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LncRNA RCAT1 promotes tumor progression and metastasis via
miR-214-5p/E2F2 axis in renal cell carcinoma
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Renal cell carcinoma is the second malignant tumors in the urinary system with high mortality and morbidity. Increasing evidence
suggests that long non-coding RNAs (IncRNAs) play critical roles in tumor development and progression. In the current study, based
on the publicly available data obtained from GEO and TCGA database, we identified five prognosis-related IncRNAs with the ability
to predict the prognosis of patients with renal cell carcinoma. Among them, the uncharacterized and upregulated IncRNA RCAT1
(renal cancer-associated transcript 1) was identified as the key IncRNA. Our data further revealed that the expression of IncRNA
RCAT1 was significantly upregulated in renal cell carcinoma tissues and cells. Gain-of-function and loss-of-function studies showed
that IncRNA RCAT1 promoted cell proliferation, migration, and invasion in vitro and in vivo. Furthermore, we verified that IncRNA
RCAT1 could abundantly sponge miR-214-5p, which served as a tumor suppressor in renal cell carcinoma. Significantly, miR-214-5p
overexpression could attenuate the promotion of cell proliferation and metastasis induced by IncRNA RCAT1. Moreover, we found
that E2F2 was a direct target of miR-214-5p, and IncRNA RCAT1 could protect E2F2 from miR-214-5p-mediated degradation. Taken
together, our findings suggested that IncRNA RCAT1 could enhance the malignant phenotype of renal cell carcinoma cells by
modulating miR-214-5p/E2F2 axis, and IncRNA RCAT1 might be a novel prognostic biomarker and a potential therapeutic target for

renal cell carcinoma.
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the predominant
pathological subtype of renal cell carcinoma and accounts for
80~90% of all renal cancers in adults [1]. Since the disease course
of ccRCC is usually asymptomatic and there are no effective early
diagnostic markers, approximately 30% of ccRCC patients have
occurred distant metastasis and 40% of ccRCC patients have
already occurred local relapse at the time of their initial diagnosis
[2]. Moreover, metastasis and recurrence significantly hinder
treatment success and lead to dramatically reduced overall
survival (OS) rate of ccRCC patients [3]. Therefore, gaining insight
into the underlying mechanisms of ccRCC progression is
particularly important for identifying effective biomarkers and
therapeutic targets to improve the diagnosis and prognosis of
ccRCC patients.

Long non-coding RNAs (IncRNAs) are a novel class of non-
coding RNAs longer than 200 nucleotides in length with limited or
no protein-coding capacity [4]. Accumulating studies demonstrate
that IncRNAs participate in multiple biological processes, through
serving as oncogenes or tumor-suppressor, such as cell prolifera-
tion, apoptosis, metastasis, and cell differentiation [5]. For
example, EGFR-AS1 promotes RCC cell growth and metastasis by
interacting with HuUR to increase the mRNA stability of EGFR [6].

Moreover, IncRNA FILNC1 plays a critical role in the energy
metabolism and development of renal cancer through interacting
with AUF1 to downregulate the expression of c-Myc, and low
FILNC1 expression is associated with poor clinical outcomes [7].
These studies indicated that IncRNAs might serve as a potential
biomarker for the diagnosis and prognostic prediction in RCC.

Various studies reported that IncRNAs could serve as competing
endogenous RNAs (ceRNAs) to compete for miRNA response
elements (MREs) with mRNAs [8], thus modulating the expression
of miRNA targets. IncRNA CDKN2B-AS1 could block miR-141-
mediated cyclin D suppression to enhance tumor progression and
metastasis [9]. HOXA11-AS sponges miR-146b-5p to upregulate
MMP16 expression and renal cancer progression [10]. However,
more efforts are needed to reveal the functional roles and exact
mechanisms of numerous IncRNAs in ccRCC.

Using bioinformatics analysis, we identified a novel IncRNA
RCAT1 (renal cancer-associated transcript 1) as a significant tumor
promoter in RCC. The expression of IncRNA RCAT1 was
significantly upregulated in RCC tissues and associated with poor
prognosis of RCC patients. Further study revealed that IncRNA
RCAT1 could serve as the miR-214-5p sponge to promote ccRCC
cell proliferation and migration. Our study could provide a better
understanding about the ccRCC progression and a promising
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Fig. 1 Identification of differentially expressed IncRNAs. a, b Hierarchical clustering heatmap (a) and volcano plots (b) of TCGA and
GSE96574 showing the differentially expressed IncRNAs between ccRCC samples and normal samples. ¢ Comparison of the differentially
upregulated or downregulated IncRNAs in the two datasets. d A Circos plot was used to show the differentially expressed IncRNAs (log, fold
change (FC) | > 1, P < 0.05). The inner circle shows the downregulated IncRNAs (purple dots) and the second circle identifies the upregulated
IncRNAs in ccRCC tissues (red triangles) according to GSE96574. The third circle shows the downregulated IncRNAs (purple dots) and the
fourth circle identifies the upregulated IncRNAs in ccRCC tissues (red triangles) according to TCGA. The outside circle represents the overlap of

upregulated (pink dot) or downregulated IncRNAs (blue dots).

biomarker for prognosis prediction and treatment for ccRCC
patients.

RESULTS

Identification of differentially expressed IncRNAs in ccRCC and
normal tissues

Based on integrated analysis of the IncRNA-expression profiles
obtained from TCGA and GEO datasets, we identified 2809 (1454
upregulated and 1355 downregulated IncRNAs) and 413 (216
upregulated and 197 downregulated IncRNAs) differentially
expressed IncRNAs (DEIncRNAs), respectively (Fig. 1a, b). After
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taking the intersection of DEIncRNAs of the two datasets, 100
commonly upregulated IncRNAs and 90 commonly downregu-
lated IncRNAs were obtained (Fig. 1c, d).

Construction of five-IncRNAs-based prognostic model

To further investigate whether the above DEINncRNAs were closely
associated with the OS of ccRCC patients in the TCGA cohort, we
firstly carried out univariate Cox regression analysis. The results
indicated that 94 IncRNAs were significantly related with the OS of
ccRCC patients (Table S1). Lasso analysis was performed and 24
IncRNAs were further selected (Fig. 2a). Subsequently, multivariate
Cox regression analysis was utilized to find the independent risk
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Fig. 2 The IncRNA prognostic model. a Lasso regression analysis of 94 DEIncRNAs. Those with P<0.05 were showed. b A forest plot
illustrating the HR and P-value from the multivariate cox regression analysis of 24 DEIncRNAs. Those with P < 0.05 were showed. c The bar plot
shows coefficients of five IncRNAs in the prognostic model. d Risk score system of the prognostic model. The above scatterplot exhibits the
risk scores of each ccRCC patient with survival data. The middle scatterplot showed the relationship between the risk scores and the survival
status/survival time. The below heatmap displays the expression profiles of the five IncRNAs in the prognostic model. e The time-dependent
ROC curve of OS suggests the reliability of the prognostic model. f Kaplan-Meier overall survival curves for ccRCC patients exhibited that the

OS of high-risk group was shorter than the OS of low-risk group.
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factors for OS. Five IncRNAs were finally selected and their
regression coefficients were calculated based on multivariate Cox
regression analysis (Fig. 2b). A prognostic model based on the
expression levels and regression coefficients of each IncRNA was
further constructed in TCGA cohort (Fig. 2c and Table S2). The risk
score for each patient was calculated according to the following
formula: risk score = (0.169 x expression level of ENSG000002
70661) + (—0.179 x expression level of ENSG00000256540) +
(—0.117 x expression level of ENSG00000261175) + (—0.226 x
expression level of ENSG00000259054) + (0.224 x expression level
of ENSG00000245694). Furthermore, using the optimal cutoff
value of risk scores, patients were classified into the high-risk
group (n = 241) and low-risk group (n = 281). The survival rate and
survival time of ccRCC patients in the high-risk group were
significantly decreased compared to the low-risk group (Fig. 2d).
The time-dependent receiver operating characteristic (ROC) curves
indicated that the area under the ROC (AUC) for OS was 0.721 at 3
years, 0.723 at 5 years, and 0.731 at 10 years (Fig. 2e). The
Kaplan-Meier survival curve revealed that high-risk group was
closely associated with shorter OS compared to the low-risk group
(Fig. 2f), indicating that the prognostic model performed
satisfactorily to predict prognosis in ccRCC patients.

Construction of the ceRNA Network

In order to investigate the potential mechanism of the five
DEIncRNAs, we constructed a network based on the ceRNA theory.
The DEmiRNAs and DEmRNAs were screened using TCGA
databases. Compared with normal samples, 109 DEmiRNAs (42
upregulated and 67 downregulated miRNAs) and 5100 DEmRNAs
(2115 upregulated and 2985 downregulated miRNAs) were
obtained (Fig. S1a, b). DIANA-LncBase v2 was used to predict
the interaction between IncRNAs and miRNAs. After crosschecking
with the DEmiRNAs, only 34 DEmiRNAs were found to be
associated with four IncRNAs (Fig. S1c). The interaction between
miRNA and mRNA was predicted using miRDB, miRTarBase,
TargetScan, and StarBase databases; mRNAs recognized by at
least three databases were considered as candidate targets (Fig.
S1d). After taking the intersection with 5100 DEmRNAs, only 153
DEmRNAs were identified (Fig. S1e). Finally, a total of 4 DEIncRNASs,
15 DEmiRNAs, and 153 DEmRNAs were incorporated into the
ccRCC-associated ceRNA regulatory network by applying Cytos-
cape software (Fig. S1f). To better understand the underlying
function of the ceRNA network, Gene Ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed. Various cancer-related path-
ways were identified, such as DNA-binding transcription activator
activity, approximal promoter sequence-specific DNA binding,
PI3K-Akt signaling pathway, and microRNAs in cancer (Fig. S2),
indicating the significant roles of the ceRNA network in the
progression of cancers.

Confirmation of the differential expression and potential
prognostic value of IncRNA RCAT1 in ccRCC

Based on the above results, two IncRNAs (ENSG00000270661 and
ENSG00000245694) in the ceRNA regulatory network caught our
attention, which were negatively associated with the prognosis of
ccRCC patients. Previous studies revealed significant role of
ENSG00000245694 in various cancers [11-13], such as glioma,
colorectal carcinomas, and pancreatic cancer. However, there is no
report about ENSG00000270661 to date. Therefore, we selected
the unannotated and poor prognosis-associated IncRNA RCAT1
(ENSG00000270661) for further investigation. IncRNA RCAT1 is
located on 6921 in humans and is composed of one exon with a
full length of 1931 nt (Fig. S3a). The sequence and secondary
structure of IncRNA RCAT1 are shown in Fig. S3b, c. By using
several well-known methods, such as PRIDE database [14], Lee
translation initiation sites [15], PhyloCSF [16], Bazzini small ORFs
[17], and coding potential assessment tool [18], we found that
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IncRNA RCAT1 has no protein-coding potential (Fig. S3d).
Consistently, there is no valid Kozak consensus sequence in
IncRNA RCAT1 [19], which is essential for the initiation of
translation. We further constructed a plasmid according to
previous study [20], with potential Kozak sequence, a translation
start codon, and a Flag tag at the 5’ terminus of the INcRNA RCAT1
and a translation stop codon at the 3’ terminus of IncRNA RCAT.
However, no corresponding protein could be detected using
western blot (Fig. S3e). These results collectively suggested that
IncRNA RCAT1 has no protein-coding potential. We first deter-
mined the expression pattern of IncRNA RCAT1 in ccRCC. The gRT-
PCR results showed that IncRNA RCAT1 expression was remarkably
increased in ccRCC tissues compared to normal tissues (Fig. 3a).
Moreover, compared to normal renal cells (HK2), IncRNA RCAT1
expression was significantly increased in RCC cells (A498, Caki-1,
769-p, ACHN, 786-0) (Fig. 3b). Using the median IncRNA RCAT1
expression in patients with ccRCC, patients from TCGA database
were divided into high- and low-expression groups. The
Kaplan-Meier survival curve showed that high IncRNA RCAT1
expression was significantly associated with poor prognosis of
ccRCC patients (Fig. 3c). Moreover, the expression of IncRNA
RCAT1 was upregulated in ccRCC tissues with advanced grades,
larger tumor size, distant metastasis, or late clinical stages (Fig.
3d-g), indicating that IncRNA RCAT1 may function as a tumor
promoter in ccRCC.

IncRNA RCAT1 facilitates the proliferation, migration, and
invasion of renal cancer cells

We further explore the biological function of IncRNA RCAT1 in
RCC, small interference RNAs (siRNAs) against IncRNA RCAT1 was
transfected into 786-O and 769-P cells, and the knockdown
efficiency was verified by qRT-PCR assay (Fig. 4a). IncRNA RCAT1
knockdown significantly inhibited the proliferation of 786-O and
769-P cells, as determined by MTT assay, colony-formation assay,
and EdU assay (Fig. 4b—d). Moreover, IncRNA RCAT1 knockdown
led to an increased apoptotic rate (Fig. 4e). The wound-healing
assay showed that IncRNA RCAT1 knockdown significantly
inhibited cell migration (Fig. 4f). Similarly, transwell assays
revealed that IncRNA RCAT1 knockdown inhibited cell migration
and invasion (Fig. 4g). Consistently, ectopic expression of IncRNA
RCAT1 promoted cell growth, migration and invasion, and
inhibited cell apoptosis (Fig. S4). We further investigated the
effect of INcRNA RCAT1 on the expression of related genes. Our
results indicated that IncRNA RCAT1 knockdown led to decreased
expression of Fibronectin, N-cadherin, and Vimentin, but increased
expression of p53, BAX, Rb, p21, and E-cadherin (Fig. S5a).
Moreover, IncRNA RCAT1 overexpression led to the opposite
results (Fig. S5b). These results indicated that IncRNA RCAT1 may
promote the progression of renal cancer cells in vitro.

Identification of miR-214-5p as a target of IncRNA RCAT1

Given that the subcellular localization of IncRNAs plays a vital role
in predicting their molecular function, we firstly evaluated the
subcellular localization of IncRNA RCAT1. The nuclear/cytosol
fractionation assay and fluorescence in situ hybridization (FISH)
assay indicated the cytoplasmic location of IncRNA RCAT1 in RCC
cells (Fig. 5a, b), indicating that IncRNA RCAT1 might serve as a
ceRNA for specific miRNAs. Based on the previously constructed
ceRNA regulatory network, we identified that two miRNAs (miR-
214-5p and miR-31-5p) might interact with IncRNA RCAT1 to
regulate the expression of E2F2 (Fig. 5¢). In search of direct target
miRNA of IncRNA RCAT1, dual-luciferase assay was performed. The
results showed that only miR-214-5p mimics significantly
decreased the luciferase activities of the wild-type IncRNA RCAT1
reporter vector containing the putative miR-214-5p recognition
site, but not that of the IncRNA RCAT1 reporter vector containing
the mutated miR-214-5p sponging sites, indicating that miR-214-
5p was probably the downstream target of IncRNA RCAT1 (Figs.
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Fig. 3 High IncRNA RCAT1 expression predicts worse prognosis of patients with ccRCC. a The differential expression of IncRNA RCAT1 in
ccRCC tissues and normal tissues. b The differential expression of IncRNA RCAT1 in ccRCC cells and normal cells. ¢ The Kaplan-Meier analysis
was used to evaluate the relationship between IncRNA RCAT1 expression and overall survival time of ccRCC patients. d-g The differential
expression of INncRNA RCAT1 in indicated ccRCC tissues according to TCGA database (P <0.05, P <0.001).

5d, e and S6a, b). Moreover, RNA immunoprecipitation (RIP) assay
using antibodies against AGO2 demonstrated that IncRNA RCAT1
and miR-214-5p was preferentially enriched in AGO2-containing
miRNA ribonucleoprotein complexes (miRNPs) relative to control
IgG immunoprecipitates (Fig. 5f). Then, we performed a pull-down
assay with a biotinylated IncRNA RCAT1 probe and the miR-214-5p
with enhanced fold-change for IncRNA RCAT1 capture was
observed (Fig. S6¢), further confirming the interaction between
IncRNA RCAT1 and miR-214-5p. Furthermore, knockdown or
overexpression of IncRNA RCAT1 resulted in up- or downregula-
tion of miR-214-5p in renal cancer cells, respectively (Figs. 59 and
S6d), indicating the negative regulatory effect of IncRNA RCAT1 on
the expression of miR-214-5p. These results revealed that IncRNA
RCAT1 might function as a ceRNA for miR-214-5p in renal cancer
cells.

IncRNA RCAT1 exerts biological functions in renal cancer cells
through regulating miR-214-5p

We further evaluated the role of miR-214-5p in RCC cells. RCC cells
were transfected with miR-214-5p mimics, the efficiency was
detected by qRT-PCR analysis (Fig. 6a). The results showed that the
RCC cell proliferation was reduced and cell apoptosis was
increased by miR-214-5p overexpression (Fig. 6b, c). The transwell
assay indicated that miR-214-5p overexpression led to decreased
cell migration (Fig. 6d). Moreover, overexpression of miR-214-5p
could restore the promotive effect of IncRNA RCAT1 on
proliferation and migration of 786-O and 769-P cells (Fig. 6e, f).
Above all, these data suggested that miR-214-5p served as a
tumor suppressor and could partly reverse the oncogenic effect of
IncRNA RCAT1 in RCC cells.

IncRNA RCAT1 modulated E2F2 expression through sponging
miR-214-5p

Based on TCGA and GEO databases, the expression of E2F2 was
significantly higher in renal cancer tissues compared to normal
tissues (Fig. 7a). The E2F2 expression was upregulated in renal
cancer tissues with metastasis compared to those without
metastasis (Fig. 7b). Moreover, high expression of E2F2 was
associated with poor OS of RCC patients (Fig. 7c). Compared with
control group, the mRNA and protein levels of E2F2 were
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downregulated after miR-214-5p overexpression or INCRNA RCAT1
knockdown (Fig. 7d, e). In addition, the increased expression of
E2F2 induced by IncRNA RCAT1 overexpression were diminished
by miR-214-5p mimics (Fig. 7f). Luciferase reporter vectors
containing wild-type or mutant miR-214-5p binding sites on the
3/UTR of E2F2 were constructed (Fig. 7g). The luciferase activity of
wild-type, but not mutant E2F2 reporter, was significantly reduced
by miR-214-5p mimics (Fig. 7h), indicating that miR-214-5p could
bind to the 3'UTR of E2F2 mRNA. Significantly, E2F2 knockdown
led to markedly decreased cell proliferation and increased cell
apoptosis (Fig. 7i, k). Moreover, transwell assay revealed that E2F2
knockdown led to decreased cell migration and invasion (Fig. 7I).
These findings demonstrated that IncRNA RCAT1 promoted RCC
cell progression through protecting E2F2 from miR-214-5p-
mediated degradation.

IncRNA RCAT1 promotes tumor growth and metastasis in vivo
We further evaluated the effect of IncRNA RCAT1 on tumor growth
and metastasis in vivo. The xenograft experiment results revealed
that IncRNA RCAT1 knockdown led to reduced proliferation of
tumors and downregulated expression of cell proliferation marker
Ki67 (Fig. 8a—d). The expression of E2F2 was also decreased in
xenograft tumor tissues of IncRNA RCAT1 knockdown group as
determined by immunohistochemistry (IHC) and qRT-PCR assays
(Figs. 8d and S6a). Moreover, qRT-PCR assays revealed that IncRNA
RCAT1 expression was decreased and miR-214-5p expression was
increased in xenograft tumor tissues of IncRNA RCAT1 knockdown
group (Fig. S6b, c). These results further indicated that IncRNA
RCAT1 promotes cell proliferation by regulating miR-214-5p/E2F2
axis. To determine the effect of IncRNA RCAT1 on RCC metastasis
in vivo, we established a lung metastasis mouse model. The
number and diameter of pulmonary metastasis lesions were
smaller and fewer in the IncRNA RCAT1 knockdown group (Fig. 8e,
f). These results suggest that IncRNA RCAT1 could promote RCC
tumor growth and metastasis in vivo.

DISCUSSION
As the most prevalent type of RCC, ccRCC has an increasing
incidence and higher mortality rate. Given that the symptoms of

SPRINGER NATURE



R. Guo et al.

a 786-O b 786-O C si-NC si-LncRNA RCAT1
15 P sg - si-NC e 15 =
% ?Eés “ si-RCATI 5 —
£ 10 % T
: fgs :
£ B 786-0 g
£ s 53, L £ 08 s
i = £% 2
0.0 0.0
si-NC  si-RCATI 1 2 3 4 5 $i-NC  si-RCATI
Time (Day)
769-P 769-P
1s: —2 gg | +siNC 15 "
= £E) . o —_—
2 £Se si-RCATI 5
H S2 £
= 10 ; = 2 1.0
2 Sg4 z
£ B 769-P 3
2 o5 S £ 05 .
] — 23 2
E
0.0- 0.0-
si-NC  si-RCAT1 1 2 3 4 3 si-NC - si-RCATI
Time (Day)
si-NC si-LncRNA RCAT1
si-NC si-LncRNA RCAT1
19 + 2 %] —Z— = EeryApoposs
£ o3 : - Late Apoptosis
. !
S e . z
786-0 £ o . .
[
s vy M e
1.0 oy 2 P
£ os £ == Early Apoptosis
i 9 Late Apoptosis
g oe 3 »
769-P £ - g i
Z 04 Z
S ; |
Z 0 £ s
00 £
si-NC si-RCAT1 B S
si-NC  si-RCATI
f 786-0 769-P
si-NC si-LncRNA RCAT1 si-NC si-LncRNA RCAT1
Oh
® = ’—\‘ - 1.5 *
E E
2 s T 7 os T
2 2
0.0- 0.0°
Si-NC si-RCAT1 Si-NC si-RCAT1
24h

Migration Invasion

si-LncRNA RCAT1

5,

Relative Cell Number
Relative Cell Number

*
—_——
10
-
0.5
0.0

SiNC  s-RCATI si-NC  siRCATI

15 . 1.5 .
—— —

H £
g H
Z 1 z Lo
S == 3
£ o8 £ os s
z z

SENC  si-RCATIE S-NC  sieRCATI

Fig.4 IncRNA RCAT1 knockdown suppresses malignant phenotypes in RCC cells. a The IncRNA RCAT1 mRNA levels in 786-O and 769-P cells
transfected with IncRNA RCAT1 or negative control siRNAs. b The cell proliferation of 786-O and 769-P cells in response to IncRNA RCAT1
knockdown was measured using MTT assay. ¢ Colony-formation assays performed with the 786-O and 769-P cells transfected with IncRNA
RCAT1 or negative control siRNAs. d EdU assay was used to evaluate the effect of IncRNA RCAT1 knockdown on cell proliferation. Scale bar,
200 um. e Apoptosis was assayed by flow cytometry in 786-O and 769-P cells after IncRNA RCAT1 knockdown. f The wound-healing assay was
performed to examine the migration abilities after INcRNA RCAT1 knockdown. Scale bar, 200 um. g The effects of IncRNA RCAT1 knockdown
on migration and invasive abilities of 786-O and 769-P cells were evaluated by the transwell assays. Scale bar, 200 pm ('P < 0.05, “P < 0.01, P
<0.001).

SPRINGER NATURE Cell Death and Disease (2021)12:689



o

786-O

Nucleus == Cytoplasm

Relative RNA expression

LncRNA RCATI GAPDH

C WNTSA Ki
X2 LHL15

Pl
CORO2B F. 7B
pARDSE ORO: AM10

usT POU2F3

HOXA11
AGL hsa-miR-385-5p

hsa-miR-374a-5p
CEBPB

IL17RD
ENST00000603682

DCUN1D1
PAPPA

POU5SF1 DAAM1

GNPNAT1 E2F2

SYDE2

MSX1 CPEB4 Y NFATS

hsa-miR-214-5p  hsa-miR-31-5p

e hsa-miR-214-5p

R. Guo et al.

LncRNA RCAT1

DAPI

d

wild type IncRNA RCAT1
hsa-miR-214-5p

mutant IncRNA RCAT1
wild type IncRNA RCAT1
hsa-miR-214-5p

mutant IncRNA RCAT1

Merge

5’- AGUUGUCUAGUAUAGGACAGGCU -3°

3’- CGUGUCGUUCACAUCUGUCCGU -5*

o

o

5’- AGUUGUCUAGUAUAGUCACUUAU -3*

%

5’- UGGUAAGUGGAUAAUGACAGGCU -3”
[
3’- CGUGUCGUUCACAUCUGUCCGU -

o

o

5’- UGGUAAGUGGAUAAUUCACUUAU -3’

hsa-miR-214-5p

—
wn
]

B 0nM

—
=]
1

=)

n
1
*
H

Fkk

Relative luciferase activity

25 nM 50 nM

T whn wxx
oy

0.0~ T
LncRNA RCAT1 Full Length

f LncRNA RCAT1
15
s
= kk  kk
§ 10 r
-
: T
<
4
&~
2 5
3
)
~ =

0_
Input IgG AGO2

Fragmentl

Relative RNA expression

1 1
Fragment2

hsa-miR-214-5p

40 KFE Rk

30
T

20

104

Input IgG AGO2

0-

- 1.59 mm 0nM 50 nM
2
z
2 T
2 1.04 & - =
<
-
&
'S
=
o 0.5
2
]
<
<
&
0.0-
LncRNA RCAT1 site 1+2  site 1 site 2
g 786-O 769-P
2.0 *x 2.0 *k
g — H —
£ o1s 2 1s
: = f -
o s
g 10 § 10
2 2
E E
z o0s 2 05
g g
0.0 0.0
si-NC  si-RCATI si-NC  si-RCATI

Fig. 5 MiR-214-5p was one target of IncRNA RCAT1. a The subcellular location of IncRNA RCAT1 in 786-O cells. U6 and GAPDH were used as
internal controls. b FISH assay was used to detect the subcellular location of IncRNA RCAT1 in 786-O cells. Scale bar, 2000 pm. ¢ The IncRNA
RCAT1-centric ceRNA network. d Predicted binding sites of miR-214-5p in IncRNA RCAT1 sequence. e Dual-luciferase assay was performed to

confirm the interaction between miR-214-5p and IncRNA RCAT1. f The expression levels of IncRNA RCAT1 and miR-214-5
substrate of RIP assay by qRT-PCR. g IncRNA RCAT1 knockdown led to increased expression of miR-214-5p (P < 0.05,

ccRCC are insidious in the early stages and the sensitivity to
chemotherapy and radiation therapy of ccRCC is extremely low,
the survival rate of ccRCC patients is still unsatisfied [21].
Therefore, a comprehensive understanding of the molecular
mechanisms and identification of novel therapeutic targets and
prognostic biomarkers for ccRCC is urgently needed.

Aberrantly expressed IncRNAs have been found in various
cancers and the expression of IncRNAs was associated with the
outcomes of cancers [22, 23]. For example, a six-IncRNA signature
was constructed in glioblastoma to predict prognosis [24]. In
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p were de}*e*cted in the
P<0.01,  P<0.001).

*

addition, a risk evaluating model based on three IncRNAs was
developed to predict the prognosis of patients with esophageal
squamous cell cancer [25]. However, a comprehensive IncRNA-
based prognostic prediction model in ccRCC has not been clearly
elucidated. In this study, we screen the expression of IncRNAs in
ccRCC patients from GEO and TCGA databases. Using Cox
regression model and Lasso analyses, five prognosis-related
IncRNAs were identified to construct a novel IncRNA-based
prognostic prediction model, which classified ccRCC patients into
high-risk or low-risk groups. The predictive accuracy was further
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of cell migration using transwell assay. Scale bar, 200 um ("P < 0.05, P <0.01,

validated by Kaplan—Meier analysis and ROC curve analysis,
highlighting that IncRNAs might be prospective markers for
prognosis prediction of ccRCC patients.

Various studies reveal that INcRNAs exert their effects on cancer
cells through various mechanisms, especially ceRNA networks.
Based on the results of bioinformatics analysis and database
prediction, we established a IncRNA-miRNA-mRNA regulatory
network. The GO and KEGG pathway analysis revealed that the
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"P<0.001).

function of the ceRNA network might be related with the PI3K-Akt
signaling pathway, which is associated with various cancer-related
biological processes [26], such as cell proliferation, apoptosis, and
motility. In ccRCC, the PI3K-Akt signaling pathway is constitutively
activated and shows critical role in cancer progression through
regulating various targets, such as bromodomain-containing
protein 4 (BRD4) [27] and VHL-HIF pathway [28]. However, the
prognostic role of PI3K/AKT signaling pathway was controversial
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[29-31], which might be related with the specific regulatory
pathways, heterogeneity of RCC patients, and limited sample size.
More investigations are needed to further elucidate the prognostic
roles of PI3K/AKT signaling pathway.

Based on the prognostic model and ceRNA network, two
IncRNAs were identified, which were negatively associated with
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the prognosis of ccRCC patients. ENSG00000245694 (also named
CRNDE) has been fully investigated in various cancers, however,
there was no report for ENSG00000270661 (IncRNA RCAT1).
Therefore, INcRNA RCAT1 was selected for further investigation.
However, the biological functions and regulatory mechanisms of
other IncRNAs in ccRCC are needed to be fully elucidated in the

SPRINGER NATURE



R. Guo et al.

10

Fig. 7 IncRNA RCAT1 promoted RCC cell progression through protecting E2F2 from miR-214-5p-induced degradation. a The differential
expression of E2F2 in ccRCC tissues and normal tissues based on TCGA and GEO databases. b The differential expression of E2F2 in ccRCC
tissues with or without metastasis. ¢ The Kaplan—Meier analysis was used to evaluate the relationship between E2F2 expression and overall
survival time of ccRCC patients. d, e Overexpression of miR-214-5p (d) or IncRNA RCAT1 (e) knockdown led to decreased mRNA and protein
levels of E2F2 in RCC cells. f Overexpression of miR-214-5p effectively reverses INcRNA RCAT1-induced increased mRNA and protein levels of
E2F2. g The schematic illustration showing the predicted binding sites of miR-214-5p in 3’'UTR of E2F2. h Luciferase assay was used to show
the regulatory relationship between miR-214-5p and E2F2. i The efficiency of E2F2 knockdown was detected by qRT-PCR and western blot. j
Cell proliferation was evaluated after E2F2 knockdown using MTT assay. k Cell apoptosis was evaluated after E2F2 knockdown using flow
cytometry assay. | Cells migration and invasion abilities were detected after E2F2 knockdown by transwell assays. Scale bar, 200 pm ("P<o0.01,
P <0.001).
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Fig. 8 IncRNA RCAT1 knockdown suppresses tumor proliferation and metastasis in vivo. a-c The photos (a), growth curve (b), and weight
(c) of the xenograft tumors. Scale bar, 1 cm. d H&E staining of the xenograft tumors. IHC results of Ki67 level and E2F2 level in xenograft tumor
tissues. Scale bar, 100 um. e Representative images of lung metastatic nodules and H&E staining of lungs isolated from nude mice (n =5 for
each group). Scale bar, 100 pm. f The numbers of metastatic nodules in the lungs of nude mice were calculated and compared. Scare bar =

kX

50 um (P < 0.001).

future. Our results revealed that IncRNA RCAT1 was significantly
upregulated in ccRCC tissues and associated with poor prognosis
of ccRCC patients. Moreover, in vitro and in vivo experiments
demonstrated that IncRNA RCAT1 could promote ccRCC cell
proliferation, migration, and invasion, revealing an oncogenic role
of IncRNA RCAT1 in ccRCC. Previous studies revealed the
significant association between the subcellular location of IncRNAs
and their potential regulatory mechanisms. The results of
subcellular fractionation indicated the cytoplasmic distribution of
IncRNA RCAT1, implying the potential for serving as a ceRNA.
Further luciferase reporter assay and RIP assay indicated that
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INcRNA RCAT1 could sponge miR-214-5p, and IncRNA RCAT1
knockdown led to an increase in the expression of miR-214-5p,
indicating a negative correlation between them. The aberrant
expression and tumor-suppressive role of miR-214-5p had been
reported in various cancers, such as non-small lung cancer [32],
esophageal cancer [33], and cervical cancer [34]. However, the role
of miR-214-5p in osteosarcoma is inconsistent [35-38], which
might be attributed to specific biological signaling. In addition,
there is no related research about the role of miR-214-5p in RCC. In
our study, we demonstrated that miR-214-5p overexpression
could inhibit proliferation and metastasis of RCC cells, indicating a
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tumor-suppressive role of miR-214-5p. Moreover, miR-214-5p
could partly abolish the IncRNA RCAT1-mediated malignant
biological effects. These data strongly demonstrated that IncRNA
RCAT1 served as a sponge for miR-214-5p. Various studies also
revealed the significant role of protein-IncRNA interaction in the
regulation of tumorigenesis and cancer progression. IncRNA
AATBC could promote breast cancer migration and invasion
through binding with YBX1 to activate the YAP1/Hippo signaling
pathway [39]. IncRNA TP53TG1 suppressed the progression of
hepatocellular carcinoma through interacting with PRDX4 to
promote its ubiquitin-mediated degradation, leading to inactiva-
tion of the WNT/B-catenin pathway [40]. Moreover, one IncRNA
might participate in the tumor progression through various
mechanisms. For example, the well-characterized IncRNA HOTAIR
could promote proliferation and metastasis of breast cancer
through either regulating miR-20a-5p/HMGA2 pathway [41] or
enhancing the ER expression and ER occupancy on its down-
stream target genes [42]. However, the protein-binding potential
of IncRNA RCAT1 and the detailed mechanisms need to be further
elucidated. In addition, we also detected the distribution of
INncRNA RCAT1 in the nucleus. Previous studies revealed that
IncRNAs located in the nucleus exert critical roles in regulating
gene expression through various nuclear events [43], such as
transcriptional regulation, RNA processing, and chromatin remo-
deling. IncRNA HIFAL could introduce the PKM2/PHD3 complex
into nucleus through binging with hnRNPF to promote the
transactivation of HIF-1a [44]. IncRNA PRADX promoted the
H3K27me3 in the UBXN1 promoter via binding with EZH2 to
recruit PRC2/DDX5 complex [45]. Therefore, INcRNA RCAT1 might
have putative role in transcriptional processing with protein-
binding potential to promote cancer progression. Recently, several
studies revealed the significant effectiveness of RNA-based
therapeutic approaches [46, 47], such as delivery of antisense
oligonucleotides and RNA interference (RNAI) therapy, providing
promising approaches for cancer control. Moreover, the advance-
ment in synthetic delivery carriers or chemical modifications
brought more promising results. Previous study revealed a
nanoparticle-mediated RNAI targeting oncogenic IncRNA DANCT,
with efficient cellular uptake, sustained target silencing, and no
overt toxic side-effects, which could suppress cancer cell prolifera-
tion and progression in vitro and in vivo [48]. Recently, Battistelli
et al. demonstrated the effectiveness of a novel negative-based
RNA strategy. They constructed an HOTAIR deletion mutant form
[49], named HOTAIR-sbid, which retained the combining ability
with Snail but depleted the EZH2-binding domain. The HOTAIR-
sbid could inhibit malignant phenotypes of cancer cells through
competitively binding with Snail and enhancing the EZH2-
mediated repression on Snail epithelial target genes. Although
we did not identify strong association between IncRNA RCAT1 and
EZH2 or Snail based on catRAPID database [50], other binding
proteins might serve as the targets of IncRNA RCAT1 considering
its nuclear distribution and protein-binding potential. Our results
identified IncRNA RCAT1 as a vital oncogenic gene in renal cancer,
it has the potential to be a promising candidate targeting multiple
signaling pathways to overcome the limitations of single-target
therapies. However, more studies were needed to further elucidate
the underlying mechanism and therapeutic potential of IncRNA
RCAT1 in the future.

Previous studies revealed that the E2F family of transcription
factor 2 (E2F2) plays a crucial role in the development and
progression of various cancers, such as ovarian cancer [51], lung
cancer [52], and hepatocellular carcinoma [53], promoting cell-
cycle progression, stemness, metastasis, and chemoresistance [54].
The upregulated E2F2 was also correlated with higher grade of
tumors and unfavorable prognosis [51]. Some evidence showed
that E2F2 was increased in ccRCC tissues [55], however, the roles
of E2F2 in ccRCC have not been well characterized. Our current
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study demonstrated that E2F2 was upregulated in ccRCC tissues
and E2F2 knockdown could inhibit proliferation, migration, and
invasion of ccRCC cells. Moreover, our comprehensive bioinfor-
matics analysis combined luciferase reporter assay and RIP
experiments verified miR-214-5p as a sponge target of both
IncRNA RCAT1 and E2F2, and the expression of E2F2 was
modulated by IncRNA RCAT1/miR-214-5p axis.

In summary, the present work is the first systematic study about
the role of IncRNA RCAT1 as a ceRNA, and the interactions among
IncRNA RCAT1, miR-214-5p, and E2F2 are responsible for the
IncRNA RCAT1-mediated ccRCC progression. Our research con-
tributes to a more comprehensive understanding of ccRCC
progression and provides a basis for development of effective
novel therapeutic targets and reliable prognostic predictors
for ccRCC.

MATERIALS AND METHODS

Data collection

The high-throughput sequencing data used in the current study were
acquired from GEO (http://www.ncbi.nIm.nih.gov/gds/) and TCGA (https://
portal.gdc.cancer.gov/). The expression data of INcRNA were obtained from
GSE96574 (5 pairs of ccRCC tissues and normal tissues) and TCGA (526
ccRCC tissues and 72 normal tissues). The miRNA (512 ccRCC tissues and 71
normal tissues) and mRNA (526 ccRCC tissues and 72 normal tissues)
expression data were derived from TCGA. Clinical data of ccRCC patients
were also acquired from the TCGA database.

Differential expression analysis of IncRNAs, miRNAs, and
mRNAs

The analysis of differentially expressed IncRNAs (DEIncRNAs), miRNAs
(DEmiRNAs), and mRNAs (DEmRNAs) between tumor samples and normal
samples was performed using the limma package of R software. The
criteria for selection of DEIncRNAs, DEmiRNAs, and DEmRNAs were P-value
<0.05 and | log, fold change (FC) | > 1. The heatmap and volcano plot were
drawn using the heatmap package and ggplot2 package, respectively.

Construction and validation of the IncRNA-related prognostic
model

A total of 522 ccRCC patients were firstly subjected to univariate Cox
regression analysis to evaluate the prognostic value of the DEIncRNAs for
OS. The IncRNAs were regarded as significant at P < 0.05. Then, the least
absolute shrinkage and selection operator (LASSO) model was used to
further select crucial prognostic IncRNAs. We subsampled the dataset 1000
times and chose the IncRNAs that were repeated >10 times. Next, the
selected INncRNAs were subjected to multivariate Cox regression analysis in
which IncRNAs were regarded as significant at P < 0.05. The IncRNA-related
prognostic model was constructed using the regression coefficients. The
formula of prognostic risk score for predicting OS was calculated as
follows:

N
Right score = Z BxE
i=1

(N = the number of selected IncRNAs, E = expression level of IncRNAs,
= regression coefficient of IncRNAs).

The 522 ccRCC patients was classified into the low-risk and high-risk
groups and heatmap package was used to cluster the expression profiles
of IncRNAs in two groups. The ROC curve analysis and Kaplan-Meier
survival analysis were performed to evaluate the sensitivity and specificity
of the IncRNA-related prognostic model in predicting ccRCC patient
prognosis.

Construction of the ceRNA network

The IncRNA-miRNA interactions were predicted using the DIANA-LncBase
v2 database [56]. The miRNA-mRNA interactions were predicted using the
miRDB, miRTarBase, TargetScan, and StarBase databases [57-60]. Only
mRNAs recognized by at least three databases were considered as
candidate targets. Cytoscape software was utilized to visualize and
construct the ceRNA network [61].
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Functional enrichment analysis

In order to better understand the underlying function of DEmRNAs in the
ceRNA network, the GO and KEGG analyses were carried out by utilizing
ClusterProfiler package in R studio. The criterion of P-value was less
than 0.05.

Tissue collection

In all, 52 pairs of ccRCC and paired normal tissue samples were obtained
from ccRCC patients who underwent surgery at the Shandong Cancer
Hospital. Written informed consent was obtained from all patients. The
experimental procedures were approved by the Institutional Ethics
Committee of the Shandong Cancer Hospital. All tissue was stored at
—80 °C until RNA extraction.

Cell culture and transfection

The human RCC cell lines (ACHN, 786-O, 769-P, Caki-1, and A498) and a
normal human renal cell line (HK-2) were obtained from ATCC (Manassas,
USA). The cells were cultured routinely in DMEM or RPMI-1640 medium
containing 10% fetal bovine serum (FBS) at 37 °C with 5% CO,. All of the
cells were authenticated by short tandem repeat DNA fingerprinting and
tested for mycoplasma.

The siRNAs targeting IncRNA RCAT1 or E2F2 and miR-214-5p mimics
(Table S3) were purchased from RiboBio Company (Guangzhou, China).
Full-length pf INcRNA RCAT1 was cloned into pcDNA3.1 (Invitrogen, USA)
to generate pcDNA3.1-RCAT1 constructs. Lipofectamine 2000 (Invitrogen)
was used for cell transfection.

RNA extraction and qRT-PCR analysis

Total RNA from tissues and cells was extracted using Trizol reagent (Takara,
Japan). The mRNA was reverse transcribed into cDNAs using the
PrimeScript reverse transcriptase reagent kit (Takara, Japan) and detected
by gRT-PCR using SYBR Green (Takara, Japan). The expression levels of
IncRNAs and mRNAs were normalized to B-actin, while the expression
levels of miR-214-5p was calculated relative to expression of U6. The data
were calculated by the 2722 method. The primers used in this study were
listed in Table S4.

Western blotting (WB)

Protein samples from cells were extracted by RIPA buffer with protease
inhibitor (Beyotime, Beijing) and separated using SDS-PAGE gels. After
blocking with 5% no-fat milk solution, the PVDF membranes were
incubated with primary antibodies overnight at 4°C and corresponding
secondary antibodies for 2h at room temperature. The signals were
visualized using enhanced chemiluminescence (Millipore). The primary
antibodies and secondary antibodies used were available in Table S5.

Cell proliferation assay

In all, 1.5 x 10® transfected cells/well were seeded into 96-well plates and
incubated for indicated time. The wells received 20 yl MTT (5 mg/ml) and
the plates were incubated for 4-6h at 37°C. Then, the medium was
removed and 100 yl DMSO was added into each well. Cell proliferation was
estimated by measuring absorbance at 570 nm.

Colony-formation assay
The transfected cells were seeded into 6-well plates at a density of 1000
cells per well and were allowed to grow for at least 2 weeks until the visible
colonies were formed. Then, the plates were washed with PBS, fixed with
methanol, and stained with 0.2% crystal violet. The stained colonies were
photographed and counted.

EdU incorporation assay

In all, 1x10* transfected cells/well were seeded into 96-well plates and
incubated with 50mM EdU for 2.5h. The cells were fixed with 4%
paraformaldehyde (PFA) and stained with Apollo Dye Solution and
Hoechst using EdU incorporation assay kit (RiboBio, China). The images
were obtained using the fluorescence microscope (Nikon, Japan).

Flow cytometry analysis

The cell apoptosis was examined using Annexin V-FITC Apoptosis
Detection Kit (BD Biosciences, USA) according to the manufacturer’s
instruction. The collected cells were washed with cold PBS and
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resuspended in 1 X binding buffer. After incubation with Annexin V-
FITC/7AAD for 30 min at room temperature in the dark, the cells were
analyzed on a FACSCalibur (BD Biosciences, USA).

Wound-healing assay

The transfected cells were seeded into 24-well plates and allowed to grow
until the plates were confluent. A 10 pl pipette tip was used to create
straight scratches on the cell monolayers. Then, the cells were washed with
PBS and cultured in serum-free media. Images were captured at indicated
time after the initial scratches.

Transwell assay

The cell migration and invasion abilities were evaluated with transwell
chambers (Corning) without coating or coated with Matrigel (BD
Biosciences, USA), respectively. In all, 1%x10° cells were suspended in
serum-free RPMI-1640 medium and added into the upper chambers, and
700 pl RPMI-1640 medium supplemented with 20% FBS was added to the
bottom chamber. After 24 h, the cells on the lower surface were fixed with
methanol, stained with 0.2% crystal violet, photographed, and counted.

Nuclear-cytoplasmic fractionation

Separation of nuclear and cytoplasmic RNA was performed using PARIS Kit
(Life Technologies, USA) according to the manufacturer’s instructions. The
GAPDH was used as a cytoplasmic control and U6 was used as a nuclear
control.

Fluorescence in situ hybridization (FISH)

The Cy3-labeled IncRNA RCAT1 probes were designed and synthesized by
GenePharma (Shanghai, China). The signals of the probe were detected
using FISH Kit (GenePharma, China) according to the manufacturer’s
instructions. All images were acquired using the fluorescence microscope
(Nikon, Japan).

Dual-luciferase reporter assay

The wild-type or mutant IncRNA RCAT1 sequence or 3’UTR of E2F2 was
cloned into pmirGLO reporter vectors. The luciferase constructs were
cotransfected with miR-214-5p or miR-31-5p mimics or miR-NC into
HEK293T cells. After 48 h, the luciferase activities were measured using the
Dual-Luciferase Reporter Assay System (Promega, USA). Relative luciferase
activity was calculated by normalizing Firefly luciferase activity to Renilla
luciferase activity.

RNA immunoprecipitation (RIP)

EZ-Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore) was
used according to the manufacturer’s instructions. Total RNAs (input
controls) and corresponding species’ IgG controls were assayed simulta-
neously to demonstrate that the detected signals were from the RNAs that
were specifically bound to AGO2 (Cell signaling, USA, Cat#2897). The
presence of IncRNA RCAT1 and miR-214-5p was analyzed by qRT-PCR.

Pull-down assay with a biotinylated IncRNA RCAT1 probe

A pull-down assay was performed as previously described [62]. Briefly, 1 x
107 cells were collected, lysed, and sonicated. After coincubation of the
IncRNA RCAT1 probe (RiboBio, Guangzhou, China) with C-1 magnetic
beads (Life Technologies), the probe-coated beads were generated. Then,
the cell lysates were incubated with the IncRNA RCAT1 probe or oligo
probe at 4 °C overnight. After washing, elution, and extraction, the RNAs
were used for qRT-PCR to detect the expression levels.

Tumor xenograft model

Female BALB/c nude mice (4-6-week-old) were randomly divided into two
groups, and 1x 107 stably transfected cells were subcutaneously injected
into the mice (n = 5) to evaluate the tumorigenic effects of IncRNA RCAT1.
After 30 days, the mice were sacrificed and the maximum (L) length,
minimum (W) length, and weight of the tumors were measured. No
blinding was performed for the animal experiments. Tumor volume was
calculated as: TV =1"%LW> To evaluate the effect of IncRNA RCAT1 on
metastasis, 5 x 10° stably transfected cells were injected into the tail veins
of nude mice (n =5). After 4 weeks, the mice were killed and the lungs
were collected to evaluate the number and size of pulmonary metastatic
foci. Hematoxylin and eosin (H&E) staining was performed for tissue
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morphology evaluation. The animal experiments were approved by the
Shandong University Animal Care and Use Committee.

Immunohistochemistry (IHC)

The sections were dewaxed with xylene, rehydrated with alcohol, and
heated with microwave for antigen retrieval. Then the sections were
blocked with 5% BSA and incubated with anti-E2F2 antibody or anti-Ki67
antibody overnight at 4 °C. After incubating with corresponding secondary
antibodies for 2 h at 37 °C, the sections were stained with diaminobenzi-
dine and counterstained with hematoxylin. Olympus light microscope was
used to take images.

Statistical analysis

The statistical analysis was performed using SPSS 19.0 (Chicago, IL, USA).
Data were presented as mean +standard deviation (SD) from three
independent experiments. Student’'s t test was used to assess the
differences between two groups. The data in statistical tests are conformed
to normal distribution and the variance are similar. Comparisons among
multiple groups were performed with one-way ANOVA test. The
Kaplan-Meier method and log-rank test was used for survival analysis. A
value of P<0.05 was considered statistically significant.
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