, IR, and 2D NMR spectra of the new compounds 1–5, the 18S rRNA gene sequence
of Aspergillus sp. SCS-KFD66, and the quantum calculation details are supplied.
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