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Abstract: Chronic obstructive pulmonary disease (COPD) is a progressive disease that is character-
ized by a state of persistent inflammation and oxidative stress. The presence of oxidative stress in
COPD is the result of an imbalance between pro-oxidant and antioxidant mechanisms. The aim of
this review was to investigate a possible association between glutathione peroxidase (GPx), a key
component of antioxidant defense mechanisms, and COPD. A systematic search for relevant studies
was conducted in the electronic databases PubMed, Web of Science, Scopus, and Google Scholar, from
inception to June 2021. Standardized mean differences (SMDs) were used to express the differences
in GPx concentrations between COPD patients and non-COPD subjects. Twenty-four studies were
identified. In 15 studies assessing whole blood/erythrocytes (GPx isoform 1), the pooled results
showed that GPx concentrations were significantly lower in patients with COPD (SMD = −1.91,
95% CI −2.55 to −1.28, p < 0.001; moderate certainty of evidence). By contrast, in 10 studies assess-
ing serum/plasma (GPx isoform 3), the pooled results showed that GPx concentrations were not
significantly different between the two groups (very low certainty of evidence). The concentration
of GPx-1, but not GPx-3, is significantly lower in COPD patients, suggesting an impairment of
antioxidant defense mechanisms in this group.

Keywords: chronic obstructive pulmonary disease; oxidative stress; antioxidant defense systems;
glutathione peroxidase

1. Introduction

Chronic obstructive pulmonary disease (COPD) is an inflammatory disease char-
acterized by persistent airflow limitation due to airway obstruction and/or lung tissue
damage [1]. With a global prevalence of 13.1%, COPD is the third leading cause of death
worldwide [2,3]. Oxidative stress and inflammation are considered key drivers of the
pathophysiology of COPD [4–6]. The lungs are particularly exposed to environmental
insults, such as tobacco smoke and air pollutants, that represent important sources of
reactive oxygen species (ROS). The latter directly promote lung damage, resulting from
alterations of DNA, lipids, carbohydrates, and proteins, as well as activate local inflamma-
tory responses which contribute to the development and progression of COPD [6]. ROS
can also activate epithelial cells and macrophages as well as facilitate the recruitment of
neutrophils, monocytes, and lymphocytes. Recruited inflammatory cells become activated
and then generate further ROS, enhancing the pro-oxidant burden [7,8]. These events lead
to a state of sustained inflammation and chronic oxidative stress. Moreover, it has been
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reported that traffic-related air pollution increases airway inflammation which induces
the expression of inflammatory factors through the activation of the NF-κB signaling path-
way [9]. Environmental exposure can also induce oxidative stress through a disruption
in the expression of micro-RNA, short sequences of non-coding RNA molecules which
are involved in the regulation of gene expression [10]. Increased oxidative stress in COPD
patients, which has been convincingly demonstrated with various biomarkers, reflects both
an increase in oxidant molecules and a decrease in antioxidant defense mechanisms [11,12].
Specifically, the antioxidant defense mechanisms are overwhelmed in the presence of ex-
cess ROS. These antioxidant defenses mainly consist of non-enzymatic molecules, such as
vitamins, glutathione, and protein thiols, most notably albumin, and enzymatic molecules,
such as superoxide dismutase, catalase and glutathione peroxidase. Among these enzymes,
glutathione peroxidase (GPx) has received particular attention in COPD. GPx catalyzes
the reduction of lipid hydroperoxides into their corresponding alcohols and the reduction
of hydrogen peroxide into water, using glutathione as reducing substrate [13,14]. The
GPx family includes eight isoforms with different expression and antioxidant properties
in individual tissues [13]. Only the first four, all of which are selenoproteins, have been
well characterized: GPx-1, the predominant isoform, is ubiquitously expressed in the
cytosol and mitochondria; GPx-2 is localized in the gastrointestinal epithelium; GPx-3
is the only member of the GPx family that is present in the extracellular compartment;
GPx-4 (phospholipids hydroperoxide GPx) has a different subcellular localization and
protects the membrane against lipid peroxidation [13]. The assessment of GPx activity in
COPD patients may be useful to detect an impaired antioxidant defense system in this
group. Several studies have reported GPx activity in the blood of stable COPD patients
and non-COPD subjects, however, the results were not always concordant or significant.
Therefore, we sought to further investigate this issue by performing a comprehensive
assessment of all published studies by means of systematic review and meta-analysis. We
hypothesized that the presence of COPD would be associated with a significant reduction
in GPx concentrations in the blood.

2. Materials and Methods
2.1. Search Strategy, Eligibility Criteria, and Study Selection

A systematic search was conducted in the electronic databases PubMed, Web of
Science, Scopus, and Google Scholar, from inception to June 2021, using combinations
of the following terms: “Glutathione Peroxidase” or “GPx” or “GSH-PX” and “Chronic
Obstructive Pulmonary Disease” or “COPD”. Two investigators independently reviewed
the full text of the articles once their abstracts were deemed relevant. Eligibility criteria
were: (i) the assessment of GPx in blood, erythrocytes, plasma or serum; (ii) a comparison of
adult human subjects with COPD and non-COPD (case–control design); (iii) a sample size
of ≥ 10 patients with COPD; (iv) English language and (v) full-text available. The references
of the retrieved articles were also searched to identify additional studies. To evaluate the
risk of bias, the Joanna Briggs Institute (JBI) Critical Appraisal Checklist was used, with
scores ≥ 5, 4, and < 4 indicating low, moderate, and high risk, respectively [15]. We
assessed the certainty of evidence following the Grades of Recommendation, Assessment,
Development and Evaluation (GRADE) Working Group system. GRADE addresses the
following domains: study design, the risk of bias, unexplained heterogeneity, indirectness
of evidence, imprecision of the results, effect size, and the probability of publication
bias [15].

2.2. Statistical Analysis

Since different units of measurement (U/L, U/gHb or U/mg protein) were used,
standardized mean differences (SMDs) were calculated to build forest plots of continuous
data and to express the differences in GPx concentrations in COPD patients vs. non-COPD
subjects. A p-value < 0.05 was considered statistically significant, and 95% confidence
intervals (CIs) were reported. If necessary, the mean and standard deviation values were
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extrapolated from median and interquartile ranges or medians and ranges, as reported by
Wan et al. [16] and by Hozo et al. [17], respectively, or from graphs generated by using the
Graph Data Extractor software (San Diego, CA, USA).

To test the heterogeneity of SMD across studies the Q-statistic (the significance level at
p < 0.10) was used. We used fixed-effects and random-effects models for a pooled analysis
with low heterogeneity (I2 statistic < 50% or p-value < 0.1) and high heterogeneity (I2 statis-
tic > 50% or p-value ≤ 0.1), respectively [18,19]. A sensitivity analysis was also performed
to evaluate the robustness of the pooled effect estimates by sequentially excluding each
study and repeating the meta-analysis after each iteration [20].

The Begg’s adjusted rank correlation test and the Egger’s regression asymmetry test, at
the p < 0.05 level of significance, were also performed to evaluate the presence of publication
bias [21,22]. The latter was further investigated using the Duval and Tweedie “trim-and-
fill” method [23]. Univariate meta-regression analyses were conducted to investigate the
presence of associations between the effect size and the following parameters: age, gender,
FEV1 (forced expiratory volume in the 1st second), FEV1/FVC (forced expiratory volume
in in the 1st second /forced vital capacity), and the guidelines used for diagnosis (GOLD
vs. ATS guidelines). Information regarding missing data in the original articles was not
queried upon to the authors. This study followed the guidelines for systematic reviews
which are illustrated in the PRISMA Statement [24]. Statistical analyses were performed
using Stata 14 (STATA Corp., College Station, TX, USA). The study protocol was registered
in the International Prospective Register of Systematic Reviews (PROSPERO registration
number: CRD42021276524).

3. Results
3.1. Systematic Research

Figure 1 shows the flow chart depicting the screening process. We identified 1015 ar-
ticles from the database search. After screening the abstracts and titles of the studies, 37
were selected for full-text evaluation. Of these, 13 were further excluded, either because of
missing information or they did not fulfil the inclusion criteria. Finally, 24 studies were
included in the meta-analysis [25–48]. A total of 2214 COPD patients (mean age 60 years,
74% male), and 1608 non-COPD subjects (mean age 55 years, 71% male) were evaluated.
The characteristics of the retrieved studies, published between 1994 and 2019, are described
in Table 1.
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Table 1. Summary of the studies on non-COPD subjects vs COPD patients included in the meta-analysis.

Non-COPD COPD

First Author Year,
Country

Matrix
Type n Age

Mean
Gender
(M/F)

GPx
Mean ± SD n Age

Mean
Gender
(M/F)

GPX
Mean ± SD

WHOLE BLOOD/ERYTHROCYTES

Santos MC et al. 2004,
Portugal Er 24 NR NR 0.092 ± 0.027 U/g Hb 21 NR NR 0.068 ± 0.027 U/g Hb

Nadeem A et al. 2005,
India Er 21 NR NR 65.96 ± 13.56 mU/g Hb 67 NR NR 54.17 ± 16.12 mU/g Hb

Joppa P et al. 2007,
Slovakia Er 21 48 9/12 51.30 ± 14.66 U/g Hb 75 65 58/17 41.80 ± 18.05 U/g Hb

Biljak VR et al. 2010,
Croatia Er 51 52 21/30 7904 ± 1096 U/L 109 71 82/27 6418 ± 1657 U/L

Lakhdar R et al. 2011,
Tunisia Er 182 56 173/9 85.70 ± 13.61 U/g Hb 234 62 222/12 63.66 ± 4.95 U/g Hb

Tavilani H et al. 2012,
Iran Er 60 67 NR 64.7 ± 31.70 U/g Hb 30 66 NR 80.74 ± 46.50 U/g Hb

Ahmad H et al. 2013,
India Er 75 42 53/22 48.32 ± 14.20 U/g Hb 140 45 111/29 43.04 ± 9.93 U/g Hb

Arja C et al. 2013,
India Er 150 61 NR 43.63 ± 1.61 U/g Hb 236 63 NR 36.36 ± 4.57 U/g Hb

Wozniak A et al. 2013,
Poland Er 35 45 19/16 13.8 ± 46 U/g Hb 108 49 61/47 8.4 ± 3.1 U/g Hb

Montoya-Estrada A et al. 2013,
Mexico Er 11 61 1/10 13.90 ± 1.98 mU/mg protein 43 69 30/13 12.89 ± 2.51 mU/mg protein

Bukowska B et al. 2015,
Poland Er 18 NR NR 53.66 ± 9.56 mU/g Hb 30 NR NR 43.70 ± 11.20 mU/g Hb

Elmasry SA et al. 2015,
Egypt WB 40 54 31/9 12.2 ± 0.7 U/mL 34 55 27/7 12 ± 0.9 U/mL

Mohammed A et al. 2017,
India Er 59 51 38/21 63.77 ± 3.38 U/mg protein 127 60 98/29 59.43 ± 5.63 U/mg protein
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Table 1. Cont.

Non-COPD COPD

First Author Year,
Country

Matrix
Type n Age

Mean
Gender
(M/F)

GPx
Mean ± SD n Age

Mean
Gender
(M/F)

GPX
Mean ± SD

Di Stefano A et al. 2018,
Italy WB 27 NR 12/15 293 ± 332 U/mL 45 NR 39/6 143 ± 159 U/mL

Al-Azzawi MA et al. 2019,
Egypt Er 40 45 28/12 47.5 ± 1.82 U/mL 30 65 21/9 15.9 ± 1.2 U/mL

SERUM/PLASMA

Premanand R et al. 1994,
India S 100 NR 60/40 0.231 ± 0.040 U/mL 75 NR 43/32 0.204 ± 0.040 U/mL

Nadeem A et al. 2005,
India P 21 NR NR 129.9 ± 24.1 mU/g Hb 51 NR NR 156.4 ± 30.8 mU/g Hb

Vibhuti A et al. 2007,
India P 136 50 110/26 19.1 ± 3.5 U/mL 202 59 160/42 17.9 ± 7.1 U/mL

Montaño M et al. 2010,
Mexico P 30 65 0/30 0.11 ± 0.03 U/mL 60 73 0/60 0.23 ± 0.22 U/mL

Wassem SM et al. 2012,
India S 60 38 46/14 57.21 ± 0.39 mU/mg protein 121 48 80/41 51.46 ± 2.77 mU/mg protein

Zeng M et al. 2013,
China P 28 69 23/5 214.2 ± 6.9 U 35 71 31/4 183.0 ± 4.6 U

Ben Anes A et al. 2014,
Tunisia P 229 58 NR 33.6 ± 24.1 U/ml 153 61 NR 121.3 ± 33.0 U/ml

Ambade VN et al. 2015,
India P 96 60 73/23 50.95 ± 15.30 U/L 96 68 73/23 89.73 ± 27.84 U/L

Hartmann SE et al. 2015,
Canada P 14 68 6/8 41.41 ± 8.75 U/ml 12 69 4/8 36.41 ± 9.84 U/ml

Al-Azzawi MA et al. 2017,
Egypt P 80 53 62/18 11.98 ± 1.01 mU/ml 80 55 58/22 12.13 ± 0.92 mU/ml

Er = Erythrocytes; Hb: Haemoglobin; NR = Not reported; P = Plasma; S = Serum; WB = Whole Blood
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3.2. Meta-Analysis of Whole Blood/Erythrocyte GPx Concentrations
3.2.1. Study Characteristics

Fifteen studies on 1329 COPD patients (mean age 60 years, 79% male) and 814 non-
COPD subjects (mean age 54 years, 71% male) were identified [25–39]. COPD was diag-
nosed according to the Global Obstructive Lung Disease (GOLD) guidelines in 12 stud-
ies [25,26,28,29,31–38], and the American Thoracic Society/European Respiratory Society
(ATS/ERS) guidelines in three [27,30,39]. Thirteen studies assessed erythrocytes [25–35,37,39]
whereas the remaining two assessed whole blood [36,38].

3.2.2. Risk of Bias

The risk of bias was considered low in seven studies [26–30] and moderate in the
remaining eight [25,31,33–36,38,39] (Table 2).

3.2.3. Results of Individual Studies and Syntheses

The forest plot for the blood GPx concentrations in COPD patients and non-COPD
subjects is reported in Figure 2. In 14 studies [25–29,31–39], COPD patients had lower
blood GPx concentrations when compared to non-COPD subjects (mean difference range,
−0.42 to −19.93), however, the difference was statistically significant in only two stud-
ies [34,36]. Extreme heterogeneity between studies was observed (I2 = 97.0%, p < 0.001).
Thus, random-effects models were used. Overall, the pooled results showed that blood
GPx concentrations were significantly lower in COPD patients (SMD= −1.91, 95% CI
−2.55 to −1.28; p < 0.001). Sensitivity analysis showed that the corresponding pooled SMD
values were not altered when any single study was sequentially omitted (effect size range,
between −2.04 and −1.46, Figure 3). However, funnel plot analysis showed that the study
by Al-Azzawy et al. [39] influenced graph symmetry which had a possible effect on the
magnitude of the results (Figure 4). After removing this study, the SMD was attenuated
but remained significant (SMD = −1.46, 95% CI −2.02 to −0.90, p < 0.001) with persistent,
extreme heterogeneity (I2 = 96.2%, p < 0.001).
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Table 2. The Joanna Briggs Institute critical appraisal checklist for analytical cross-sectional studies.

Study
Were the Criteria
for Inclusion in

the Sample
Clearly Defined?

Were the Study
Subjects and the

Setting Described in
Detail?

Was the Exposure
Measured in a

Valid and
Reliable Way?

Were Objective,
Standard Criteria

Used for
Measurement of
the Condition?

Were
Confounding

Factors
Identified?

Were Strategies
to Deal with

Confounding
Factors Stated?

Were the
Outcomes

Measured in a
Valid and

Reliable Way?

Was Appropriate
Statistical

Analysis Used?
Risk of Bias

Santos et al. No Yes Yes Yes No No Yes No Moderate

Nadeem et al. Yes Yes Yes Yes No No Yes No Low

Joppa et al. Yes Yes Yes Yes No No Yes No Low

Biljak et al. Yes Yes Yes Yes No No Yes No Low

Lakhdar et al. No Yes Yes Yes Yes Yes Yes Yes Low

Tavilani et al. Yes Yes Yes Yes No No Yes No Low

Ahmad et al. No Yes Yes Yes No No Yes No Moderate

Arja et al. No Yes Yes Yes Yes Yes Yes Yes Low

Wozniak et al. No Yes Yes Yes No No Yes No Moderate

Montoya et al. No Yes Yes Yes No No Yes No Moderate

Bukowska et al. No Yes Yes Yes No No Yes No Moderate

Elmasry et al. No Yes Yes Yes No No Yes No Moderate

Mohammed et al. Yes Yes Yes Yes Yes Yes Yes Yes Low

Di Stefano et al. No Yes Yes Yes No No Yes No Moderate

Al-Azzawi et al. No Yes Yes Yes No No Yes No Moderate

Premanand et al. No Yes Yes Yes No No Yes No Moderate

Nadeem et al. Yes Yes Yes Yes No No Yes No Low

Vibhuti et al. No Yes Yes Yes Yes Yes Yes Yes Low

Montano et al. No No Yes No No No Yes No High

Waseem et al. Yes Yes Yes Yes No No Yes No Low

Zeng et al. Yes Yes Yes Yes No No Yes No Low

Ben Anes et al. Yes Yes Yes Yes Yes Yes Yes Yes Low

Ambade et al. Yes Yes Yes Yes No No Yes No Low

Hartmann et al. Yes Yes Yes Yes No No Yes No Low

Al-Azzawi et al. No Yes No No No No Yes No High
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3.2.4. Publication Bias

There was no publication bias, after removing the study by Al-Azzawy et al. [39]
(Begg’s test, p = 0.74; Egger’s test, p = 0.94). The “trim-and-fill” method identified two
potential missing studies to be added to the left side of the funnel plot to ensure symmetry
(Figure 5). The adjusted SMD was further increased as a result (SMD = −1.69, 95% CI
−2.26 to −1.12, p < 0.001).
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3.2.5. Meta-Regression and Sub-group Analysis

In univariate meta-regression, no significant associations were observed between the
effect size and age (t = −1.89, p = 0.10), gender (t = 0.78, p = 0.46), FEV1 (t = 0.62, p = 0.55),
FEV1/FVC (t = −0.50, p = 0.63), or specific guideline used (t = −0.20, p = 0.85). In the
sub-group analysis, the pooled SMD value in studies which measured GPx in whole blood
(SMD = −0.43, 95% CI −0.80 to −0.06, p = 0.023; I2 = 18.4%, p = 0.268) was non-significantly
higher (t = 1.07, p = 0.31) than that observed in studies which assessed GPx in erythrocytes
(SMD= −1.64, 95% CI −2.25 to −1.03, p < 0.001; I2 = 96.4%, p < 0.001). The search for
more homogeneous study sub-groups, according to diagnostic guidelines, matrix type
and continent, led to the identification of four studies conducted in Europe which used
the GOLD guidelines and assessed erythrocytes [25,28,33,35]. The effect size was still
significant (SMD= −1.12, 95% CI −1.43 to −0.81, p < 0.001) with a substantially lower
heterogeneity (I2 = 41.4%, p = 0.16). In order to evaluate the relationship between the
effect size and disease severity we performed a further meta-analysis in a sub-group of
six studies which reported the erythrocyte GPx concentrations in groups with different
disease severities (GOLD stage I-II vs III-IV) [26,28,31,32,34,37]. The forest plot for the
GPx concentrations in mild/moderate vs severe/very severe COPD patients is reported in
Figure 6. In all studies, the GPx concentrations were lower in patients with severe disease
(mean difference range −0.56 to −0.06), with a significant difference in two studies [31,37].
The pooled results showed that GPx concentrations were significantly lower in patients
with more severe disease (SMD = −0.33; 95% CI −0.50 to −0.16, p < 0.001; I2 = 0.0%,
p = 0.68).

3.2.6. Certainty of Evidence

The initial level of certainty for the blood/erythrocyte GPx SMD values was consid-
ered low because of the observational nature of the selected studies (rating 2, ⊕⊕��).
After considering the presence of a moderate risk of bias in 8 out of 15 studies (a serious
limitation, downgrade one level), a generally extreme heterogeneity that was partly ex-
plained by specific diagnostic guidelines, the matrix type, and continent (no rating change
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required), the lack of indirectness (no rating change required), the relatively low impreci-
sion (relatively narrow confidence intervals without threshold crossing, no rating change
required), the relatively large effect size (SMD −1.91, upgrade one level), and the absence of
publication bias (upgrade one level), the overall level of certainty was considered moderate
(rating 3, ⊕⊕⊕�).
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3.3. Meta-analysis of Serum/Plasma GPx Concentrations
3.3.1. Study Characteristics

Ten studies in 885 COPD patients (mean age 60 years, 66% male) and 794 non-COPD
subjects (mean age 55 years, 70% male) were identified [26,40–48]. A COPD diagnosis was
made according to the Global Obstructive Lung Disease (GOLD) guidelines in 8 studies [26,
42–48], and the American Thoracic Society/ European Respiratory Society (ATS/ERS)
guidelines in two [40,41]. Plasma was analyzed in 8 studies [26,41,42,44–48], whereas
serum was assessed in two [40,43].

3.3.2. Risk of Bias

The risk of bias was considered low in seven studies [26,41,43–47], moderate in one [40]
and high in the remaining two [42,48] (Table 2).

3.3.3. Results of Individual Studies and Syntheses

The forest plot for the serum/plasma GPx concentrations in COPD patients and non-
COPD subjects is described in Figure 7. In five studies [40,41,43,44,47], COPD patients
had lower serum GPx concentrations when compared to non-COPD subjects (mean dif-
ference range, −5.43 to −0.20), and this difference was statistically significant in three
studies [40,43,44]. In the remaining five studies [26,42,45,46,48], COPD patients had higher
serum GPx concentrations (mean difference range, 0.16 to 3.13), and this difference was
statistically significant in four studies [26,42,45,46]. Extreme heterogeneity between studies
was observed (I2 = 98.8%, p < 0.001). Thus, random-effects models were used. Overall, the
pooled results showed that the serum/plasma GPx concentrations were not significantly
different between the two groups (SMD= −0.23, 95% CI −1.31 to 0.85, p = 0.67). The
effect size was not substantially altered (range between −0.59 and 0.30, Figure 8) after
sequentially removing individual studies.
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3.3.4. Publication Bias

There was no publication bias according to the Begg’s (p = 0.59) and Egger’s (p = 0.46)
tests, or the “trim-and-fill method”.

3.3.5. Meta-regression and Sub-group Analysis

Sub-group analysis showed that the pooled SMD value for the studies measuring
GPx in serum (SMD = −1.59, 95% CI −3.41 to −0.22, p = 0.084; I2 = 98.0%, p < 0.001)
was non-significantly lower (t = 0.91, p = 0.39) than that observed in the studies assessing
plasma (SMD = 0.12, 95% CI −1.00 to 1.25, p = 0.83; I2 = 98.6, p < 0.001). In addition, the
pooled SMD value for the studies using the GOLD guidelines (SMD = −0.20, 95% CI −1.67
to 1.27, p = 0.79; I2 = 99.0%, p < 0.001) was similar (t = 0.12, p = 0.91) to that of the studies
using the ATS guidelines (SMD = −0.43, 95% CI −0.89 to 0.04, p = 0.07, I2 = 83.4, p = 0.014).

3.3.6. Certainty of Evidence

The initial level of certainty for serum/plasma GPx SMD values was considered low
because the selected studies were observational (rating 2, ⊕⊕��). After considering the
presence of a low risk of bias in 7 out of 10 studies (no rating change required), the generally
extreme and unexplained heterogeneity (a serious limitation, downgrade one level), the
lack of indirectness (no rating change required), the relatively high imprecision (relatively
narrow confidence intervals with threshold crossing, downgrade one level), the relatively
small effect size (SMD −0.23, downgrade one level), and the absence of publication bias
(upgrade one level), the overall level of certainty was considered downgraded to very low
(rating 0, ����).

4. Discussion

This meta-analysis provides a critical appraisal of the association between blood
GPx concentrations and the presence of COPD. Twenty-four case–control studies were
included. and further analyzed according to whether the assessment was performed in
whole blood/erythrocytes or serum/plasma.

The results showed that the GPx concentrations in whole blood or erythrocytes were
significantly lower in COPD patients when compared to non-COPD subjects. The observed
pooled SMD value (−1.91) indicated the presence of a large effect size [49], even after
removing the study by Al-Azzawy [39] that appeared to influence the funnel plot symmetry
(−1.46). Although a substantial heterogeneity between studies was observed, the sensitivity
analysis showed that the pooled SMD value was not altered when individual studies were
sequentially discarded. Furthermore, the Begg’s and Egger’s tests revealed the absence
of a publication bias. The meta-regression analysis did not find associations between the
effect size and age, gender or lung function parameters. The sub-group analysis identified
four studies that were homogeneous regarding the diagnostic guidelines, matrix type,
and continent. In this subgroup, the effect size confirmed that the GPx concentrations
were significantly lower in COPD patients, but with a substantially lower heterogeneity
between studies. This suggests that these factors can influence the observed heterogeneity.
However, additional potential heterogeneity could also depend on other unreported factors,
such as differences in sample handling and analytical procedure, or other inter-individual
differences. Moreover, six studies allowed us to further evaluate the relationship between
effect size and disease severity, which indicated that erythrocyte GPx concentrations were
significantly lower in the patients with more severe disease.

In contrast to the assessment of whole blood and erythrocytes, the studies that assessed
GPx in serum or plasma showed conflicting results. This could be due to differences
in analytical approaches, age, gender, diet, or lifestyle, which might influence per se
the concentration of antioxidant molecules. Therefore, the overall SMD value did not
significantly differ between the two groups. There was a substantial heterogeneity between
the studies, however the pooled SMD value was not altered when any single study was
sequentially removed.
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The observed differences in the pooled SMD between the two meta-analyses highlight
the importance of the specific biological matrices GPx isoforms. In blood, two isoforms are
mainly represented, the intracellular isoform GPx-1, which is ubiquitously expressed in
the cytosol, and the extracellular GPx-3, which is actively released into the plasma where it
is primarily present as a glycosylated protein [13,50]. Both isoforms are homo-tetramers
containing a selenocysteine in their active site, which catalyzes the reduction of hydrogen
peroxide or organic hydroperoxides to water or corresponding alcohols [51]. GPx-1, the first
selenoprotein identified and characterized as an erythrocytic enzyme, protects hemoglobin
from oxidative damage [52]. Red blood cells are normally exposed to high oxygen concen-
trations, which promote the production of ROS. Our meta-analysis has shown for the first
time that GPx-1, but not GPx-3, is significantly lower in COPD patients when compared to
non-COPD subjects, and in COPD patients with more severe disease when compared to
those with milder forms, which further supports the pathophysiological role of oxidative
stress in this disabling condition. The significant reduction of the erythrocytic isoform
of GPx may be partly explained by a significant exposure of this type of cell to oxidative
stress and an impaired antioxidant system. It has been shown that GPx-1 expression is
diminished by selenium deficiency both in vitro and in vivo studies [14]. It is also known
that patients affected by COPD often exhibit nutritional deficiencies, including selenium
deficiency [25]. This could contribute to the reduced GPx-1 activity observed in this disease.
Moreover, the diminished activity of this enzyme, which uses GSH as co-substrate, may
also be the consequence of the reduced GSH concentrations that are reported in COPD [53].
Finally, a reduction in GPx-1 expression has been also described in the airway epithelial
cells in COPD patients due to accelerated mRNA degradation [54]. Thus, a more thorough
evaluation of this important component of the antioxidant defense system may provide
useful insights into its role in COPD development and progression, and as a marker of
therapeutic response.

5. Conclusions

This meta-analysis had some limitations, in particular the presence of high hetero-
geneity, and the lack of sub-studies on the relation between GPx expression and clinical
parameters, such as smoking habits or other environmental exposure. Furthermore, the
number of studies included was limited to those written in English. On the other hand,
strengths of our study include the assessment of individual matrix types, hence isoforms,
and a comprehensive evaluation of the certainty of evidence for the SMD values. Whilst
the presence of extreme heterogeneity might curtail the generalizability of our findings,
we also identified that the use of specific COPD diagnostic guidelines, matrix types, and
geographical areas are important contributors to such heterogeneity. Our findings support
the presence of an impaired antioxidant defense system in COPD. The identification of
GPx-1 as a potential biomarker of oxidative stress in COPD warrants longitudinal studies
to determine its prognostic role in terms of disease progression and mortality, and to
investigate the effects of specific antioxidant therapies in these patients.
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