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Abstract

All living organisms including humans, experience changes in the light exposure generated by 

the Earth’s rotation. In anticipation of this unavoidable geo-physical variability, and to generate 

an appropriate biochemical response, species of many phyla, including mammals have evolved 

a nearly 24-hour endogenous timing device known as the circadian clock (CC), which is 

self-sustained, cell autonomous and is present in every cell type. At the heart of the ‘clock’ 

functioning resides the CC-oscillator, an elegantly designed transcriptional-translational feedback 

system. Notably, the core components of the CC-oscillator not only drive daily rhythmicity of 

their own synthesis, but also generate circadian phase-specific variability in the expression levels 

of thousands of target genes through transcriptional, post-transcriptional and post-translational 

mechanisms. Thereby, this ‘clock’-system provides proper chronological coordination in the 

functioning of cells, tissues and organs. The CC governs many physiologically critical functions. 

Among these functions, the key role of the CC in maintaining metabolic homeostasis deserves 

special emphasis. Indeed, the several features of the modern lifestyle (e.g. travel-induced jet lag, 

rotating shift work, energy-dense food) which, force disruption of circadian rhythms have recently 

emerged as a major driver to global health problems like obesity, cardiovascular disease and 

metabolic liver disease such as non-alcoholic fatty liver disease (NAFLD). Here we review, the 

CC-dependent pathways in different tissues which play critical roles in mediating several critical 

metabolic functions under physiological conditions and discuss their impact for the development 

of metabolic disease with a focus on the liver.
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1 Introduction

Diurnal alteration between the light (day) and the darkness (night) is unavoidable, and 

to adopt to this environmental variable in a manner which best suits to physiology, 

circadian rhythms have evolved over billions of years, and are displayed by nearly all 

living organisms. This clear separation between light-dark periods induces active- and 

rest-phases in various phyla including mammals. The circadian clock (CC) an endogenous 

‘time-keeper’ is the key link between these environmental variable factors and organismal 

physiology, as it sets an adaptive rhythm for physiological mechanisms, as it allows 

them to be anticipated [1–6]. The idea of CC regulating critical functions was noted as 

early as the 18th century regarding the diurnal movement of plant leaves. In 1959, Franz 

Hallberg coined the term ‘circadian rhythm’ (latin origin: about a day) to acknowledge the 

periodicity of these biological rhythms. Subsequently, landmark investigations conducted 

in Drosophila provided the first evidence of genes controlling the circadian rhythm [7]. 

Since then, numerous studies have established plethora of molecular mechanisms which 

generate and maintain these ~24 h rhythms. The importance of investigations on the CC 

was exemplified by the award of the Nobel Prize in Medicine and Physiology (2017) to 

professors Jeffrey C. Hall, Michael Rosbash and Michael Young. The CC-rhythms have 

allowed mammals to anticipate changes in the external environment (e.g. day-night), and 

to respond by adjusting cellular CC-machinery driven numerous physiological functions, 

e.g. metabolism and endocrine functions [1–6]. Accordingly, recent molecular- and genetic-

studies have demonstrated that, in mammals, the expression of numerous genes in 

different organs display circadian rhythmicity, thus enabling control of both anabolism 

and catabolism. As an example, food absorption, processing, assimilation and oxidative 

burning of nutrients all display through circadian variations, thus enabling their temporal 

adjustment with food availability and bio-energetic need of the organism [1–6]. Under 

physiological conditions these ‘metabolic rhythms’ are generated and maintained by the 

dynamic interactions between the CC and timing cues e.g. light and food (eating time 

and its quality). Importantly, in our modern industrialized world, various human behaviors 

and activities such as shift work, jet lag, energy-dense fatty foods and sleep deprivation 

often interfere with these rhythms and disrupt CC-functioning. Unsurprisingly then that 

disruption of CC functioning has recently emerged as a major contributor to different 

metabolic diseases, as well as carcinogenesis [1–5,8–16]. Therefore, detailed comprehension 

of the mechanistic basis of the CC-control on gene expression is critical to develop novel 

therapeutics for metabolic disorders whose therapeutic efficacy may be administration time-

of-day dependent.

In this review, we lay emphasis on how the CC regulates metabolism in different peripheral 

organs to maintain metabolic homeostasis and provide overview of how the disruption of 

these CC-regulated processes could lead to the development of NAFLD. Furthermore, we 

also briefly discuss the potential of chronopharmacology in therapeutics.

2 Mammalian circadian clock: anatomic and molecular organization

Well-known light receptors (rods and cones) converts the energy of the light signal to 

electrical impulses and relays them to the brain by utilizing retinal ganglion cells (RGC). 
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It has been demonstrated that the melanopsin (photopigment) expressing RGCs directly 

relay the photic signal to a group of neurons in the anterior hypothalamus known as 

the suprachiasmatic nucleus (SCN;8–9), which by anatomical design acts as the ‘central/

master’ CC. The SCN-CC in turn, by utilizing barely understood humoral and neuronal 

mechanisms transmits the ‘time information’ (a. k. a; ‘Zeitgeber’; ZT) to other peripheral 

organs (synchronization of peripheral CCs; 1–6,8–9).

The molecular architecture of the CC-functioning has been discovered over the 30 years 

[1–6,17]. Remarkably, the SCN-CC and PCCs are constituted by identical molecular 

components which regulate themselves using a similar transcriptional-translational feedback 

loops (TTFL). At the core of the molecular CC functioning (in mammals) resides the 

heterodimer of transcription factors BMAL1 and CLOCK, which acts as the trans-activator 

of genes containing E-box DNA binding sequences (DBS). BMAL1/CLOCK-drives the 

transcription of the Period (PER1/2) and the Cryptochrome (CRY1/2) genes, whose protein 

products heterodimerise to inhibit the transcriptional functions of the BMAL1/CLOCK-

complex [1–6], thereby leading to the reduction in their own expression, thus constituting 

the so-called first loop of the CC-oscillator (Fig. 1). During the early rest phase, high 

transcriptional activity of BMAL1/CLOCK drives the accumulation of its products CRY1/2 

and PER1/2 (in late rest phase) which subsequently dimerise and inhibit BMAL1/CLOCK-

activity during the active phase [17]. In the ‘second’ loop of the oscillator, BMAL1/

CLOCK- activates the transcription of the nuclear receptors (NR) Rev-Erbα and Rev-Erbβ 
[18] during the rest phase [1–5]. Molecularly, REV-ERBs act as transcriptional repressors by 

binding to the ROR-response elements (RORE) present in numerous target genes including 

themselves. Importantly, REV-ERBs by repressing the transcription of Bmall and Clock 
genes reduce their own expression, thus closing this second loop. Importantly, during the 

active phase another set of NRs RORα/γ are recruited to these same RORE-DBSs to 

activate the expression of Bmal1 and Clock genes [1–5]. This phase-specific recruitment and 

accumulation of RORα/γ (activators) and REV-ERBα/β (repressors) induces rhythmicity 

in Bmal1 and Clock expression, thus generating a variability in not only CC-oscillator 

functions but also in the transcription of numerous RORE-DBS containing target genes 

which are transcribed exclusively during the active phase (Fig. 1; [1–5]). Moreover, 

REV-ERBs repress and RORα/γ induce the E4BP4 repressor, which in turn represses 

the transcription of D-box DBS-containing CC-controlled genes (CCGs) in active phase. 

While the BMAL1/CLOCK-induced DBP transactivates these D-box CCGs strictly during 

the rest phase (Fig. 1). Moreover, post-translational modifications of CC-components as 

well as epigenetic modifications-induced by the recruitment of CC-components on their 

respective DBSs also generates further regulation of the CC-functioning. Altogether, by 

utilizing several sophisticated molecular mechanisms the CC-oscillator drives a time of 

the day-dependent gene expression program, which lies at the heart of producing distinct 

critical biochemical outputs in different organs (Fig. 2). Importantly, this CC-governed 

temporal coordination in gene-expression between organs is the major driver of metabolic 

homeostasis.
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3 Cross talk between clock and feeding cycles

Feeding cycles are one of the most prominent zeitgeber for peripheral tissues [4,5,19,20], 

and investigations have uncovered the existence of multi-layered cross-talk between 

metabolism and the CC, and the number of ways through which metabolism and CC 

influence each other are rapidly increasing [1–5]. Not only the CC exerts a remarkable 

control of metabolism, but also the information about metabolic state is transmitted back 

to the CC, thus creating a crosstalk between metabolic and circadian cycles. In this regard, 

the ‘clock’ receives information (e.g. changes in feeding time or composition) from a range 

of metabolic sensors which can modify PCCs rhythms. Specifically, the importance of 

feeding time on the hepatic-CC was demonstrated in Cry1/2 mutant mice, in which an 

imposed night-time only feeding largely restored the circadian gene expression pattern [21]. 

Changing the feeding time from the active phase to the rest phase in mice is known to shift 

peripheral CCs by nearly 12 h [19,20]. At the molecular level, this change is orchestrated by 

metabolic alterations which induce the activity of well-known transcription factors PPARα 
and CREB [22]. One highly relevant physiological setting of CC-metabolism crosstalk is 

exemplified by BMAL1/CLOCK-dependent expression of the nicotinamide phosphoribosyl 

transferase (Nampt) gene, which is the rate-limiting enzyme in NAD+ synthesis [23,24]. 

‘Clock’-gated NAMPT transcription generates a rhythmicity in NAD+ synthesis which 

in turn dictates the biochemical activities of NAD+ -dependent proteins, e.g. the SIRT1 

deacetylase and the PARP-1. Remarkably, SIRT1-activity is known to determine: (i) the 

functioning of BMAL1/CLOCK-complex and, (ii) the ‘half-life’ of PER2 protein, which in 

unison maintain CC-oscillator functioning [1–3]. In accordance, genetic ablation of Sirt1 
or its pharmacological inhibition is known to desynchronize circadian rhythmicity. Another 

highly relevant feedback regulation exists between the CC and heme biosynthesis and 

activity has also been uncovered [25,26]. Altogether, extensive investigations have unraveled 

multifaceted CC-metabolism crosstalk as a tuning fork for the CC-oscillator functioning, 

which has systemic repercussions as: (i) a change in the feeding time in mice to the “rest” 

phase leads to features resembling metabolic syndrome [27] and, (ii) high-fat diet (HFD)-

induced reprogramming of the hepatic CC-functioning in mice can be largely prevented by 

restricting the food access to the circadian active phase [28,29].

4 Pathophysiology of the non-alcoholic fatty liver disease (NAFLD)

Over the last decades, lifestyle modifications have shifted the health care priorities 

worldwide from infectious to metabolic diseases [30–34]. In the context of liver disease, 

availability of vaccines and antiviral therapies have started to reduce the disease burden 

caused by hepatotropic viruses such as chronic hepatitis B and C and their complications 

[35–39]. In contrast, the prevalence of metabolic liver disease such as non-alcoholic 

fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have increased 

dramatically. Indeed, with an estimated worldwide prevalence of ~25%, NAFLD has 

emerged as the most common chronic liver disease [30–34]. This increase in global 

prevalence of NAFLD is closely associated with the world-wide epidemic in the incidence 

of other metabolic disorders e.g. type 2 diabetes and obesity. Importantly, 20–25% of fatty 

liver patients progress to develop NASH, which is a major aetiology of liver transplantation 

required by cirrhotic and hepatocellular carcinoma (HCC) patients [30,31,40]. “Fatty liver” 
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is a complex spectrum of disease and considering the current knowledge of the pathology 

and the understanding of patient heterogeneity, the scientific community has recently [34] 

suggested metabolic (dysfunction) associated fatty liver disease (MAFLD) to be more 

appropriate. NAFLD generally initiates with the accumulation of excessive triglyceride 

(TG) in hepatocytes, a largely benign state commonly referred as simple steatosis [30–33]. 

Importantly, persistent fatty liver drives simple steatosis to steatohepatitis (NASH), which 

is characterized by simultaneous presence of both inflammation and hepatocytic damage 

(a.k.a ballooning). Furthermore, NASH proceeds to fibrosis, which can eventually progress 

to cirrhosis and hepatocellular carcinoma (HCC) [30–33,40]. Like metabolic syndrome, 

development of NAFLD is highly complex and has been extensively reviewed elsewhere 

[30–34,40–43]. Despite large research and development efforts, there are no approved drugs 

specifically targeting metabolic liver disease and compounds in late stage of development 

are frequently characterized by limited efficacy [30,32,33].

The pathogenesis of “fatty liver” was initially postulated in 1998 [44] to be “a tale 

of two hits”-first involving excessive hepatic triglyceride (TG) accumulation which was 

followed by secondary insults such as oxidative stress. However, recent investigations 

in chronic metabolic diseases have now clearly established that pathogenesis of NAFLD 

is a complex multi-step metabolic disorder [30–34,40–43]. Several studies have indeed 

uncovered crucial roles for deregulations in the functioning of pancreas, intestine, adipose 

tissue and immune system in NAFLD development ([30–33,40–43]; Fig. 3). Physiologically, 

mammalian bioenergetics is maintained by intricate intra- and inter-organ communications 

and deregulations of which lie at the core of metabolic disease, including NAFLD. At the 

basic level NAFLD arises due to the inability of the hepatocytes to effectively metabolize 

carbohydrates and free fatty acids (FFA). Mechanistically, NAFLD is a consequence of an 

imbalance between adipocytic FFA supply, hepatic de novo lipogenesis and FFA utilization 

through mitochondrial β-oxidation and production of ketone bodies, and finally disposal 

through secretion of TGs in very low-density lipoprotein (VLDL) particles [1,30–33]. 

Fat accumulation in the liver can be traced to either an increased incidence of de novo 

lipogenesis or overwhelming of the capacity to oxidize FFA. Additionally, mitochondrial 

dysfunction could impair fatty acid β-oxidation and cause lipid accumulation, which usually 

precedes NAFLD [45–47]. Furthermore, excessive TG is transported out of the hepatocytes 

by binding to liver-produced VLDL and, with impaired β-oxidation or TG transport, the 

capacity of the liver to clear accumulated TG is compromised, which further contributes to 

the development of NAFLD [30,31,45]. As discussed above, the complexities of NAFLD 

pathogenesis and its progression to steatohepatitis are barely understood with both genetic 

and environmental factors playing crucial roles. Importantly, due to the overwhelming role 

of the CC in maintaining metabolic homeostasis (Fig. 2), it can be postulated that disruption 

in the CC-functioning can drive NAFLD [1–3,15]. In the subsequent chapters we describe 

some of these functions to further illustrate the link between CC and NAFLD.
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5 Peripheral circadian clocks: regulation of metabolism and impact on 

pathogenesis of NAFLD

5.1 Liver

Unarguably, the liver plays a central role in governing whole-body physiology (Fig. 2). 

Considering its preeminent role in metabolism several genomic studies have utilized time-

course in mouse models to uncover circadian cistrome [48–51], transcriptome [52,53], 

proteome [54–56], and lipidome [57,58]. Analyses of circadian gene expression have 

revealed two broad time-periods of transcription in liver, which correspond to the periodic 

transition between alternating active and rest phases [1–4]. These two ‘peaks’ reflect the 

highly differential physiological requirements, such as in energy demand or detoxification 

activity, as per their necessity during the periods of activity or rest [1–5]. Analyses of 

CC-components and epigenetic factors binding [48–51] uncovered that these two circadian 

phase-specific distinct mRNA pools are generated due to the intrinsic rhythmicity of the CC-

oscillator. Furthermore, CC is also known to post-transcriptionally control cellular processes 

like DNA repair, ribosome biogenesis, autophagy, ER-stress [54–56].

Mammalian gluconeogenesis is principally controlled by the liver. Indeed, along with 

several other organs (brain, pancreas, muscle), the liver-CC largely contributes to maintain 

homeostatic blood glucose levels [59]. In a critical genetic study it was demonstrated 

that Bmal1 ablation in the liver reduces expression of the glucose transporter (Glut2), 

which lead to a decreased post-feeding glucose uptake in mutant mice, thus revealing 

a role for the liver-CC-oscillator in glucose metabolism [60]. Remarkably, the liver-CC 

also regulates glucose metabolism post-hepatocytic entry at multiple levels, by controlling 

expression of glucokinase (Gck; regulator of glycogen synthesis) [1–5]. By controlling 

either the expression or the activity of several gluconeogenic transcription factors e.g. Klf10 
[61], Hnf4α [18,62], CREB [63], Pgc1α [64], the liver-CC thoroughly controls glucose 

metabolism.

Along with its influence on carbohydrate metabolism, several genetic studies have 

established that liver CC as a predominant regulator of lipid metabolism [65–67]. These 

investigations have established plasma levels of FFA, TG and cholesterol display diurnal 

variations, and are altered upon mutations of CC-genes. To illustrate, liver-restricted 

mutation of Rev-Erbα/β profoundly increased plasma levels of FFA, TG and cholesterol 

[67]. Mechanistically, the hepatic-CC regulates either the expression or the activity of 

enzymes that are critically involved in regulating multiple critical steps of lipid metabolism. 

As an example, TG synthesis in liver is a multistep process and requires the activity 

of several enzymes (Gpat2, Agpat1/2, Lipin1/2 and Dgat2) expression of which are CC-

controlled [56], thereby leading to a prominent crest and trough of hepatic TG levels (in 

mice) during the rest and active phases, respectively [56]. Furthermore, REV-ERBα by 

regulating the transcription of Insig2 controls the activity of SREBP1c (master regulator of 

lipogenesis; [68]). Additionally, the hepatic CC-oscillator also participates in: (i) fatty acid 

synthesis by controlling the expression of Elovl3, Elovl6, Fas etc. [1–3,6], (ii) regulating 

β-oxidation and ketone-body production [69,70] and, (iii) determining the expression of 

key lipid-responsive NRs LXRs, PPAR α and δ [1–3,18]. Recent studies have established 
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BA-signaling as a major regulator of TG, cholesterol and glucose homeostasis [71,72]. BA 

synthesis is controlled by a transcriptional feed-back loop consisting of the NRs FXR and 

SHP and intestinal hormone FGF15 (FGF19 in humans; [71–72]). Importantly, CC-regulates 

the expressions of both FXR and SHP [18,62] as well as FGF15 secretion [73], thereby 

controlling the diurnal expression of cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting 

enzyme in BA synthesis. Additionally, both REV-ERBα and DBP (CC-output regulator) are 

known to control Cyp7a1 transcription [74,75]. Furthermore, in mice an essential molecular 

feedback exists between SHP and the neuronal PAS domain protein 2 (NPAS2; Clock 
gene paralog) which not only contributes towards their own circadian rhythmicity but also 

enables to maintain hepatic lipid, BA and lipoprotein metabolism [76]. Taken together, 

these mechanisms combine to generate circadian rhythmicity in BA levels which is also 

observed in humans [77]. To further illustrate the intimate connection between the lipid-and 

BA-metabolism and CC-functioning, it has been noted that atorvastatin (routinely to treat 

hyperlipidemia) administration in mice alters the expression of not only Cyp7a1 but also 

of key CC-components e.g. Bmal1 and Npas2 [78]. The liver CC is also well known to 

regulate several cellular processes e.g. autophagy, ER stress and oxidative stress [79–83], 

all of which have been implicated in pathogenesis of NAFLD and has been extensively 

described elsewhere [30,31].

5.2 Pancreas

The pancreas is well known to play a critical role in maintaining glucose homeostasis 

through production of hormones insulin and glucagon (Fig. 2). Pancreatic function is 

controlled by both the central SCN-clock as well as Pancreatic CC-oscillator and aligns 

biochemical activities in pancreatic islets as per the metabolic demands [2,3,84,85]. The 

‘clock’ is known to regulate both the exocrine [84] and endocrine [86] functions of the 

pancreas. The presence of an autonomous circadian pancreatic clock has been demonstrated 

not only in rodents [85–87], but also in human islets and dispersed human islet cells 

[87]. The pancreatic clock is synchronized to the light-dark cycle via signals derived from 

the SCN-clock that include autonomic neuronal system, melatonin and glucocorticoids 

[88]. The pancreatic CC-oscillator in β cells drives highly rhythmic oscillation of insulin 

secretion which is strictly aligned with the expression of genes encoding insulin secretion 

and signaling [85]. Mechanistically, pancreatic CC-components helped in the spatiotemporal 

recruitment of key transcription factor PDX1 to specific enhancers to regulate transcription 

of insulin and other genes of insulin signaling pathway [85]. Importantly, β-cell-specific 

mutation of either Bmal1 or Clock leads to wide-spread changes in the transcriptome, 

and specifically reduces genes encoding cell cycle, synaptic assembly and secretion of 

insulin, thereby leading to diabetes in mutant mice [86]. Notably, non-alcoholic fatty 

pancreas disease (NAFPD) a recently described dysmetabolic phenotype (akin to NAFLD), 

has been shown to perturb the expression of several CC-components in murine pancreas 

which correlates with pancreatic inflammation and fibrosis development [89]. As insulin-

resistance often accompanies NAFLD [30], deregulation of the pancreatic-CC-controlled 

insulin signaling could play a critical role in the predisposing to fatty liver development (Fig. 

3).
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5.3 Intestine and microbiota

Several critical aspects of the intestinal physiology e.g. motility, intestinal permeability, 

hormone secretion, nutrient absorption, cell proliferation and interactions with microbiota 

are CC-controlled and have been thoroughly reviewed [90–92]. However, in recent years 

the relationship between intestine and resident microbiota has gained spotlight as a major 

regulator of metabolic health and disease including, NAFLD [93–96]. Indeed, obesity has 

been shown to not only alter the composition of gut microbiota (dysbiosis) composition but 

also perturbs their nature of interactions with the host (intestinal epithelial cells; IEC), both 

of which have been suggested as an etiological agent in the pathogenesis of metabolic 

diseases, including NAFLD [93–96]. One of the proposed mechanisms through which 

dysbiosis could induce NAFLD is by augmenting lipopolysaccharide (LPS) production 

and delivery to the liver via the portal circulation, a consequence of increased intestinal 

permeability [97,98]. This abnormal presence of microbiota-associated LPS in liver perturbs 

lipid metabolism by affecting the generation of short-chain fatty acids and altering the BA 

pool composition which may influence intestinal and hepatic FXR activity, thus affecting 

both glucose and lipid homeostasis [97].

The ‘clock’ and the microbiota intersect at many levels. Most notably, the IEC CC has 

been demonstrated to regulate the circadian expression of microbial pattern recognition 

receptors (e.g. TLRs, NOD2) which creates a ‘temporal window’ for the microbiota-signals 

to regulate gene expression in IEC to maintain homeostasis [99]. Importantly, absence of 

this IEC CC-microbiota crosstalk leads to metabolic disorders [99]. Interestingly, it was also 

demonstrated that the gut microbiota undergoes circadian oscillations in composition and 

function [100,101]. These microbiota oscillations were found to be controlled by the timing 

of food intake and the diet composition. Furthermore, it was also demonstrated that the gut 

microbiota undergoes circadian oscillations in biogeographical localization and metabolome 

patterns which in turn determine the diurnal exposure of the intestinal epithelium to different 

bacterial species and their metabolites [102,103]. Importantly, this circadian variations 

in microbial behavior in turn regulates the transcriptome and metabolome of both gut 

and distant tissues e.g. liver [102,103]. Most importantly, dysbiosis-induced by ‘clock’ 

perturbations (either through genetic ablation of CC-components or jet lag) lead to and 

development of metabolic pathologies [93,94,103].

5.4 Immune system

The immune system is heavily influenced by time-of-day cues, both under steady-state 

conditions and in response to inflammatory challenges. Indeed, diurnal host responses to 

endotoxins were noted more than 6 decades back [104]. Importantly, several inflammatory 

diseases e;g. myocardial infarction, rheumatoid arthritis and asthma are known exhibit 

pronounced circadian rhythmicity in their pathology [105–108]. Recently, molecular 

evidence has started emerging to reveal that numerous aspects of immune functions 

including lymphocyte trafficking, host-pathogen interactions, cytokine secretion and 

activation of innate and adaptive immunity are thoroughly controlled by the CC [107–110]. 

Taken together, investigations have established the CC operates to as a gating mechanism 

to control the magnitude of immune response in a diurnal fashion and has been described 

[107–110]. The role of the deregulated immune system and fatty liver disease have been 
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extensively reviewed [41–43]. Here we briefly discuss the immune components which are 

known to be controlled by CC under physiological conditions [107–110].

Like every other aspect of the metabolic syndrome, pathogenesis of `fatty liver` is strongly 

linked with inflammation, and both innate and adaptive branches of immunity have 

been implicated in this process [31,32,41–43]. However, the innate immune system has 

received more attention. Although in initial studies focused on Kupffer cells, more recent 

investigations have revealed that several specialized immune cells (resident and infiltrating) 

participate in hepatosteatosis [42]. Kupffer cells are activated by a variety of stimuli 

including FFA, peroxidized lipids, microbiota-derived LPS and ROS [43]. Importantly, both 

FFA and LPS drive Kupffer cell stimulation through TLR2 and TLR4, which leads to 

perpetual activation of inflammatory signaling pathways like ASK-1, JNK, IL-6 etc. thereby 

enabling sustained induction of NF-κB and STATs, thus augmenting cytokine production 

(TNF-α, IL-1β etc.). In murine models, reducing the number of Kupffer cells through 

clodronate administration considerably ameliorates NASH pathology [111]. In addition, 

the inflammasome which can both sense and be activated by danger-associated molecular 

patterns (DAMPs) such as FFA and pathogen-associated molecular patterns (PAMPs) e.g. 

LPS, has recently emerged as a critical molecular link between metabolic stress and 

fatty liver development [31]. In animal models of NAFLD, triggering inflammasome 

activity enhances the expression of the pro-inflammatory cytokines IL-1β and IL-18 

which subsequently through caspase-1 promote cell death in liver [111]. Recent studies 

have also shed light on the role of the IL17-secreting Th17 cells in metabolic diseases 

including NAFLD [112]. It has been observed that the obesity-induced dysbiosis elevates 

IL-17 production [113,114] and, in the setting of NAFLD, this cytokine drives neutrophil 

and monocyte infiltration in the liver, thereby potentiating hepatic insulin resistance and 

steatosis progression [115]. Consistently, abrogation of IL17-induced signaling activity in a 

diet-induced murine model of NASH reduces steatosis [116]. Taken together, these studies 

indicate how possibly deregulated CC-functioning in immune cells could predispose towards 

fatty liver development.

6 Circadian clock-related therapeutic interventions

In the past few years, many studies have investigated the effects of the timing of drug 

treatment on the circadian appearance or exacerbation on of disease symptoms, leading 

to the development of a concept known as chronomedicine [117–119]. Chronomedicine is 

described as the approach employed to maximize the efficacy and minimize the side effects 

when drugs are administered in accordance with the CC as ‘timing’ of drug-administration 

is of crucial but still a less-appreciated factor in drug efficacy considerations [117–119]. 

This is not surprising considering that to a large extent CC control over pharmacology 

arises from its ability to thoroughly regulate almost all steps of xenobiotic detoxification in 

the liver, including absorption, biotransformation and elimination [[118],120–122]. Thereby, 

CC-controls pharmacological parameters such as pharmacokinetics and pharmacodynamics 

[118,119]. Remarkably, 56 of the top 100 best-selling drugs in the USA are known to target 

the product of a circadian gene [122]. Until now, this approach of chronomedicine has 

been evaluated for several diseases, such as hypertension [123,124] and cancers [125,126]. 

The most important example is that of the circadian hormone melatonin that has been 
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used in combination with cancer therapy to minimize toxicity or enhance chemotherapeutic 

viability in clinical and laboratory settings [126]. To further illustrate, influenza vaccine 

when administered in the morning produces higher titers of antibodies than when given in 

the evening [127].

Pharmacological therapies are not yet available for NASH [30–34], although several 

compounds are in preclinical and clinical development, including obeticholic acid 

(INT-747; [128]) which activates FXR and, elafibranor (currently in phase 3 trial; 

[129]) which activates NRs PPAR-α/β. Notably, physiological targets of potential NASH-

modulating compounds [30–32], e.g. resveratrol (SIRT1-agonist) and inhibitors of acetyl-

CoA carboxylase1 (ACC1) are also CC-regulated [1–4], thereby further strengthening 

the CC-connection to the development of novel therapeutics. Considering, the role of 

the CC in regulating the expression and activities of FXR, PPARs, SIRT1 and ACC 

chronopharmacology could very well dictate the efficacy of these approaches. Circadian 

“misalignment” between central and peripheral CCs has been found to be a core feature 

of almost every dietary or environmental model of metabolic disease including NAFLD. 

For therapeutic treatment of metabolic diseases like NAFLD a strategy could be to give 

to patients more scheduled eating habits, the so-called chrononutrition. In this regard, 

time-restricted feeding (TRF), a behavioral approach where feeding is solely restricted 

to the circadian active phase not only prevents circadian misalignment but also has been 

shown to correct several metabolic pathologies in animal models [130–132]. TRF is distinct 

from intermittent fasting and when applied to humans, the amount of calory ingested is 

not relevant [130–132]. Importantly, several small-scale human TRF investigations have 

indicated its usefulness in improving outcomes in patients with metabolic syndromes [133–

135], however, the usefulness of TRF on NAFLD endpoints are yet to be ascertained.

7 Conclusion

As the prevalence and economic burden of the metabolic syndrome and NAFLD/NASH/

MAFLD continues to rise worldwide, the knowledge about the mechanisms contributing 

to the development of this disease has been progressively increasing over the last two 

decades. Circadian misalignment has been associated with increased incidence of metabolic 

and cardiovascular disorders in various human studies [136–142]. These discoveries have 

led to the recognition of CC rhythms as an essential piece of the complex puzzle that 

depicts our physiologic homeostasis. The understanding of the multi-faceted role of the 

‘clock’ in the pathogenesis of fatty liver (Fig. 3), is not only crucial to advance scientific 

knowledge, but also to improve public health by identifying new therapeutic targets and 

life-style modifications. Disruption of the CC has been shown to play an important role in 

the increasing incidence of metabolic homoeostasis with a key contribution to the metabolic 

syndrome and NAFLD. Hence, it is necessary to investigate in detail the CC-controlled 

pathways and elucidate how they are linked with the development of fatty liver disease (Fig. 

3).

Expanding our knowledge about the genetic and environmental risk factors making 

individuals more susceptible to metabolic dysfunction combined with the discovery of 

new therapeutic approaches to restore the perturbed circadian machinery will ultimately 
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contribute to improve the outcome of this rapidly growing pandemic of metabolic liver 

disease.
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Fig. 1. 
Model of the molecular ‘clock’: The BMAL1/CLOCK-heterodimer binds to the E-Box DBS 

present in the promoter-enhancer elements of numerous CCGs, including their inhibitors 

Periods (Per1/2) and Cryptochromes (Cry1/2) and increases their expression during the rest 

phase. Subsequently, PERs and CRYs proteins dimerize to inhibit (in the active phase) 

the transcriptional activity of BMAL1/CLOCK. Additionally, BMAL1/CLOCK-dependent 

expression of Rev-Erbα/β, leads to the trans-repression of several RORE-DBS-containing 

CCGs including, Bmal1,Clock and E4BP4 during the rest phase. A reduction in REV-ERBs 

levels (during active phase) permit the RORα/γ-dependent RORE-mediated activation of 

CCGs including Bmal1 and Clock, which enables the turning of the circadian clock. 

DBP expression during the rest phase leads to the expression of D-Box DBS containing 

CCGs, which are transcriptionally repressed by E4BP4 during the active phase. CCGs-Clock 

Controlled Genes, DBP-D-Box binding protein, E4BP4-E4 promoter binding protein 4, 

E-CCGs: E-Box DBS-containing CCGs, R-CCGs: RORE-containing CCGs, D-CCGs: D-

Box-containing CCGs. See text for details.
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Fig. 2. 
Coordinated regulation of metabolic physiology by central and peripheral clocks: The 

light-entrained central SCN-clock not only governs rest-activity and feeding-fasting 

cycle but also synchronizes peripheral tissue clocks. Indicated in the boxes are some 

of the major peripheral clocks and the critical physiological functions they perform. 

Importantly, deregulations in the functioning of peripheral clock-regulated pathways are 

often encountered in NAFLD. SCN-Supra Chiasmatic Nucleus. See text for details.
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Fig. 3. 
Model of NAFLD pathogenesis: The scheme depicts an overview of how alterations in the 

circadian clock-controlled functions/pathways and processes in different peripheral tissues 

may predispose to NAFLD pathogenesis and contribute to therapeutic intervention. See text 

for details.
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