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Abstract The DR region of primate species is generally
complex and displays diversity concerning the number and
combination of distinct types of DRB genes present per
region configuration. A highly variable short tandem repeat
(STR) present in intron 2 of nearly all primate DRB genes
can be utilized as a quick and accurate high through-put
typing procedure. This approach resulted previously in the
description of unique and haplotype-specific DRB-STR
length patterns in humans, chimpanzees, and rhesus
macaques. For the present study, a cohort of 230 cynomol-
gus monkeys, including self-sustaining breeding groups,
has been examined. MtDNA analysis showed that most
animals originated from the Indonesian islands, but some
are derived from the mainland, south and north of the
Isthmus of Kra. Haplotyping and subsequent sequencing
resulted in the detection of 118 alleles, including 28
unreported ones. A total of 49 Mafa-DRB region config-
urations were detected, of which 28 have not yet been
described. Humans and chimpanzees possess a low number
of different DRB region configurations in concert with a
high degree of allelic variation. In contrast, however, allelic
heterogeneity within a given Mafa-DRB configuration is
even less frequently observed than in rhesus macaques.

Several of these region configurations appear to have been
generated by recombination-like events, most probably
propagated by a retroviral element mapping within DRB6
pseudogenes, which are present on the majority of
haplotypes. This undocumented high level of DRB region
configuration-associated diversity most likely represents a
species-specific strategy to cope with various pathogens.
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Introduction

Nowadays, the cynomolgus macaque (Macaca fascicularis)
represents an important animal model in preclinical
biomedical research, especially in studies of immune-
related diseases as AIDS (Wiseman et al. 2007; Greene et
al. 2008; Benferhat et al. 2009; Mee et al. 2009),
tuberculosis (Reed et al. 2009), and malaria (Edstein et al.
2007), but also in autoimmune diseases such as multiple
sclerosis (Ma et al. 2009) and in transplantation research
(Aoyama et al. 2009). Therefore, a thorough knowledge of
the major histocompatibility complex (MHC) of this Old
World monkey species is a prerequisite. The -DRB region
in various primate species displays allelic variation (poly-
morphism) as well as diversity (variation of gene copy
numbers and composition; Bontrop 2006). In humans, the
number of DRB loci per haplotype varies from one to four
and five major region configurations with different gene
numbers and content are known (DR8, DR1, DR51, DR52,
and DR53), whereas in chimpanzees nine and in rhesus
macaques more than 30 region configurations have been
defined with up to five and six DRB loci per haplotype,
respectively (Mayer et al. 1992; Khazand et al. 1999;
Doxiadis et al. 2007; de Groot et al. 2009). Many of the
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DRB alleles of rhesus (Mamu-DRB) and cynomolgus
monkeys (Mafa-DRB) belong to loci/lineages that are
shared between humans and macaques: namely, DRB1,
DRB3, DRB4, and DRB5, as well as DRB6, with the latter
appearing to be a pseudogene in all primate species studied.
In addition, loci/lineages for which no human equivalent is
known are present in macaques. These are named DRB*W,
and various DRB*W loci/lineages have been defined. In
humans, the highly polymorphic DRB1 gene is present in
each region configuration, whereas macaques also possess
region configurations without a DRB1 gene or even with
duplicated DRB1 genes. Within a given region configura-
tion, DRB1 genes in macaques display low or limited
polymorphism (Doxiadis et al. 2000). In rhesus and
cynomolgus macaques, two to three DRB loci per haplotype
appear to be expressed. Untranscribed Mamu- and Mafa-
DRB alleles may belong to different loci/lineages; even
DRB1 alleles have been observed without a transcript (de
Groot et al. 2004; Blancher et al. 2006).

In previous studies, the number of Mafa-DRB genes
was defined to vary from two to four per haplotype
(Blancher et al. 2006; Doxiadis et al. 2006a; O'Connor et
al. 2007). In concordance with data obtained from
mtDNA, Y-chromosomes, and different autosomal
markers (Smith et al. 2007; Tosi and Coke 2007; Blancher
et al. 2008; Bonhomme et al. 2008), the Mafa-DRB region
in animals from Mauritius displays limited levels of
polymorphism/diversity (O'Connor et al. 2007; Wiseman
et al. 2007; Wojcechowskyj et al. 2007), which is due to a
founder effect. However, the DRB region configurations of
animals originating from Indochina and the Indonesian
islands seem to be far more variable (Leuchte et al. 2004;
Wei et al. 2007; de Groot et al. 2008). We were keen to
determine whether the region configurations reported so
far provide a comprehensive picture or has only “the tip of
the iceberg” been observed. Therefore, we made use of the
complex repeat, D6S2878, mapping to intron 2 of all DRB
(pseudo)genes, which are characterized by an intact exon
2–intron 2 organization. Previous studies revealed that this
microsatellite (DRB-STR) is present in various primate
species (Riess et al. 1990; Epplen et al. 1997; Bergstrom
et al. 1999; Kriener et al. 2000; Bak et al. 2006; Doxiadis
et al. 2007). Genotyping of panels of humans (Doxiadis et
al. 2007, 2009), chimpanzees (de Groot et al. 2009), and
rhesus (Doxiadis et al. 2007) and cynomolgus macaques
(de Groot et al. 2008) allowed the definition of unique
haplotyping patterns in all four species. In the present
study, a large panel covering related and unrelated
cynomolgus macaques was analyzed. Samples were first
subjected to 12S rRNA mtDNA sequencing to probe the
geographic origin of the monkeys. Subsequently, DRB
haplotyping was performed, followed by sequencing of all
unreported Mafa-DRB alleles.

Materials and methods

Samples and genomic DNA isolation

For this study, DNA samples of 162 related and 68
unrelated cynomolgus macaques were analyzed. The related
animals belong to an outbred breeding colony that is
housed at the Biomedical Primate Research Centre (BPRC),
The Netherlands, and are members of 11 pedigreed families
with variable member sizes and generations, ranging from
eight to 30 animals and from two to six generations. The
DNA of the unrelated animals of unknown origin was a gift
derived from various sources. Genomic DNA from the
breeding group animals was extracted from EDTA blood
samples or from immortalized B cell lines using a standard
salting out procedure.

mtDNA analysis

mtDNA was obtained as described above or was extracted
from feces in 96% ethanol using the QIAamp DNA stool
mini kit (QIAGEN, GmbH, Germany) according to the
manufacturer's recommendations. Amplification of part of
the mitochondrial 12S rRNA gene, purification, and
sequencing was performed essentially according to pub-
lished methods (Doxiadis et al. 2003). The data were
analyzed using the SeqMan program of the Lasergene
software (DNASTAR, Madison, WI, USA). The seven
unreported sequences (0201345, F108, Hoffa, Friko, 2321A,
6224, and 479) resulting from at least two independent PCR
reactions have been deposited in the EMBL database
(accession numbers: FN434196–FN434202). All other
mtDNA sequence accession numbers have already been
published (Tosi et al. 2003; Doxiadis et al. 2006a; de Groot
et al. 2008).

Phylogenetic analysis of mtDNA sequences

Multiple sequence alignments of mtDNA sequences of
the 12S rRNA part were created using MacVectortm

version 10.6.0 (Oxford Molecular Group). The evolution-
ary history of different sequences together with published
mtDNA sequences of cynomolgus macaques of known
origin was inferred using the neighbor-joining method.
The bootstrap consensus tree inferred from 1,000 repli-
cates is taken to represent the evolutionary history of the
taxa analyzed. The evolutionary distances were computed
using the maximum composite likelihood method (Tamura
et al. 2004) and are in the units of the number of base
substitutions per site. There were a total of 370 positions
in the final dataset. Phylogenetic analyses were con-
ducted using MEGA version 4.0 software (Kumar et al.
2008).
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STR-DRB genotyping

Amplification of the relevant DNA segment in cynomolgus
macaques was performed as described for rhesus macaques
using the same primer sets (de Groot et al. 2008). Briefly, the
relevant DNA segment in rhesus macaques was amplified
with a forward primer located at the 3’ end of exon 2 next to
intron 2 (5'Mamu-DRB-STR: TTC ACA GTG CAG CGG
CGA GGT) and with labeled reverse primers in intron 2
(3'Mamu-DRB-STR_VIC: ACA CCT GTG CCC TCA GAA
CT and 3'Mamu-DRB-STR_FAM_1007: ACA TCT GTG
TCC TCA GAC CT). The labeled primers were synthesized
by Applied Biosystems (Foster City, USA) and the unlabeled
primers by Invitrogen (Paisley, Scotland). The PCR reaction
was performed in a 25-μl reaction volume containing 1 unit
of Taq polymerase (Invitrogen, Paisley, Scotland) with
0.6 μM of the unlabeled forward primer (5'Mamu-DRB-
STR), 0.4 μM of the VIC labeled reversed primer, 0.2 μM of
the FAM labeled reversed primer, 2.5 mM MgCl2, 0.2 mM of
each dNTP, 1×PCR buffer II (Invitrogen, Paisley, Scotland),
and 100 ng DNA. The cycling parameters were a 5 min 94°C
initial denaturation step, followed by five cycles of 1 min at
94°C, 45 s at 58°C, and 45 s at 72°C. The program was
followed by 25 cycles of 45 s at 94°C, 30 s at 58°C, and 45 s
at 72°C. A final extension step was performed at 72°C for
30 min. The amplified DNA was prepared for genotyping
according to the manufacturer's guidelines and analyzed on
an ABI 3130 genetic analyzer (Applied Biosystems). STR
analysis was performed using the Genemapper program
(Applied Biosystems), and all samples were analyzed at least
twice.

PCR, cloning, and sequencing of DRB exon 2

One hundred and eighteen different Mafa-DRB alleles were
sequenced from exon 2 to intron 2, including the micro-
satellite. Therefore, we used the same primers and PCR
reaction as described for rhesus macaques, and cloning and
sequencing was also performed as published earlier
(Doxiadis et al. 2007). The 28 unreported Mafa-DRB
sequences have been deposited in the EMBL database
[accession numbers: FN433698, FN433701, FN433704,
FN433705, FN433708, FN433712, FN433716, FN433719-
FN433721, FN433725, FN433729, FN433731, FN433734,
FN433737-FN433745, FN433747, FN433749-FN433752]
(Supplementary Table 1) and are officially designated by
the IPD/MHC database (Klein et al. 1990; Robinson et al.
2003; Ellis et al. 2006).

Phylogenetic analysis of DRB exon 2 sequences

Multiple sequence alignments of exon 2 of all known Mafa-
DRB sequences were created using MacVector™ version

10.6.0 (Oxford Molecular Group), followed by a phyloge-
netic analysis performed with the MEGA version 4.0
software (Kumar et al. 2008) as described above for
mtDNA, except that pairwise distances were computed
using the Kimura-2 parameter model, and a total of 183
positions were included in the final dataset. The bootstrap
consensus tree inferred from 2,000 replicates is taken to
represent the evolutionary history of the taxa analyzed.

Results and discussion

Geographic origin of cynomolgus macaques

The 3' segment of the 12S rRNA gene of mtDNA provides
essential information to elucidate the geographic origin of
different macaque populations (Tosi et al. 2003; Smith and
McDonough 2005; Kyes et al. 2006; de Groot et al. 2008).
The obtained mtDNA sequences, as well as reference
alleles extracted from animals of known origin, were
subjected to phylogenetic analysis. The resulting consen-
sus tree showed a bifurcation of continental versus insular
lineages (Fig. 1), a result comparable to a preceding study
conducted on a limited number of samples (Doxiadis et al.
2006a) and on a report based on parts of the 16S rRNA
gene of mtDNA and two genomic loci mapping to the Y
chromosome (Tosi and Coke 2007). The cynomolgus
macaques from the self-sustaining breeding colony seem
to have originated mainly from the Malaysian/Indonesian
islands and partly from the Indochinesian continent
(Fig. 1, bold). Half of the unrelated animals, however,
have their roots in the islands and the other half in the
continent (Fig. 1, bold and italics). A split is observed
within the continental mtDNA lineages, separating cyn-
omolgus macaques from north of the Isthmus of Kra,
including Cambodia, Thailand, and Vietnam, from those
of south of the isthmus: namely, the Malaysian peninsula.
mtDNA obtained from the unrelated animals from colo-
nies of different sources cluster within both branches,
whereas three of the families of the self-sustaining
breeding colony—represented by Sayonara, Alfa, and
Cornea (Fig. 1, bold)—originate from the Malaysian
peninsula. The phylogenetic tree shows far more diversity
within the continental mtDNA samples than within those
representing the islands. Although no divergence times
can be calculated, this observation is in concordance with
the suggestion of a southwards migration of the cynomol-
gus macaques from mainland Indochina to the Indonesian
islands (Blancher et al. 2008). Moreover, mtDNA phylog-
eny shows that the analysis of mtDNA of unrelated
animals obtained from different sources further broadens
the variety of cynomolgus macaques with regard to their
maternal origin.
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Mafa-DRB allele and haplotype definition

All 162 pedigreed macaques included in this study are
members of 11 families covering two to six generations and
belong to a self-sustaining breeding colony. Therefore,
haplotypes of the family members could be determined by
segregation analyses. Furthermore, DRB haplotypes of the
68 unrelated animals, for which segregation data are absent,

were deduced if the combination of certain DRB-STR
patterns and exon 2 alleles was found to be shared by at
least two animals.

As has been shown previously (de Groot et al. 2008), all
Mafa-DRB genes with an intact exon 2–intron 2 segment
possess the relevant microsatellite, and the majority of the
appropriate DNA segments could be successfully amplified.
Amplification failure was observed in a few cases, mostly
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related to members of the DRB6 pseudogene family. The
failure is likely caused by primer inconsistencies due to the
genetic instability of this pseudogene (Doxiadis et al.
2008a). In each cynomolgus macaque sample, two to ten
amplicons that are highly variable in length with a range
from 143 to 362 bp (Table 1) were detected. If a
combination of amplicons was not observed earlier, cloning
and sequencing of exon 2 segments of the respective
sample was performed to define unreported alleles and to
link each DRB-STR length to its respective DRB gene/
allele. In the cohort of 230 animals, a total of 118 DRB
alleles could be determined, including 28 unreported ones
(Supplementary Table 1; Table 1, bold). The Mafa-DRB
exon 2 sequences have been subjected to phylogenetic
analysis, and a neighbor-joining tree has been constructed
(Fig. 2). The tree shows many branches with relatively
short branch lengths, with the exception of one deep clade
representing the alleles of the DRB6 pseudogene. In all
cases, the DRB-STR amplicons could be unambiguously
linked to a certain DRB allele and were found to segregate
in a Mendelian manner. The composition of the DRB-STR
is in keeping with the phylogeny of exon 2 sequences
(Doxiadis et al. 2007; de Groot et al. 2008). Since the
microsatellite is highly variable in length and present in
most DRB genes/alleles analyzed, each haplotype is
characterized by a unique DRB-STR pattern representing
the combination of certain DRB alleles. In such a way, 49
different region configurations could be defined differing in
number and content of their DRB genes/pseudogenes
(Table 1). Twenty-two configurations have been described
earlier to be present in four of the 11 families housed at the
BPRC (de Groot et al. 2008). Two of the previously
reported configurations turned out in fact to be only one
encoding a total of five DRB alleles (Table 1, No 15). A
few of the 49 DRB region configurations have also been
observed in monkeys of other primate centers (Leuchte et
al. 2004; Blancher et al. 2006; Wei et al. 2007; Wiseman et
al. 2007). Additionally, another configuration described in
Mauritius monkeys seems to be identical to one of our
cohort (no. 28), with the addition of a DRB6 allele. Thus, this
study resulted in the discovery of 28 unreported Mafa-DRB
region configurations. Only four of these configurations
display allelic variation (Table 1, no.10a, b; 20a–c; 33a, b;
44a, b,) resulting in a total of 54 DRB haplotypes. Most of
these unreported haplotypes were detected within the group
of unrelated animals, although these monkeys are character-
ized by only nine different mtDNAs, and no breeding
information was available. The finding suggests that many
more DRB haplotypes may be detected if animals from other
origins are going to be analyzed. Thus, the extremely high
level of DRB region configuration-associated diversity in
cynomolgus monkeys most likely represents a species-
specific strategy to cope with various pathogens.

Generation of DRB region configurations
by recombination-like events: a possible role of the DRB6
pseudogene

In humans, only five major DRB region configurations are
known and designated, DR8, DR1, DR51, DR52, and
DR53, (Marsh et al. 2005), whereas in chimpanzees nine
(de Groot et al. 2009), and in rhesus macaques, mostly of
Indian origin, about 30 different configurations have been
defined (Slierendregt et al. 1994; Khazand et al. 1999;
Doxiadis et al. 2000). A particular New World monkey
species, the common marmoset (Callithrix jacchus), how-
ever, appears to lack region configuration polymorphism at
all (Antunes et al. 1998; Doxiadis et al. 2006b). Earlier
publications suggested that the formation of the DRB region
in most primates by extension and contraction resulted from
unequal crossing-over events (Slierendregt et al. 1994;
Doxiadis et al. 2000). However, the high level of DRB
region configuration polymorphism encountered in cyno-
molgus macaques: namely, 49 configurations detected in
only 230 animals, is unprecedented. In contrast, each of the
five human region configurations is extremely poly-
morphic, mainly due to the HLA-DRB1 gene, which
displays abundant levels of allelic variation. As a conse-
quence, many haplotypes have been established for each of
the five HLA-DR region configurations. The degree of
allelism within a region configuration is far lower in rhesus
macaques and is seldom seen in the cynomolgus monkey.
In the latter species, the number of region configurations
almost equals the number of haplotypes. Thus, depending
on the species, the number of DRB region configurations
and the degree of allelic polymorphism appear to be in
reversed proportion to each other.

About half of the Mafa-DRB region configurations
appear to share segments covering one or more alleles/loci,
and examples have been given (Table 2). In one of these
examples, not only the exon 2 sequences but also the
lengths of the adjacent STRs are identical (Table 2, 2a/b).
Other identical sets of exon 2 alleles segregate with slightly
different STR lengths, a result that is in concordance with
the notion that the STRs evolve faster than the adjacent
coding sequences (Doxiadis et al. 2007; de Groot et al.
2008). Many of these haplotype pairs that share certain
DRB genes/alleles appear to have additionally a DRB6
pseudogene in common (examples are given in Table 2).
Furthermore, it is noted that 36, thus nearly three-quarters
of the 49 DRB region configurations, contain one and
sometimes even two DRB6 pseudogenes. All contemporary
primate DRB genes are thought to originate from an
ancestral progenitor gene and to have arisen from several
rounds of duplication (Bontrop et al. 1999). One of the
duplicated progenitor genes appears to be the founder of the
DRB6 gene/pseudogene, which is more than 58 million
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Fig. 2 Phylogenetic tree of all
known Mafa-DRB exon 2
sequences. Phylogenetic analy-
sis of exon 2 sequences of all
118 Mafa-DRB alleles has been
performed as described above
(Material and methods); exon 2
sequence of Caja-DRB*W1601
is used as outgroup. Bootstrap
values <50 have been omitted.
Alleles as for example
DRB*W2001 that do not cluster
within other alleles of the same
lineage have been named
according to the same motif at
the peptide binding site (amino
acids 9–13)
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years old, since it is also present in prosimians but seems to
have been lost in New World monkeys. The phylogenetic
tree confirms the DRB6 pseudogene as being an old entity,
since all Mafa-DRB6 alleles cluster far apart from the rest
of the DRB genes/alleles (Fig. 2), and Mamu-DRB6
sequences are shown to cluster together with DRB6 alleles
from other species such as humans and chimpanzees
(Doxiadis et al. 2008b). Additionally, the DRB6 gene must
have lost its function, at least its ability to encode a bona
fide MHC class II gene product, very early in the evolution
of the DRB region because it is known to be a truncated
pseudogene in nearly all contemporary living primate
species. Why such a highly polymorphic pseudogene has
been kept in a multigenic region like the MHC over such a
long time span is an intriguing question. The pairs of Mafa-
DRB region configurations that share partly identical genes/
alleles (Table 2) suggests the possibility that a recombination-
like event occurred that was promoted by DRB6 itself or its
surrounding region. These recombinations seem to have
happened as unequal crossing-over events, since some of
the resultingMafa-DRB regions have duplicated DRB6 loci in
both pairs (Table 2, no. 1) or only one of them contains the
duplicated DRB6 (Table 2, no. 4a). In addition, there are
related sets of region configurations of which only one has a
DRB6 pseudogene (Table 2, no. 6a, 7b, and 8a), but there are

also configurations with DRB6 as the only shared locus
(Table 2, no. 9). A possible explanation for the recombination
hot-spot at the DRB6 locus may be the presence of a more
than 5,000 bp long endogenous retroviral sequence,
HERVK3I, within the intron 1 of all DRB6 and DRB2
pseudogenes studied so far in humans, chimpanzees, and
rhesus macaques (Doxiadis et al. 2008a). HERV structures
are well-known to promote recombination and sequence-
transduction processes (Deininger and Batzer 2002; Kazazian
2004), and their possible role in the contraction and
expansion of the DR region has been suggested in the past
(Andersson et al. 1998). Especially those retroviral structures
like the HERVK3I sequences of the DRB6/DRB2 lineage,
which are integrated in sense direction in intronic sequences,
are described to promote recombination-like processes (van
de Lagemaat et al. 2006; Doxiadis et al. 2008a). The
observation that the common marmoset, a New World
monkey that has no DRB6/DRB2 gene/pseudogene(s) and
therefore also no HERVK3I insertion, also lacks region
configuration polymorphism fits into this hypothesis. A
recent report documenting the existence of hybrid DRB
region configurations in humans in which unequal
recombination-like events appear to have taken place
surrounding DRB6 pseudogenes also supports this theory:
namely, that endogenous retroviral insertions and probably

Table 2 Arising of new Mafa-DRB haplotypes by recombination-like events

 No 1st DRB locus STR 2nd DRB locus STR  3rd DRB locus STR 4th DRB locus  STR 5th DRB locus STR  

 1a DRB1*0303 217 DRB*W101 358?  DRB6*0123 192 DRB6*0128  200 DRB*W302 169
 1b DRB1*0303 213 DRB*W101 362  DRB6*0123 192 DRB6*0128  200 DRB*W6401 229 

 2a DRB1*0315 211 DRB1*0314 181  DRB6*0112 176       
 2b    DRB1*0314 181  DRB6*0117 224? DRB*W206  211 DRB*W106 249 

 3a DRB1*0401 187 DRB5*030101  169  DRB6*011302 182? DRBW*303  247 
 3b DRB1*0401 189 DRB5*0303 169  DRB6*011302 182? DRB4*0102  229 

 4a DRB1*0403 207 DRB*W3701 241  DRB6*011301 212?  DRB6*011302  182? 
 4b DRB1*0403 201 DRB*W3701 223           

 5a DRB3*0402 236 DRB6*0121 201  DRB5*0312 143 DRB*W6303  242 
 5b DRB3*0402 236? DRB6*0121 201  DRB1*0310 211 DRB*W260102 209  

 6a DRB*W304 187 DRB*W302 169  DRB6*0107 226 DRB*W2003  201 DRB*W2501 187 
 6b DRB*W304 193 DRB*W305 231  DRB*W601 231       

 7a DRB*W2001 265 DRB*W6401 227            
 7b DRB*W2001 273 DRB6*0108 204,210 DRB*W6601 195       

 8a DRB*W2002 220 DRB6*0111 180           
 8b DRB*W2002 222 DRB*W2601 179 

 9a DRB6*011301 192 DRB*W101 380  DRB*W306 193 DRB*W702  273 
 9b DRB6*011301 218 DRB*W303 251(249) DRB?  287  

Data in parentheses are STR length observed in one or two animals only. Question marks in the place of the STR length or after the STR length 
indicate that the STR has not or rarely been detected but presence of allele has been confirmed by sequencing. Question marks in the place of allele 
name indicate that the STR is detected but the allele has not been confirmed by sequencing. DRB6 genes are shaded. 
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other transposable elements play a role in the plasticity of the
DR region (Doxiadis et al. 2009). However, the existence of
only nine different region configurations in the chimpanzee,
in nearly all of which a DRB6/DRB2 locus is present, seems
at first glance to contradict a unique, recombination-
promoting role of intronic HERVs. One possibility could be
that the chimpanzee as a species is far younger than the Old
World monkeys and has not had enough evolutionary time to
generate a higher number of region configurations. Further-
more, it is known that about 2 million years ago chimpanzees
experienced a selective sweep that targeted the MHC region
(de Groot et al. 2002). Therefore, it is likely that chimpanzees
lost some DRB region configurations due to this selective
sweep. Another scenario could be that in one of the first
rounds of unequal crossing-over processes other genes were
generated in cynomolgus macaques, such as those of the
DRB*W lineages that are not present in hominoids. In
humans, there is only one functional DRB gene, DRB1,
which is present on all haplotypes and therefore can probably
not be missed, whereas in macaques some of the DRB*W
genes may have replaced the DRB1 gene as the prominent,
beta-chain-encoding DRB locus. In chimpanzees, a species
older than humans in evolutionary terms, the intermediate
situation can be observed, since there exists at least one
haplotype without a DRB1 gene, and it is plausible that DRB3
and/or DRB4 have taken over its function (de Groot et al.
2009). Therefore, it seems likely that in the far future more
region configurations will be generated in humans and great
apes, with a subsequent loss of DRB1 as the main and most
polymorphic DRB gene per chromosome.
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