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Abstract

We present the development and validation of a mathematical model that predicts how glu-

cose dynamics influence metabolism and therefore tumor cell growth. Glucose, the starting

material for glycolysis, has a fundamental influence on tumor cell growth. We employed

time-resolved microscopy to track the temporal change of the number of live and dead

tumor cells under different initial glucose concentrations and seeding densities. We then

constructed a family of mathematical models (where cell death was accounted for differently

in each member of the family) to describe overall tumor cell growth in response to the initial

glucose and confluence conditions. The Akaikie Information Criteria was then employed to

identify the most parsimonious model. The selected model was then trained on 75% of the

data to calibrate the system and identify trends in model parameters as a function of initial

glucose concentration and confluence. The calibrated parameters were applied to the

remaining 25% of the data to predict the temporal dynamics given the known initial glucose

concentration and confluence, and tested against the corresponding experimental measure-

ments. With the selected model, we achieved an accuracy (defined as the fraction of mea-

sured data that fell within the 95% confidence intervals of the predicted growth curves) of

77.2 ± 6.3% and 87.2 ± 5.1% for live BT-474 and MDA-MB-231 cells, respectively.

1. Introduction

The major source of energy for many cancer cells comes from a high rate of glycolysis followed

by lactate fermentation in the cytosol, even in the presence of sufficient oxygen—a phenome-

non known as the Warburg effect [1, 2]. This contrasts with normal cells that exhibit a com-

paratively low rate of glycolysis followed by oxidative phosphorylation in the mitochondria.

Additionally, high concentrations of oxygen can lead to a reduction of glycolytic activity,
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known as the Pasteur effect [3]. Also, an observation by Sonveaux [4] supports the claim that

well-oxygenated tumor cells utilize lactate, leaving glucose available for hypoxic cells. This phe-

nomenon has stimulated numerous efforts to investigate the underlying mechanisms [2, 5, 6]

of altered metabolism and has identified potential targets including glucose transporters [7],

lactate transporters [8], and enzymes like hexokinase and pyruvate kinase in the pathway of

glycolysis [9, 10] for the development of new therapeutics. Efforts have been made to rigor-

ously model the development of tumor subpopulations, nutrient dynamics, energy demands,

and tumor-environment interactions with ordinary differential equations (ODEs) [11], partial

differential equations (PDEs) [12–16], agent-based models [17], and game theoretical models

[17–20]. For example, in the model developed by Mendoza-Juez et al. [11], tumor cells were

divided into two subpopulations, the oxidative cells that undergo aerobic oxidation of glucose

and glycolytic cells that undergo glycolysis and produce lactate, corresponding to an oxidative

phenotype and a Warburg phenotype. Proliferation and conversion between the two subpopu-

lations was described by a set of ordinary differential equations. This study also considered the

nutrient concentrations of glucose and lactate as a result of consumption and production by

tumor cells, which in return, can cause conversion between phenotypes. Mendoza-Juez et al.
[11] further provided preliminary validation of their model by comparing it to metabolic data

available from several previously published studies [4, 21, 22]. However, as no direct calibra-

tion of this model to experimental data was performed, it was not possible to capture specific

parameter values that could be used to characterize cell lines [12, 17], or make predictions of

tumor cell dynamics as a function of glucose availability or utilization. Additionally, the reli-

ance on a large number of unmeasured parameters makes further applications challenging.

Therefore, in this work, we aim to simplify this model with a smaller set of parameters that can

be estimated or calibrated from experimental data and recast the associated models we devel-

oped with these estimates to predict tumor growth given initial conditions.

We designed a set of experiments employing time-resolved microscopy to track the tempo-

ral change of the number of live and dead tumor cells in vitro given a set of initial confluences

(i.e., seeding density) and glucose concentrations. To quantitatively characterize those obser-

vations, we developed a family of mathematical models to describe the proliferation and death

of tumor cells as a function of glucose availability and consumption. These models, which are

based on those of Mendoza-Juez et al. [11], take the form of systems of nonlinear, ordinary dif-

ferential equations to describe the collective temporal behavior of tumor cells. We aim to iden-

tify the most parsimonious model from that family to optimally characterize tumor cell growth

as a function of glucose dynamics. After the optimal model is selected, we quantify the prolifer-

ation rate, death rate due to glucose depletion, death rate due to the bystander effect, and the

consumption rate of glucose in a training set. We then use this calibrated model to predict

tumor cell growth given prescribed initial conditions in a validation set.

2. Materials and methods

Throughout the following text, the reader is encouraged to refer to Fig 1 which provides an

overview of the experimental and computational modeling components of the study.

2.1 Cell culture

We applied our experimental-mathematical approach in two breast cancer subtypes to quanti-

tatively characterize cell types known to have distinct phenotypes, molecular profiles, and met-

abolic activities. Triple negative breast cancer [23] (TNBC) is defined by the absence of the

expression of the estrogen, progesterone, and HER2 (human epidermal growth factor receptor

2) receptors, while in HER2+ breast cancer [24], HER2 is overexpressed.
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BT-474 (a model of HER2+ breast cancer) and MDA-MB-231 (a model of triple negative

breast cancer) cell lines were obtained from the American Type Culture Collection (ATCC,

Manassas, VA) and maintained in culture according to ATCC recommendation. Ninety-six

well-plates were seeded with either BT-474 or MDA-MB-231 cells at initial confluences rang-

ing from 10% to 80% in Dulbecco’s modified eagle medium (DMEM without glucose, sodium

pyruvate, HEPES, L-glutamine and phenol red, Thermo Fisher Scientific, Waltham, MA) one

day before imaging experiments began. On day zero, media were changed to DMEM with dif-

ferent glucose concentrations (0 mM, 0.1 mM, 0.2 mM, 0.5 mM, 0.8 mM, 1 mM, 2 mM, 5

mM, 8 mM and 10 mM). Each initial condition had four replicates. Cells were cultured in 5%

CO2 and air at 37˚C for 4 days.

2.2 Image acquisition

Cells were incubated in the IncuCyte S3 live cell imaging system (Essen BioScience, Ann

Arbor, MI). Images were acquired with a 4× objective and stitched together to obtain whole

well images (2400 × 2400 pixels) for each well of the 96-well plates via the device’s whole-well

imaging function. IncuCyte Cytotox Red Reagents (Essen BioScience, Ann Arbor, MI), a cya-

nine nucleic acid dye, was added to the medium on day 0 before the first scan to enable quanti-

fication of cell death. Once cells become unhealthy, the plasma membrane begins to lose

integrity allowing entry of the IncuCyte Cytotox Reagent and yielding a 100-1000-fold increase

in fluorescence upon binding to DNA. Phase-contrast and red fluorescent (excitation wave-

length: 585 nm and emission wavelength: 635 nm) images were acquired every 3 hours for 4

days.

2.3 Image segmentation to quantify confluence over time

All cell segmentation was performed in Matlab (The Mathworks, Inc., Natick, MA). The seg-

mentation approaches were developed based on the particular morphological features of the

two cells lines. In particular, the BT-474 cells are mass cells with robust cell-cell adhesion that

form cell clusters, while the MDA-MB-231 cells are elongated cells [25].

Fig 1. A flow chart indicating the data acquisition and analysis steps. Based on the phase-contrast (panels a and b)

and fluorescent (panels e and f) images acquired from the time-resolved microscopy studies, we perform cell

segmentation of total and dead cells (panels c and g, respectively) and generate time courses of confluence for both live

and dead cells (panel d). The data are then used for selecting the most parsimonious mathematical model which

estimates model parameters. Finally, the data are divided into subsets for training and validation of the predictive

accuracy of the model.

https://doi.org/10.1371/journal.pone.0240765.g001
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To segment the BT-474 cells within the phase-contrast images at each time point, a prede-

termined mask corresponding to the size of 96-well-plate from IncuCyte Software (Essen Bio-

Science, Ann Arbor, MI) was first applied to the images so the region of interest (ROI) only

included the area within each well and not the surrounding area of the plate in each square

image. The masked image was then converted from the RGB (red, green, blue) format to gray-

scale and the Matlab function ‘colfilt’ was used to calculate the standard deviation of signal

intensities within each 3-by-3 sliding block of the image to detect the edge of cell clusters.

Next, a Gaussian filter was used to smooth the image returned from ‘colfilt’ to reduce the vari-

ance of signal intensities within each cell cluster. The resulting image was then normalized (by

dividing the signal intensity of each pixel by the highest signal intensity from each image)

between 0 and 1. After normalization, the morphological operator ‘imerode’ was used to make

the clusters shrink in size and enlarge the holes to avoid losing open space within clusters.

Next the returned image was converted to a binary image by the Matlab function ‘im2bw’. The

morphological operator ‘imclose’ was used to fill holes in the interior of cell clusters. The mor-

phological operator ‘imopen’ was used to smooth object contours, break thin connections and

remove thin protrusions. Finally, ‘bwareaopen’ was used to remove small objects like cell

debris or noise. Please see S1 Fig for details and example images from each step.

While BT-474 cells form clusters that have clear boundaries, MDA-MB-231 cells are elon-

gated and do not form clusters. This results in a much higher edge-area ratio in MDA-MB-231

images compared to BT-474. Thus, the segmentation scheme just described was adjusted to

handle these differences in cell morphology. In particular, once the ROI was identified, ‘hist-

count’ was used to count the number of pixels for each signal intensity (256 possible signal

intensity values in grayscale image) within the ROI. The pixels with signal intensities in the top

10% were assigned a 0, while the remaining pixels were assigned a 1 to binarize the image. All

other steps were the same as the BT-474 segmentation. Please see S2 Fig for example images.

The fluorescent images were used to quantify the Cytotox Red signal (which marks the

dead cells) for both cell lines. Since MDA-MB-231 cells change from an elongated to a circular

morphology when they die, the differences in morphology of the two cell lines observed in

phase-contrast images of the living cells vanishes. Thus, we applied the same approach seg-

menting the phase-contrast images of BT-474 cells to the florescent images of both cell lines.

The resulting segmented and binarized phase-contrast and fluorescent images were then

analyzed to determine confluence at each time point. Confluence was defined as the percent-

age of the well covered by cells and was calculated by counting the number of pixels in the seg-

mented images and dividing by the area of the field of view. Thus, our time-resolved

microscopy data provided time courses of both living and dead cell number.

Tumor cell growth time courses were obtained from 4 experiments for each set of initial

conditions, and each point in each time course consisted of a mean ± 95% confidence interval

(a one-sample Kolmogorov-Smirnov test confirmed normality). One-way ANOVA was used

to compare the average number of live cells for each experiment at the end of day 4 between

the groups with different initial conditions.

2.4 Mathematical models

We developed a family of mathematical models to quantitatively and temporally describe the

change in tumor cell number as function of glucose levels. To do so, we started with the model

developed by Mendoza-Juez et al. [11] which describes the tumor as consisting of two subpop-

ulations undergoing either aerobic oxidation of glucose or glycolysis, corresponding to War-

burg and oxidative phenotypes, respectively. In our work, we first simplified the model to

account for only one metabolic phenotype, and then extended it to account for the
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accumulation of dead tumor cells due to glucose depletion and the bystander effect [26, 27].

Accordingly, we modeled the change of glucose concentration as a result of consumption by

all live tumor cells. Our complete model is described by a coupled set of ordinary differential

equations shown below (the reader is encouraged to refer to Table 1 through the following dis-

cussion):

dNðtÞ
dt
¼ kpNðtÞ 1 �

NðtÞ
y

� �

SpðGðtÞÞ � kdNðtÞSdðGðtÞÞ � kbysNðtÞ
DðtÞ

DðtÞ þ NðtÞ

� �

½1�

dDðtÞ
dt
¼ kdNðtÞSdðGðtÞÞ þ kbysNðtÞ

DðtÞ
DðtÞ þ NðtÞ

� �

½2�

dGðtÞ
dt
¼ � vNðtÞ

GðtÞ
GðtÞ þ G�

� �

; ½3�

where N(t), D(t), and G(t) describe the live tumor cell number, dead tumor cell number, and

glucose concentration, respectively, at time t. The first term on the right-hand side of Eq [1]

describes logistic growth of tumor cells where kp is the proliferation rate, and θ is the carrying

capacity. Here we define the carrying capacity as the limitation on the number of tumor cells

that can physically fit within the environment. The logistic term is also modified by the state

function, Sp(G(t)), that scales the proliferation rate as a function of glucose concentration. The

second term on the right-hand side of Eq [1] describes the death of tumor cells due to glucose

depletion at the rate kd. This term is also modified by the state function, Sd(G(t)), that scales

the rate of cell death as a function of glucose concentration. We assume that the dead tumor

cells are accumulating and releasing factors [26, 27] which may be sensed by the remaining

live cells and, potentially, induce cell death. This is referred to as the bystander effect [26, 27]

and it is captured by the third term on the right-hand side of Eq [1] which induces cell death at

the rate kbys. The bystander effect may include the dead cells competing for space with live

cells, cytotoxicity from dead cells, and increased acidity [28–30]. We assume the bystander

effect is proportional to the fraction of dead cells. Eq [2] models the rate of change in number

of dead cells, with the first term on the right-hand side describing death due to glucose deple-

tion, and the second term accounting for the death due to the bystander effect. Eq [3] describes

the change of glucose concentration due to the consumption by tumor cells at the rate v and a

Michaelis-Mentens constant, G�. The state functions for tumor cell proliferation and tumor

cell death are given as:

SdðGðtÞÞ ¼ 1 �
GðtÞ

GðtÞ þ Gmin

� �

tanhðtÞ ½4�

Table 1. The definitions, units, and source for the model parameters.

Parameter Definitions Units Source

kp Proliferation rate day-1 Calibrated

kd Death rate due to starvation day-1 Calibrated

kbys Death rate due to bystander effect day-1 Calibrated

θ Carrying capacity cells Assigned from literature [37]

v General glucose consumption mM�cell-1�day-1 Calibrated

G� Michaelis-Menten constant mM Assigned from literature [11]

Gmin Minimum glucose level for uptake mM Assigned from literature [11]

https://doi.org/10.1371/journal.pone.0240765.t001
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SpðGðtÞÞ ¼ 1 � 1 �
GðtÞ

GðtÞ þ Gmin

� �

tanhðtÞ; ½5�

where Gmin is the minimum glucose level required for proliferation. The parenthetical term on

the right-hand side of Eq [4] describes the dependence of cell fate (proliferation or death) on

glucose availability. In our approach, the proliferation (growth) rates and death rates should be

considered as the maximum rates possible, while the real-time proliferation or death rates due

to glucose depletion are modified by the state functions (Eqs [4] and [5]). According to Eq [5],

as G(t)➝1, Sp(G(t))➝ 1 and the growth rate is maximized. Conversely, as G(t)➝ 0, Sp(G
(t))➝ 0 and the growth rate is minimized. That is, more glucose contributes to faster prolifera-

tion of cells. Similarly, according to Eq [4], the death rate due to glucose depletion is maxi-

mized as G(t)➝ 0 and minimized as G(t)➝1. In summary, our model accounts for changes

in both the growth and death rates due to glucose depletion as determined by the real-time glu-

cose concentrations. As tumor cells may keep proliferating for some time even in a glucose

free medium (please see S3 Fig), we introduced a hyperbolic tangent function of time. We

hypothesize the tumor cell population is composed of two sub-populations, one that has

passed the restriction point [31–34], is committed to divide, and thus does not need to be

checked by the state function; and a second subpopulation that has not passed the restriction

point, and thus has to be checked by the state function. The hyperbolic tangent function, tanh

(t), increases from 0 to 1 as time increases from 0 to infinity; thus, tanh(t) on the right-hand

side of Eq [4] introduces a delay due to the duration of mitosis [35, 36] of the cells that have

passed the check point. All the cells were cultured in medium with the same glucose concen-

tration (the “native” cell culture medium) after seeding (plating). Thus, all cell metabolism was

initially driven by the same (native) glucose condition. After changing the media at the begin-

ning of the experiment, the cells gradually switched to the second “state” where their metabo-

lism were driven by the glucose concentrations in the media which were different than their

native state. In our model, the tanh(t) term represents the time it takes for the cells to “switch”

from the native state to the second “state”. The number of cells that have passed the checkpoint

before the medium change is determined by the glucose concentration in the “native” cell cul-

ture medium. This delay is not affected by the glucose concentration supplied in the medium

after medium change. At time 0, the effect of glucose concentration described by the paren-

thetical term is multiplied by tanh(0), and becomes 0. This means the effect of glucose concen-

tration is not sensed by cells immediately. At a later time, as tanh(t) increases to 1, the effect of

glucose concentration increases until fully sensed by the cells. Afterwards, any further mitosis

is fully affected by glucose concentration through the state function. The effect of the “native”

cell culture media on the growth of the tumor cells would only exist at the earliest stages of the

experiment, thereby making the tanh(t) function appropriate. Note that we have Sd(G(t)) +

Sp(G(t)) = 1, as we assume the tumor cells are either proliferating or dying.

Eqs [1]–[5] can then be used to generate a family of three models by making a small set of

simplifying assumptions. If we remove cell death due to the bystander effect in Eqs [1] and [2],

we create another coupled system. Similarly, if we remove cell death due to glucose depletion

in Eqs [1] and [2], we construct a third coupled system. Specifically, Model 2 is the complete

model described by Eqs [1]–[5], Model 1 neglects cell death due to the bystander effect, and

Model 3 neglects cell death due to glucose deprivation, but retains cell death due to the

bystander effect. These three sets of equations provide our three-member model family which

we then subject to a model selection operation to identify the most parsimonious model.
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2.5 Model calibrations

The model described in the previous section was calibrated to experimentally measured live

and dead cell time courses (described in Section 2.3), with the initial glucose concentration

and confluence serving as the initial conditions. Recall that the overall goal was to calibrate

model parameters against a test data set, and then use the subsequent parameterized model to

predict tumor cell numbers in a validation cohort. To achieve this goal we performed a series

of three calibrations for each cell line: one in which the parameters were calibrated for each

individual time course, another in which the parameters were calibrated globally (i.e., a single

set of parameters for the entire cohort/test set), and in the third in which we combined the

results from the first two approaches so that some parameters were calibrated globally and oth-

ers calibrated individually as a function of initial conditions.

In the first calibration scenario, the measured live and dead tumor cell time courses were

independently fit to the model (i.e., Eqs [1]–[5]) to produce separate estimates for each model

parameter within each cell line. We conducted model fitting like this for all 120 pairs of living

and dead confluence time courses to generate 120 sets of estimates for local parameters. This

approach would provide the lowest error (the difference between model fitting and measured

data), but come with a high possibility of overfitting. The resulting parameter values were then

further analyzed to determine if their value was a function of initial glucose level and confluence.

In the second calibration scenario, the measured live and dead tumor cell time courses were fit

by assuming model parameters were independent of initial conditions; i.e., a single set of global

model parameters were determined to simultaneously fit all time courses (for each cell line). This

approach assumed that the parameter values were not affected by initial conditions and are spe-

cific to each cell line. This approach provided the highest error, but least likely to overfit. We

then systematically investigated a range of combinations of local and global parameters to

achieve a balance between the fitting error and the risk of overfitting. We investigated the distri-

butions of estimates of the local parameters in different combinations. We noticed that the esti-

mates of kp, kd, and v tended to converge to similar values across replicates, suggesting they could

be global parameters, while the estimates of kbys presented a wide distribution. Therefore, in the

third calibration scenario, we assumed (based on the results of the first two calibration scenarios)

that the proliferation rate, kp, the consumption rate of glucose, v, and the death rate due to glu-

cose depletion, kd, were specific for each cell line, while the other parameter, kbys was a function

of initial confluence and glucose levels. A Student’s t-test was used to test for statistical differ-

ences, between the two cell lines, of each global model parameter (i.e., kp, v, and kd) estimated.

To perform each of the above calibrations, we employed a non-linear, least squares

approach which seeks to minimize the residual sum of square (RSS) errors between the mea-

sured data and the model described in section 2.4. We defined the system of ODEs, initial con-

ditions, and time steps in Matlab using the built-in ODE solver ‘ode45’ to estimate the model

parameters. We used a least square optimization algorithm ‘lsqcurvefit’ to update the parame-

ter estimates and minimize the RSS errors. To avoid local minima, we used Matlab’s ‘Multi-

Start’ to run, in parallel, 10 optimization problems with different initial parameter guesses to

identify the set of parameters that minimized the RSS error. The initial parameter guesses that

led to the solution point with the lowest (best) RSS error were recorded and set to be the sin-

gle-start initial points for a second round of ‘lsqcurvefit’ to calculate the residuals and Jacobian

matrix, which cannot be acquired during the first-round fitting with multiple starting points.

The residuals and Jacobian matrix were used to determine the confidence interval for each

parameter by calling the function, ‘nlparci’. Before the fitting procedure, the initial live and

dead tumor cell numbers were assigned as the average of the first three timepoints to reduce

error in the estimation of the initial conditions.
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2.6 Model selection

As the three models (described in Section 2.4) with the different fitting strategies (described in

Section 2.5) are phenomenological in nature (i.e., they are not derived from first principles),

we do not know which one, a priori, provides the best description of the experimental data. To

address this limitation, we performed model selection via the Akaike Information Criteria

(AIC) [38]. The AIC seeks to select the most parsimonious model by balancing goodness of fit

with the number of free parameters. Given our data set, we will employ the AICc [39, 40]

which includes a correction for small sample size and is given as follows:

AICc ¼ nlnðRSSÞ þ 2pþ
2pðpþ 1Þ

n � p � 1
; ½6�

where n is the number of data samples and p is the number of model parameters. The model

with the lowest AICc value is selected as the most parsimonious.

2.7 Determining the dependence of model parameters on initial conditions

We investigated the correlation between the model parameters and the initial conditions. If a

relationship can be found between a given parameter and initial conditions, then that parame-

ter can be assigned on an individual experimental basis via an experimentally developed

“look-up” table. Such an approach helps to “personalize” each prediction as these model

parameters are determined by the initial condition of the experiment under investigation. Fur-

thermore, the initial conditions are (by definition) frequently known (or, at least, bounded) at

the beginning of the experiment so it provides a practical way to constrain model predictions.

The results of the third calibration scenario showed that kbys for the BT-474 line increased with

higher initial confluence (see S4 Fig), but decreased with higher initial glucose level, while kbys
for the MDA-MB-231 line was not affected by initial confluence (see S5 Fig), but decreased

with higher initial glucose level. The dependence of local parameter (i.e., parameters calibrated

for individual time courses) values on initial conditions were determined by Pearson’s partial

correlation coefficient. Given this relationship, we sought to determine if there was a simple

functional relation between model parameters and initial conditions. We were able to find one

such relation for kbys for the BT-474 cells:

kbys ¼ kbys;0N0expð� aG0Þ; ½7�

where N0 is the initial confluence, G0 is the initial glucose concentration, kbys,0 is the maximum

kbys rate, and α is a decay parameter. We then fit Eq [7] to the set of initial conditions and asso-

ciated parameter estimates (with their confidence intervals) obtained from the training data

set to estimate kbys,0, α, and their respective 95% confidence interval. Thus, Eq [7] determines a

parameter surface where kbys can be estimated given the initial confluence and glucose. This

death rate, combined with estimates of the other global parameters (i.e., kp, v, and kd), can then

be substituted into the Eqs [1]–[5] to predict tumor cell number at future time points. Using

an analogous procedure, a similar relation was determined for the MDA-MB-231 cells:

kbys ¼ kbys;0expð� aG0Þ þ b; ½8�

where the parameters are as indicated for Eq [7], with β being a base death rate which is pres-

ent in this cell line even when sufficient glucose is present. Note that N0 does not appear in Eq

[8] as this death rate for MDA-MB-231 cells is not affected by the initial confluence. Thus, Eq

[8] also determines a parameter curve where kbys can be estimated given the initial glucose

level. Again, this death rate, combined with estimates of the other global parameters (i.e., kp, v,
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and kd), can then be substituted into the Eqs [1]–[5] to predict tumor cell number at future

time points.

2.8 Training and validation

The data measured from the time-resolved microscopy experiments were divided into training

(75% of the data) and validation sets [41, 42] by random sampling. The 120 pairs (each pair in

our experiments consisted of a confluence time course for live cells and a confluence time

course for dead cells from the same well) of confluence time courses were numbered from 1 to

120. In each round of training, a random number generator (Matlab function ‘randperm’) was

used to randomly select 90 integers from the integers 1 to 120 without repeats. The confluence

time courses with the corresponding number were used as the training set (75% of the data),

while the remaining 30 sets of confluence time courses were used as the validation set (25% of

the data). The training subset was used to calibrate the global parameters kp, kd, and v. We cal-

culated the absolute value of the error between the best fit curve and measured data across the

whole training set to provide an estimate of the error in the measurement (i.e., uncertainty) of

the initial number of live and dead tumor cells, as required for forming a prediction on the val-

idation set. Then, given these global parameters, and the initial conditions (i.e., G0 and N0)

from each time course in the validation set, kbys was calculated using Eq [7] for the BT-474 line

or [8] for the MDA-MB-231 line. Next, kbys was combined with the global parameters and ini-

tial conditions to run the forward model via Eqs [1]–[5]. The resulting predicted tumor cell

number time courses (with confidence intervals) for live and dead tumor cells were compared

to the corresponding measured data and the errors were tabulated. We defined ‘prediction

accuracy’ as the fraction of measured data that fell within the 95% confidence intervals of the

predicted growth curves, while accuracy for the whole validation set was determined as the

average ‘prediction accuracy’ over all measured time courses. This training and validation pro-

cess was repeated 50 times, and the average error for predicted time courses and average over-

all accuracy was recorded. To evaluate the model’s performance, we report the averages of the

RSS, mean percent error over the time course percent error at the end of experiment, mean

error over the time course, error at the end of experiment (explicit matrices are presented in

S2 Table).

3. Results

3.1 Tumor cell growth with different initial conditions

Example time courses for the BT-474 cell line, with different initial confluences (i.e., seeding

density) and four glucose concentrations are shown in Fig 2A–2C. For wells with low initial

confluence (Fig 2A), intermediate initial confluence (Fig 2B), and high initial confluence (Fig

2C), the percent change (mean ± 95% confidence interval) on the number of live cells from

day 0 to day 4 with initial glucose concentrations of 0.2 mM, 0.5 mM, 2 mM, and 5 mM are

shown in Table 2. The average number of live cells for each experiment at the end of day 4 was

significantly different among the groups with different initial conditions (p< 10−5).

Example time courses for the MDA-MB-231 cell line, with different initial confluences and

four glucose concentrations, are shown in Fig 2D–2F. For wells with low initial confluence

(Fig 2D), intermediate initial confluence (Fig 2E), and high initial confluence (Fig 2F), the per-

cent change on the number of live cells from day 0 to day 4 with initial glucose concentrations

of 0.2 mM, 0.5 mM, 2 mM, and 5 mM are shown in Table 2. The average number of live cells

for each experiment at the end of day 4 was significantly different among the groups with dif-

ferent initial conditions (p< 10−5).
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3.2 Model calibration

The model characterized by Eqs [1]–[5] featuring three global parameters (kp, kd, and v), and

one local parameter dependent on initial conditions (kbys) was selected by the AICc as the most

parsimonious and employed for all subsequent analysis (details provided in S1 Table). The

estimates for the three global parameters and their 95% confidence intervals for both BT-474

and MDA-MB-231 cells are shown in Table 3. The proliferation and glucose consumption

rates of the BT-474 cells were significantly lower than the MDA-MB-231 cells (p< 10−4),

while the death rate due to glucose depletion of the BT-474 cells was higher than MDA-MB-

231 cells (p< 10−4).

As described in Section 2.5, the selected model (i.e., the model with globally calibrated kp,
kd, and v and locally calibrated kbys) was fit to the measured experimental data. The mean per-

cent error across all timepoints, mean percent error at the end of experiment mean error

across all timepoints, and mean error at the end of experiment are reported in Table 4. The

model was able to provide an accurate description of the time course data over a wide range of

initial conditions with mean percent error and mean percent error at the end of experiments

below 7% for live cells in both cell lines (Table 4). For the dead cells, the model performs more

Fig 2. Time courses of tumor cell confluence in media with varying initial glucose levels, grouped by initial

confluence. Panels a-c present confluence time courses for the BT-474 cell line, while panels d-f present confluence

time courses for the MDA-MB-231 cell line. Different colors represent the four initial glucose concentrations, and the

error bars were calculated from four replicates with similar initial conditions. In each panel, cells represented by each

color were seeded at the same initial confluence, but yielded significant differences in confluence at the end of the

experiment. These time courses provide quantitative and dynamic data on the effects of glucose availability and

confluence on tumor cell growth.

https://doi.org/10.1371/journal.pone.0240765.g002

Table 2. Average percent change on the number of live cells from day 0 to day 4.

Cell Line Initial Confluence (%) Initial Glucose Concentration (mM)

0.2 0.5 2 5

BT-474 Low 23.8 ± 0.5 -34.3 ± 12.3 -6.5 ± 10.5 +31.4 ± 8.4 +35.7 ± 1.8

Intermediate 35.9 ± 1.8 -63.7 ± 9.3 -55.6 ± 3.1 -10.4 ± 19.6 +14.9 ± 8.3

High 51.7 ± 1.4 -76.0 ± 1.0 -76.3 ± 1.5 -43.9 ± 12.4 -17.6 ± 7.6

MDA-MB-231 Low 36.9 ± 1.0 -68.3 ± 7.9 -47.7 ± 12.7 +30.2 ± 13.5 +32.9 ± 7.9

Intermediate 56.2 ± 1.4 -63.7 ± 10.3 -46.5 ± 10.6 -1.8 ± 3.4 +13.3 ± 2.1

High 71.9 ± 1.0 -41.5 ± 11.6 -33.6 ± 9.2 -10.0 ± 3.2 -1.6 ± 2.9

https://doi.org/10.1371/journal.pone.0240765.t002
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modestly with mean percent error between 16% and 67% over all initial conditions. Impor-

tantly, the mean error, either across all timepoints or at the end of experiment, was < 2% for

both live and dead cells in both cell lines. This suggests the higher percent error of dead cells is

due to the small number of dead cells as compared to the number of live cells.

3.3 Relationship between bystander effect death rate (kbys) and initial

conditions

For the BT-474 cells, the death rate due to the bystander effect, kbys, was found to increase with

increasing initial confluence, with a partial correlation coefficient of 0.66 (p< 10−4). For 8 of

10 initial glucose levels tested (0, 0.1, 0.2, 0.5, 0.8, 1, 2, and 5 mM), the bystander effect death

rate was positively correlated with initial confluence, with correlation coefficients all above

0.74 (p< 0.01). Estimates of kbys were plotted against the initial confluence level (Fig 3A). The

correlation coefficients between kbys and initial confluence level were 0.75, 0.94, 0.81, 0.81, and

0.84 for initial glucose level of 0.2 mM, 0.5 mM, 1 mM, 2 mM, and 5 mM, respectively. For the

highest two initial glucose levels (8 and 10 mM), there was no significant correlation between

the bystander effect death rate and the initial confluence (p> 0.1). The bystander effect was

found to decrease with increasing initial glucose level, with a partial correlation coefficient of

-0.74 (p< 10−4). For low (23.8 ± 0.5%), intermediate (35.9 ± 1.8%), and high (51.7 ± 1.4%) ini-

tial confluences, there are significant correlations between kbys and the initial glucose level (Fig

3B), with correlation coefficient of -0.44 (p< 0.01), -0.80 (p< 10−4), and -0.91 (p< 10−4).

Given these relationships, kbys was fit to each initial condition as described in Section 2.7 (see

Eq [7]), yielding a kbys,0 of 2.37 ± 0.13 × 10−5 mM�cell-1�day-1 and an α of 0.13 ± 0.029 mM-1.

With kbys,0 and α identified, Eq [7] defines a parameter surface where we can obtain the value

of kbys for any initial confluence and glucose level within the experimentally measured range

(Fig 3D).

For the MDA-MB-231 cells, there was no significant correlation between the death rate due

to the bystander effect and the initial confluence with a partial correlation coefficient of -0.03

(p = 0.73). The bystander effect was found to decrease with increasing initial glucose level

Table 3. Parameter estimates obtained from the global calibration procedure.

Parameters Cell Line p-value

BT-474 MDA-MB-231

kp (day-1) 0.092 ± 0.002 0.14 ± 0.003 < 10−4

kd (day-1) 0.13 ± 0.013 0.041 ± 0.006 < 10−4

v (×10−5 mM�cell-1�day-1) 2.68 ± 0.10 4.48 ± 0.15 < 10−4

https://doi.org/10.1371/journal.pone.0240765.t003

Table 4. Evaluation of fitting quality with selected model for both cell lines.

Cell Line

BT-474 MDA-MB-231

Live Dead Live Dead

RSS 1.35 1.13 1.87 1.31

Mean % Error 0.09 ± 0.23 66.01 ± 4.13 0.59 ± 0.22 18.17 ± 1.66

% Error EoE� -0.78 ± 3.44 44.37 ± 30.63 6.22 ± 2.31 16.92 ± 18.43

Mean Error -0.01 ± 0.06 0.61 ± 0.05 -0.03 ± 0.07 0.87 ± 0.05

Error EoE� 0.24 ± 0.57 0.56 ± 0.42 1.65 ± 0.42 0.42 ± 0.43

�EoE = End of Experiment

https://doi.org/10.1371/journal.pone.0240765.t004
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(Fig 3C), with a partial correlation coefficient of -0.72 (p< 10−4). For the low (36.9 ± 1.0%),

intermediate (56.2 ± 1.4%), and high (71.9 ± 1.0%) initial confluences, there are significant

correlations between the death rate due to the bystander effect and the initial glucose level,

with correlation coefficient of -0.76 (p< 10−4), -0.76 (p< 10−4), and -0.66 (p< 10−4). Given

these relationships, kbys was fit to each initial condition as described in Section 2.7 (see Eq [8]),

yielding a kbys,0 of 0.71 ± 0.067 × 10−5 mM�cell-1�day-1, an α of 0.98 ± 0.23 mM-1 and a β of

0.22 ± 0.053 mM�cell-1�day-1. With kbys,0, α, and β identified, Eq [8] defines a parameter curve

where we can obtain the value of kbys for any initial glucose level within the experimentally

measured range (Fig 3E).

3.4 Evaluation of model performance through training and validation

In each round of training and validation, 75% of the whole dataset was randomly selected for a

training set, with the remainder assigned to the validation set. The selected model (i.e., the

model with globally calibrated kp, kd, and v and locally calibrated kbys) was calibrated to each

time course in the training set to obtain estimates and confidence intervals for the model

parameters.

Fig 3. Relationship between bystander effect death rate (kbys) and initial conditions. Panel a presents estimates of the death rate due to the bystander effect, kbys, as a

function of different initial confluence and glucose levels for BT-474 cells. For each glucose level, kbys increases with higher initial confluence, where the lowest initial

glucose level increases kbys the most. Panel b indicates that kbys increases with higher initial confluence and decreases with higher initial glucose level for the BT-474 line.

(Error bars were calculated from the four wells with similar initial conditions.) Panel c shows that kbys decreases with higher initial glucose level for the MDA-MB-231

cell line. (Error bars were calculated from the twelve wells with same initial glucose level.) Panel d shows the parameter surface for the BT-474 cell line, where kbys is

displayed as function of initial confluence and glucose level, with blue dots representing calibrated estimates of kbys. Panel e indicates how kbys decreases with initial

glucose level for the MDA-MB-231 line, with shaded area between solid red curves showing the 95% confidence interval. The blue dots represent the calibrated estimates

of kbys. The fitted surface and curve in panels d and e, respectively, is used to assign kbys as a function of initial confluence and glucose concentration in the validation

data set.

https://doi.org/10.1371/journal.pone.0240765.g003
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For the BT-474 cells, we reported the model performance during training (Table 5). The

average mean percent error across all timepoints, and the average percent error at the end of

experiment were< 1% for live cells. Although the average mean percent error across all time-

points, and the average percent error at the end of experiment were> 45% for dead cells, the

average mean error across all timepoints and average error at the end of experiment

were< 1% for both live and dead cells. The average uncertainty across 50 training sets for live

and dead cells were 6.88 ± 0.09% and 30.83 ± 0.15%, respectively.

For the BT-474 cells, the parameters kbys,0 and α in Eq [7] were estimated as described in

section 2.7 and a specific parameter surface of kbys was determined. The uncertainty calculated

from fitting the data of the training set to the model was used to estimate the confidence inter-

val of the initial confluence from the validation set. The initial conditions (i.e., initial glucose

level and confluence) from the validation set were used with Eq [7] to identify the value of kbys
to be used, in conjunction with the three global parameters (kp, v, and kd and their respective

confidence intervals) in Eqs [1]–[5] to run the forward model. This process was repeated 50

times to obtain an average RSS, average mean percent error, average percent error at the end

of experiment, average mean error, average error at the end of experiment, and accuracy

(Table 6). The accuracy was defined as the percent of data points falling within the 95% confi-

dence interval of the predicted values. The average RSS was 1.45 ± 0.09 and 1.22 ± 0.09 for live

and dead cells, respectively, while the accuracy was 77.2 ± 6.3% and 50.5 ± 7.5% for live and

dead cells, respectively. The average mean percent error across all timepoints and the average

percent error at the end of experiment were both< 2% for live cells. Although the average

mean percent error across all timepoints and average percent error at the end of the

Table 5. Summary of model calibration across 50 training sets.

Cell Line

BT-474 MDA-MB231

Live Dead Live Dead

RSS 1.09 ± 0.02 0.88 ± 0.01 2.22 ± 0.02 0.96 ± 0.02

Mean % Error 0.24 ± 0.04 72.42 ±1.23 -0.26 ± 0.06 12.29 ± 0.29

% Error EoE� -0.90 ± 0.28 49.88 ± 2.41 6.01 ± 0.24 11.25 ±1.62

Mean Error 0.07 ± 0.01 0.69 ± 0.01 -0.52 ± 0.03 0.19 ± 0.02

Error EoE� 0.25 ± 0.04 0.69 ±0.03 1.44 ±0.05 -0.62 ± 0.05

Uncertainty 6.88 ± 0.09 30.83 ± 0.15 5.17 ± 0.05 16.78 ± 0.12

�EoE = End of Experiment

https://doi.org/10.1371/journal.pone.0240765.t005

Table 6. Evaluation of prediction across 50 rounds of training and validation.

Cell Line

BT-474 MDA-MB231

Live Dead Live Dead

RSS 1.45 ± 0.09 1.22 ± 0.09 1.69 ± 0.10 1.35 ± 0.12

Mean % Error -1.96 ± 0.54 153.18 ± 9.07 -0.59 ± 0.47 25.22 ± 1.27

% Error EoE� -5.78 ±1.49 168.20 ±16.31 7.04 ± 1.62 47.54 ± 9.95

Mean Error -0.78 ± 0.15 1.57 ± 0.13 -1.15 ± 0.15 0.87 ± 0.16

Error EoE� -1.66 ± 0.33 2.67 ± 0.27 -0.12 ± 0.38 1.09 ± 0.43

Accuracy 77.2 ± 6.3 50.5 ± 7.5 87.2 ± 5.1 66.7 ± 7.0

�EoE = End of Experiment

https://doi.org/10.1371/journal.pone.0240765.t006
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experiment for dead cells can be as high as> 150%, the average mean error across all time-

points and average error at the end of experiment were < 3% for both live and dead cells. Fig 4

presents representative prediction results compared with measured data on BT-474 cells from

the same round of training and validation (Fig 4).

For the MDA-MB-231 cells, we reported the model performance during training (Table 5).

The average mean percent error across all timepoints, and the average percent error at the end

of experiment were < 13% for both live and dead cells. The average mean error across all time-

points and average error at the end of experiment were < 2% for both live and dead cells. The

average uncertainty across 50 training sets for live cells and dead cells were 5.17 ± 0.05% and

16.78 ± 0.12% respectively.

For the MDA-MB-231 cells, the parameters kbys,0, α, and β in Eq [8] were estimated as

described in section 2.7 and a specific parameter curve for kbys was determined. The uncer-

tainty calculated from fitting the data of the training set to the model was used to estimate the

confidence interval of the initial confluence from the validation set. The initial condition (i.e.,

initial glucose level) from the validation set were used with Eq [8] to identify the value of kbys
to be used, in conjunction with the three global parameters (kp, v, and kd and their respective

confidence intervals) in Eqs [1]–[5] to run the forward model. This process was repeated 50

times to obtain average RSS, average mean percent error, average percent error at the end of

experiment, average mean error, average error at the end of experiment, and accuracy

(Table 6). The accuracy was defined as the percent of data points falling within the 95% confi-

dence interval of the predicted values. The average RSS was 1.69 ± 0.10 and 1.35 ± 0.12 for live

and dead cells, respectively, while the accuracy was 87.2 ± 5.1% and 66.7 ± 7.0% for live and

Fig 4. Model predictions for BT-474 cells. Example model predictions from one validation set of BT-474 cells are

shown in dashed lines. In each panel, data measured from experiments are shown in circles, while the 95% confidence

intervals for the predicted tumor cell growth and dead cell accumulation numbers are shown with shaded regions

between the solid curves; with blue indicating live cells, and red indicating dead cells. The initial glucose level is shown

above each plot. For this validation set, the model prediction accuracy was 72.2 ± 8.6% and 49.3 ± 10.0% for live and

dead cells, respectively.

https://doi.org/10.1371/journal.pone.0240765.g004
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dead cells, respectively. The average mean percent error across all timepoints and the average

of percent error at the end of experiment were both< 8% for live cells. Although the average

percent error across all timepoints and average error at the end of experiment for dead cells

were> 25%, the average mean error across all timepoints and average error at the end of

experiment were< 2% for both live and dead cells. Fig 5 presents representative prediction

results compared with measured data on MDA-MB-231 cells from the same round of training

and validation (Fig 5).

4. Discussion

This study sought to develop an experimental-mathematical approach to quantify tumor cell

proliferation as a function of glucose availability. This allowed us to quantify important cell

phenotypes related to proliferation and cell death, and then use the model to predict the tem-

poral change in tumor cell number. To accomplish this task, we proposed a family of three

models in which each member of the family consisted of a system of coupled ordinary differ-

ential equations (ODEs) describing the rate of change of living and dead tumor cell number

and glucose concentration. The complete model considered tumor cell proliferation, cell death

due to glucose depletion, the bystander effect quantifying the effects of dead cells accumulated

in the environment, and the consumption of glucose. To calibrate the model, we acquired

time-resolved microscopy images to generate confluence time courses of both live and dead

tumor cells over an array of initial glucose concentrations and confluences. We then fit the

data to all the models and selected the most parsimonious model with the lowest AICc value.

The complete model (model 2; i.e., Eqs [1]–[5]) achieved the lowest fitting error for the

Fig 5. Model predictions for MDA-MB-231 cells. Example model predictions from one validation set of MDA-MB-

231 cells are shown in dashed lines. In each panel, data measured from experiments are shown in circles, while the 95%

confidence intervals for the predicted tumor cell growth and dead cell accumulation numbers are shown with shaded

regions between the solid curves; with blue indicating live cells, and red indicating dead cells. The initial glucose level is

shown above each plot. For this validation set, the model prediction accuracy was 86.9 ± 7.4% and 69.6 ± 9.4% for live

and dead cells, respectively.

https://doi.org/10.1371/journal.pone.0240765.g005
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complete dataset, while the other two models yielded a significantly higher fitting error to the

data. For model 1, which neglects the bystander effect, the death due to glucose depletion is

not sufficient to capture all the cell death, especially for cells seeded with high initial glucose

and high initial confluence. For model 3, which neglects the death due to glucose depletion,

the initiation of cell death cannot be explained when there are initially no dead cells and, there-

fore, perform worse and overestimate the death rate for cells with low glucose level and few

dead cells at the beginning. During the model selection, we determined that the proliferation

rate, death rate due to glucose depletion, and consumption rate of glucose were three parame-

ters that depended only on cell line and not initial conditions; thus, they could be fit as global

parameters. Conversely, it was determined that the death rate due to the bystander effect was a

local parameter that varied with the initial conditions. We therefore investigated the relation-

ship between this parameter and the initial conditions for each cell line. The contributions

from each physical term in the governing equations depend on initial conditions and change

over time. In general, the contribution from logistic growth is dominant at the beginning and

drops over time with the consumption of glucose. The contribution from death due to glucose

depletion begins at time 0 and increases over time with the consumption of glucose. The con-

tribution from death due to the bystander effect increases over time with the accumulation of

dead cells. However, if there is sufficient glucose throughout the experiment, the contribution

from logistic growth would remain dominant, with little contribution from death terms.

Examples of relative contributions are provided in S3 (for BT-474 cells) and S4 Tables (for

MDA-MB-231 cells). Finally, we evaluated the performance of the selected model through

training and validation.

Mathematical models have been developed to describe cancer cell metabolism from differ-

ent perspectives. For example, Mendoza-Juez et al. [11] focused on glucose and lactate as the

main nutrient resources, and thus concentrated on the dynamic development of two subpopu-

lations with different metabolic behavior. Conversely, Astanin and Preziosi [12], while simi-

larly modeling oxidative and glycolytic subpopulations, also included oxygen consumption

and ATP production in their model. Without measurement, this system was characterized

with typical values of dimensionless parameters for simulation. These models, with a heavy

reliance on a large number of unmeasured parameters, can be difficult to calibrate and there-

fore difficult to apply within an experimental-predictive framework.

The family of models proposed in this study was derived from the work of Mendoza-Juez

et al. [11], but included simplifications. We viewed the live tumor cells as a single population

instead of two subpopulations with different metabolic phenotypes. In our model, we assumed

the tumor cells may include all states varying between complete oxidative phosphorylation

and complete anerobic glycolysis, instead of merely modeling the two phenotypes. This is

most easily seen in Eq [1], where we treat the proliferation (growth) rate as the maximum rate

possible under any metabolism. When the fraction of oxidative phosphorylation and anerobic

glycolysis varies in response to different glucose levels, the modified real-time proliferation

rate represents a weighted-average of the proliferation rates under complete oxidative phos-

phorylation and complete anerobic glycolysis. Therefore, we decided to focus on the overall

cell population, rather than each cell’s individual metabolic phenotype. In our model, the pro-

liferation rate can be considered as an average of all cells possible proliferative activity (simi-

larly for the death rate). Our simplification avoided the need to monitor the conversion

between the two phenotypes as well as the fractional change over time. This approach has both

experimental and computational advantages. Experimentally, we are not forced to develop a

method that is capable of making serial, non-destructive measurements of metabolic activity

of the same cells over time. Computationally, this approach reduces the number of parameters

that we would need to calibrate from experimental data. At the cost of losing detailed
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phenotype or subpopulation dynamics, the simplification allowed us to practically connect the

accessible experimental data and mathematical modeling. Given sufficient experimental data

(via the time-resolved microscopy data) and known initial conditions, we were able to perform

a direct calibration of our model. This experimental-computational approach was applied in

two cell lines, representing very different breast cancer subtypes. We found the proliferation

rate of the BT-474 cells was statistically lower than MDA-MB-231 cells. We found the death

rate due to glucose depletion for the BT-474 cells was statistically higher than that of the

MDA-MB-231, while the consumption rate of glucose for the BT-474 cells is statistically lower

than that of the MDA-MB-231 cells. We concluded that while MDA-MB-231 cells consume

glucose at a higher rate (thereby enabling more rapid growth and division), the glucose level

required for proliferation was lower than that of the BT-474 cells. These results serve to quan-

tify the well-established experimental observations that MDA-MB-231 is more aggressive than

the BT-474 cell line [43–45]. Once calibrated, our model could be used to predict the number

of live tumor cells, validated by direct comparison with experimental data.

We noticed that the term describing the death due to glucose depletion was not sufficient to

capture all the death observed in the experimental data. Considering the competition for space

between the dead (prior to detaching) and live cells and, therefore, the potential cytotoxicity

from the dead to the live cells, we introduced an extra term to account for this bystander effect.

It represented the bulk phenomenon that dead cells can release factors, which may be sensed

by the remaining live cells, and potentially induce cell death [26, 27]. We note that the

bystander effect is multi-factorial as it involves multiple mechanisms, either mediated by GJIC

(gap junction intracellular communication) capacity [46–48] or soluble factors [49–51]. The

death rate due to the bystander effect, kbys, proved to be dependent on the initial conditions.

Therefore, kbys was estimated individually for each set of initial conditions, and not considered

as a global parameter. The bystander effect parameter for both cell lines became significantly

lower when the initial glucose level increased. This parameter significantly increased when the

initial confluence for the BT-474 cell line increased, but was not affected by initial confluence

in the MDA-MB-231 line. This difference indicates there could be different mechanisms

underlying the bystander effect in different cell types. Studies concerning the bystander effect

can be identified into two separate groups. In the first case, the bystander effect is proven to be

mediated by degree of GJIC capacity [46–48]. Since BT-474 cells are mass cells with robust

cell-cell adhesion and close cell contact within clusters, they have high GJIC capacity. How-

ever, MDA-MB-231 cells do not form clusters with strong cell contact and exhibit low GJIC

level. These are consistent with the results that the death rate of bystander effect for BT-474

increases with initial confluence, but is not affected by initial confluence for MDA-MB-231. In

the second case, killing of the non-treated cells involves the release of one or more soluble fac-

tors, such as apoptosis inducing signals [49], extracellular vesicles [50], or oxidizing diffusive

factors [51]. In our study, the death rate of bystander effect for MDA-MB-231 is not affected

by initial confluence, implying there would be at least one soluble factor regulated by metabo-

lism. Furthermore, there could be multiple mechanisms underlying the bystander effect for a

given cell line, considering the death rate of bystander effect for BT-474 is affected by both

confluence and glucose level. While further work including the identification and quantifica-

tion of these factors is required to support our work, this experimental-computational

approach allows us to analyze the characteristics of bystander effect for the cell line tested. This

could provide guidance on choice of enhanced therapies utilizing the bystander effect (e.g.,

GJIC enhancement) for synergistic effect [48].

The experimental-computational approach was developed and validated in two commonly

studied breast cancer cell lines and is applicable to other cell lines. Given a new cell line, the

same approach can be followed to estimate the proliferation rate, the death rate due to glucose
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depletion, and the consumption rate of glucose, as well as determining the correlation between

the death rate due to bystander effect and the initial conditions. Additionally, the framework

allows for the prediction of the growth of a new tumor cell line given the initial conditions of

glucose concentration and cell number. Thus, our experimental-mathematical approach

allows for the systematic investigation of the response of different cell lines to glucose availabil-

ity, thereby enabling the ability to quantitatively study the potential metabolism-related

therapy.

The present work assumed glucose consumption was entirely captured by the temporal

change of tumor cell number, which is most likely an oversimplification. To address this limi-

tation, the development of a method for time-resolved measurement of glucose dynamics is

required. Further quantification and mathematical description of the glucose dynamics (e.g., a

FRET nanosensor for glucose [52]) would provide additional time-resolved data that would

enable extension of the model to more precisely describe glucose kinetics. The hyperbolic tan-

gent function introduced in Eqs [4] and [5] is sufficient to characterize the growth curves in

our current research and we chose to keep it simple to avoid overfitting. However other sig-

moidal functions of time that are more directly related to phenomena affecting glucose

dynamics should be explored to refine to the model by introducing more biology. In particu-

lar, the state functions (i.e., Eqs [4] and [5]) have the potential to be extended to characterize

glucose utilization as a function of cell cycle [53–55]. Additionally, our model could then be

extended to account for additional nutrients of metabolic interest (e.g., lactate, intermediate

products between glycolysis and oxidative phosphorylation, and oxygen). Such an extension

would, of course, require additional time resolved measurements to parameterize the model.

Another area for investigation is in extending the present paradigm to 3D as there is (of

course) a gap between well-controlled 2D monolayer and 3D cell cultures. In 3D, BT-474 cells

form colonies with round borders, while MDA-MB-231 cells present an invasive phenotype

with stellate projections that often bridge multiple cell colonies [25]. BT-474 cells develop

dense multicellular spheroids (MCSs) in 3D cell culture, while MDA-MB-231 cells develop

only loosely aggregated MCSs [56]. These different architectures can lead to different microen-

vironments for the tumor cells, resulting in a non-uniform distribution of nutrients like glu-

cose and oxygen. For example, hypoxia areas can be observed inside the dense 3D-MCSs from

the BT-474 cell lines, but not in the loosely aggregated MCSs from the MDA-MB-231 cells or

cells in 2D-culture [56]. This suggests a higher fraction of glycolysis for BT-474 cells compared

to MDA-MB-231 cells, which indicates that we need to include cell line dependent parameters

for nutrient diffusion, as the diffusion rate can depend on cellular density and tumor architec-

ture. In addition, as hypoxia has been reported to cause cancer cell dormancy in the G0 phase

[57], a reduced proliferation rate can be expected for BT-474 cells. Thus, when applying our

modeling approach to 3D data, with more complicated microenvironments and tumor archi-

tectures, we would likely need to design new experiments to characterize the spatial distribu-

tion of the cells and nutrients. We also limited the application of our model to only two

different breast cancer cell lines, but given their differences in parameter values, systematic

investigation of a range of cells lines is warranted.

In summary, the temporal change of tumor cell number with different initial glucose levels

and seeding densities was tracked with time-resolved microscopy. These data were used to cal-

ibrate a mathematical model describing cell proliferation and death as a function of glucose

dynamics, which was then used to predict tumor cell dynamics in a separate validation set.

This approach yielded an accuracy of> 75% for predicting the change in the number of living

cells over time, and is readily extendable to account for and predict the effects of interventions

designed to affect glucose metabolism.
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5. Conclusion

We have developed and validated an experimental-mathematical approach that is capable of

accurately predicting how glucose availability influences tumor cell proliferation. The

approach was validated in two commonly studied breast cancer cells in which we were able to

quantify rates directly reporting on cell proliferation, death due to glucose starvation, death

due to the bystander effect, and overall glucose consumption. The different relationships

between kbys and the initial conditions found through model calibration suggested different

mechanisms were involved in the bystander effect in these two breast cancer cell lines. The

complete model, characterized by Eqs [1]–[5] featuring three global parameters (kp, kd, and v),

and one local parameter dependent on initial conditions (kbys), was able to provide the best

characterization of the data, as indicated by the lowest AICc value. Furthermore, this frame-

work is directly applicable to other tumor cell lines. The integration of mechanism-based

modeling and time-resolved microscopy is a powerful, and flexible, approach to systematically

investigate glucose dynamics related tumor cell growth. In addition, we could perform syn-

thetic studies with our model to guide experimental design [58]. By evaluating the value of col-

lecting glucose data at specific time points, we will be able to further validate and optimize the

current model with extra data inputs for future work.

Supporting information

S1 Fig. Steps on cell segmentation for phase-contrast images of BT-474 breast cancer cell

lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window of 400

x 400 pixels from an example image. Panel A: raw image of BT-474 cells; Panel B: image post

‘colfilt’; Panel C: image post the Gaussian filter; Panel D: image post ‘im2bw’; Panel E: image

post ‘imerode’; Panel F: image post ‘imclose’; Panel G: image post ‘imopen’; Panel H: image

post ‘bwareaopen’, the final cell mask; Panel I: overlay of raw image and the cell mask for BT-

474 cells.

(TIF)

S2 Fig. Steps on cell segmentation for phase-contrast images of MDA-MB-231 breast can-

cer cell lines. The size of the whole well image is 2400 x 2400 pixels. Here we present a window

of 400 x 400 pixels from an example image. Panel A: raw image of MDA-MB-231 cells; Panel

B: image post binarization; Panel C: image post ‘imclose’; Panel D: image post ‘bwareaopen’,

the final cell mask; Panel E: overlay of raw images and the cell mask for MDA-MB-231 cells.

(TIF)

S3 Fig. Time courses of tumor cell confluence in media with 0 mM glucose, grouped by ini-

tial confluence. Tumor cells may keep proliferating for some time even in a glucose free

medium, even up to 24 hours for MDA-MB-231 (Panel A). The proliferation in glucose free

medium is not observed for BT-474 (Panel B).

(TIF)

S4 Fig. Estimates of the death rate due to the bystander effect, kbys, as a function of differ-

ent initial confluence, for BT-474 cells. Each subtitle indicates the initial glucose concentra-

tion. For a given initial glucose level, kbys increases with initial confluence. For 8 of 10 initial

glucose levels tested (0, 0.1, 0.2, 0.5, 0.8, 1, 2, and 5 mM, the bystander effect death rate is posi-

tively correlated with initial confluence, with correlation coefficients all> 0.74 (p< 0.01). For

the highest two initial glucose levels (8 and 10 mM), there is no significant correlation between

the bystander effect death rate and the initial confluence (p> 0.1).

(TIF)
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S5 Fig. Estimates of the death rate due to the bystander effect, kbys, as a function of differ-

ent initial confluence, for MDA-MB-231 cells. Each subtitle indicates the initial glucose con-

centration. There is no significant correlation between the bystander effect death rate and the

initial confluence (p> 0.1).

(TIF)

S6 Fig. Model predictions for BT-474 cells. Example model predictions of glucose levels

from one validation set of BT-474 cells. The average glucose levels from predictions are shown

as dashed lines, with the 95% confidence intervals shown as shaded regions between the solid

curves. The initial glucose level is shown above each plot. Please note the scales of vertical axis

in each panel are different to better visualize the change of glucose levels.

(TIF)

S7 Fig. Model predictions for MDA-MB-231 cells. Example model predictions of glucose lev-

els from one validation set of MDA-MB-231 cells. The average glucose levels from predictions

are shown as dashed lines, with the 95% confidence intervals shown as shaded regions between

the solid curves. The initial glucose level is shown above each plot. Please note the scales of ver-

tical axis in each panel are different to better visualize the change of glucose levels.

(TIF)

S1 Table. Results of AICc value for model selection. Model 2 is the complete model

described by Eq [1]–[5]. In Model 1, all the terms involving kbys is removed, while in Model 3,

any term involving kd is removed. In the first calibration, the measured live and dead tumor

cell time courses are independently fit to the model to produce separate estimates for each

model parameter. In the second calibration, all the parameters are treated as global parameters.

In the third calibration, kbys is considered as a local parameter while the other parameters (kp,
kd, and v) are treated as global parameters.

(DOCX)

S2 Table. Explicit matrices of variables used to evaluate the model’s performance. Xmodel,ij

is the number of live or dead cells of well j at timepoint i calculated from the model, Xdata,ij is

the number of live or dead cells of well j at timepoint i from the measured data, t is the total

number of timepoints, w is the total number of wells, and tend is the last timepoint at the end of

experiment (EoE).

(DOCX)

S3 Table. Relative contributions of each term in the mathematical model for the BT-474

cells. The table shows the relative contributions of each term of Eq [1] on days 0, 2, and 4 for

different initial confluences and three initial glucose concentrations (0, 1, and 10 mM).

(DOCX)

S4 Table. Relative contributions of each term in the mathematical model for the

MDA-MB-231 cells. The table shows the relative contributions of each term of Eq [1] on days

0, 2, and 4 for different initial confluences and three initial glucose concentrations (0, 1, and 10

mM).

(DOCX)
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