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Abstract: The human immunodeficiency virus (HIV) is one of the most prevalent diseases globally.
It is estimated that 37.7 million people are infected with HIV globally, and 8.2 million persons are
infected with the virus in South Africa. The highly active antiretroviral therapy (HAART) involves
combining various types of antiretroviral drugs that are dependent on the infected person’s viral
load. HAART helps regulate the viral load and prevents its associated symptoms from progressing
into acquired immune deficiency syndrome (AIDS). Despite its success in prolonging HIV-infected
patients’ lifespans, the use of HAART promotes metabolic syndrome (MetS) through an inflamma-
tory pathway, excess production of reactive oxygen species (ROS), and mitochondrial dysfunction.
Interestingly, Spirulina platensis (SP), a blue-green microalgae commonly used as a traditional food by
Mexican and African people, has been demonstrated to mitigate MetS by regulating oxidative and in-
flammatory pathways. SP is also a potent antioxidant that has been shown to exhibit immunological,
anticancer, anti-inflammatory, anti-aging, antidiabetic, antibacterial, and antiviral properties. This
review is aimed at highlighting the biochemical mechanism of SP with a focus on studies linking SP
to the inhibition of HIV, inflammation, and oxidative stress. Further, we propose SP as a potential
supplement for HIV-infected persons on lifelong HAART.

Keywords: HAART/ARVs; Spirulina platensis; oxidative stress; HIV; antioxidant; inflammation;
HAART toxicity; MetS

1. Introduction

The human immunodeficiency virus (HIV) has continued to be a global public concern
due to its widespread infection rate and alarming mortality rate [1]. The Joint United
Nations Programme on HIV/AIDS (UNAIDS), in its most recent report in November 2021,
estimated that 37.7 million people globally are living with HIV. It was also reported that
about 1.5 million new HIV infections and 680,000 AIDS-related deaths have occurred in the
year 2020 [1–4]. In South Africa, approximately 8.2 million people were living with HIV
in the year 2021 [4]. According to the South African mid-year population statistics 2021,
there has been an unprecedented increase from 79,420 to 85,154 HIV-AIDS-related deaths in
2021 [4]. Recently, the easy availability of antiretrovirals (ARVs) has tremendously changed
the pattern of death. ARVs have also helped prolong the lifespan of HIV-infected people in
South Africa. Globally, about 27.5 million HIV-infected persons had access to ARVs in 2020,
while approximately 5.6 million infected South Africans accessed ARVs in 2020 [1,4,5].

The highly active antiretroviral therapy (HAART) entails combining three or more
antiretroviral drugs that are subject to the HIV-infected person’s viral load. HAART assists
in regulating viral loads and preventing the progression to AIDS. Despite its success in pro-
longing HIV-infected patients’ lifespans, the use of HAART promotes metabolic syndrome
(MetS) through an inflammatory pathway, excess production of reactive oxygen species
(ROS), and mitochondrial dysfunction. Over three decades since its discovery, HAART has
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significantly improved the diagnosis and management of persons with HIV [6–12]. The
persistence of MetS before and during HAART treatment further highlights the need for
more studies on MetS inhibitory compounds, such as Spirulina platensis (SP) [13], Moringa
oleifera [14,15], Curcumin [16], and Mangiferin [17]. However, there are other alternatives
to combat MetS and these include exercise training [18], life style changes, and properly
balanced healthy food choices [19,20].

SP is a blue-green microalgae commonly used as a traditional food by some Mexican
and African people [21,22]. SP is mostly found in the alkaline water of volcanic lakes.
In addition to its popular nutritional value, SP possesses various medicinal properties.
It can induce both the humoral and cellular mechanisms of the immune system when
consumed [22]. Interestingly, SP was linked with MetS-lowering properties, such as hypo-
glycemia [23], hypolipidemia [24], and hypotension [13]. Studies in rodents suggested that
SP is particularly useful in preventing MetS [13]. SP contains oxidative stress inhibitors,
phycocyanin and phycocyanobilin [25–27]. Previous studies have also demonstrated
that SP inhibits oxidative stress [21,25,28,29] and promotes mitochondrial health [30–33],
thereby inhibiting inflammation [25,34]. Furthermore, SP can prevent the development of
atherosclerosis [28] and diabetes [25]. The Food and Agriculture Organization (FAO) of
the United Nations recommends Spirulina as a daily dietary supplement [35]. Microalgaes
including Spirulina are environmentally friendly and have a high rate of yield in large-scale
production under controlled conditions [36]. Spirulina, in addition to its nutritional and
medicinal security, has the potential to eliminate poverty. The considerable potential for
sustainable financial development in a small-scale crop for nutritional enhancement was
evident in China, where the production increase resulted in a dramatic increase in profit
from USD 7.6 million to USD 16.6 million. Spirulina production is possible for small and
marginal farmers as well as enthusiastic urban gardeners; this makes it easily accessible to
the population [37]. Moreover, the health system can provide SP as medication to control
adverse effects in people living with HIV on HAART with minimal costs.

Due to the increasing number of HIV-infected people and their high dependence on
HAART, it is imperative to explore the anti-inflammatory and antioxidant mechanisms
of SP against HIV and MetS. This review explores the anti-inflammatory and antioxidant
mechanisms of SP in the inhibition of MetS and its potential as a supplement against HIV
and ARV-induced MetS.

2. The Roles of HIV and HAART in MetS

HIV has often been associated with MetS [38], which results in cardiovascular diseases.
Recent reports have linked some HIV-related features to MetS. These characteristic features
include escalated cases of cardiovascular diseases, type 2 diabetes mellitus, dyslipidemia,
immunodeficiency, high viral load, and atherosclerosis [7]. Recently, studies have suggested
that HAART, in addition to the above-mentioned HIV-related features, actively induces
MetS in persons with HIV [7,39–41]. Earlier studies by Palios et al. (2011) on arterial
stiffness, displayed by pulse wave velocity (PWV), and markers of MetS, reported that
persons with HIV exhibited an increased degree of PWV when compared with the healthy
controls. Subsequently, persons on HAART have been shown to exhibit a similar PWV as
persons with hypertension [39,40]. The prevalence of MetS in HIV-infected people receiving
antiretroviral (ARV) treatment was higher when compared to the general population. This
prevalence was attributed to age, physical inactivity, and a low cluster of differentiation
4 (CD4) count [42–44]. The patient response to HAART varies; some antiviral drugs can
successfully suppress the plasma viral load without increasing the CD4 count; this allows
the risks of opportunistic infections and abnormalities. Failure to increase the CD4 count
during HAART may be due to several factors, including drug resistance, low CD4+ T-cell
count at the initiation of HAART, the advanced stage of the disease, and a low adherence
to HAART [45].

The nuclear factor-kappa-light chain-enhancer of the activated B cell (NF-κB) is a
protein complex that is responsible for DNA and cytokine (IL-1β, IL-6, and TNF-α) tran-
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scription, chemokine activation, and the survival of cells [7]. NF-κB is also a well-known
mediator of inflammation that promotes HIV transcription [7,46].

Inflammation linked to HAART is evidenced by the persistently high levels of inter-
leukin 6 (IL-6), C-reactive proteins, and D-dimers [47]. HIV creates chronic pro-inflammatory
conditions that promote MetS [7]. Studies have shown that HIV is associated with inflam-
mation, apoptosis, and mitochondrial dysfunction [7,48]; however, the mechanism that
links HIV with MetS remains unclear [7]. Herein, we highlight the significance of SP as
an anti-inflammatory supplement for HIV-infected people on lifelong HAART and its
mechanism of inhibition on MetS.

3. Spirulina Species

Spirulina has three commonly investigated species due to their potential therapeutic
nature and high nutritional content. These Spirulina species include Spirulina platensis
(SP) (otherwise known as Arthrospira platensis), Spirulina maxima (Arthrospira maxima), and
Spirulina fusiformis (Arthrospira fusiformis). These Spirulina species are also classified as
oxygenic photosynthetic bacteria under Cyanobacteria and Prochlorales [49–54]. SP is
found in alkaline water with abundant bicarbonate and saline [22,55]. Spirulina species are
generally three-dimensional helix microstructures [56] protected by a cell wall composed
of complex sugars and proteins [22]; however, helical transformation results after mature
trichomes divide into hormogonia, binary fission, and undergo length elongation [57]. SP
is considered an antioxidant and anti-inflammatory agent [58]. It is also considered as a
nutraceutical food supplement due to its high content of proteins, vitamins, and minerals.
Moreover, its composition includes chlorophyll, phycocyanin, and carotenoid. Chlorophyll
has antioxidant and antimutagenic properties [59,60], carotenoids are vitally important
antioxidants with cancer-inhibiting abilities [53], and phycocyanin is a Bili protein with
antioxidant and radical scavenging properties [61]. Moreso, SP has also been credited for
its cancer- and viral infection-suppressing abilities [62].

3.1. Role of Spirulina in the Inhibition of Oxidative Stress

Recently, research has unveiled the important roles of nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase in the production of reactive oxygen species (ROS).
NADPH is contained in the nervous system and its assemblage and activation generate free
radicals (FR) which subsequently destroy cells. Spirulina is a potent inhibitor of NADPH
oxidase, which has been one of the proteins responsible for the production of ROS and
subsequent oxidative stress [54,63,64]. SP has the potential to inhibit oxidative stress by
blocking NADPH oxidase [21,25,28,29] and to enhance (Figure 1) mitochondrial health
by promoting an antioxidant response [30–33]. Furthermore, SP prevents FR-induced
apoptotic cell death through the inhibition of oxidative stress [65].

3.2. Multitargeted Therapeutic Roles of SP

SP has a therapeutic effect against vascular diseases, cancer, diabetes, neurodegenera-
tive diseases, and inflammatory disorders [66]. Spirulina treatment enhances the NF-kappa
B-directed luciferase expression [67]. It has antiallergic effects [54], including against
allergic rhinitis in humans [68]. Spirulina is an immune booster [22]. It prevents cellu-
lar aging, infectious diseases, and promotes a strong immune system [57]. Spirulina has
central neuroprotective effects in rodents [69]. It is also associated with the inhibitory
effects against numerous viruses, such as HIV-1, herpes simplex virus 1 and 2 (HSV-1 and
HSV-2), human cytomegalovirus (HCMV), influenza type A, measles, and other enveloped
viruses [53,70–73]. Moreover, it has antimutagenic and anticancer effects [57]. Spirulina is
an effective treatment against chronic arsenic poisoning with melanosis and keratosis [74].
SP shares similar chemical structures and physiological activities with bilirubin [25–28,75].
SP antioxidant properties are due to its composition and the presence of phycobilins, phy-
cocyanin, and phycocyanobilin [25–27] (Figure 2). Phycobilins are similar in structure to
bile pigments such as bilirubin, a well-known ROS scavenger [22,76]. Phycocyanin has
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been proven to possess antioxidant and anti-inflammatory activities [34,54,63,64,77,78].
Phycocyanin is also structurally similar to biliverdin, a strong inhibitor of NADPH oxidase
and inflammation-induced radicals [25,34]. A study conducted by Zheng et al. (2013)
indicated that phycocyanin normalized urinary and renal oxidative stress markers and
the expression of NADPH oxidase components. Furthermore, phycocyanobilin, bilirubin,
and biliverdin inhibited NADPH-dependent superoxide production in renal mesangial
cells [25]. The study also demonstrated that SP may be used in a therapeutic approach
to prevent diabetic nephropathy through the inhibition of oxidative stress [25]. Thus far,
phycocyanine, the most powerful natural antioxidant, is only present in cyanobacteria and
thus in spirulina.

Figure 1. Diagrammatic representation of Spirulina reduction of oxidative stress via several path-
ways. Spirulina inhibits NADPH oxidase, reduces ROS, blocks FR-induced apoptosis, and promotes
mitochondrial health (Created with BioRender.com, accessed on 17 November 2021).

Figure 2. The 2D chemical structures of phycocyanin, phycocyanobilin, bilirubin, and biliverdin
(prepared by author using maestro 11.2).

BioRender.com
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SP exhibited neuroprotective activities through antioxidant and anti-inflammatory
effects [79]. It has also shown significant antioxidant activity in vitro by scavenging nitric
oxide and preventing DNA damage by scavenging hydroxyl radical (Figure 3) [80]. Antidi-
abetic and anti-inflammatory properties of SP [81] are based on its significant free-radical
scavenging activities. SP contains compounds that fall under a broad spectrum of antiox-
idant agents, such as alkaloids, flavonoids [82], and phycocyanin [28,83–86]. Moreso, it
provides trace minerals for the synthesis of antioxidant enzymes, demonstrated by the
antidiabetic response in rats [87]. It has potential benefits in assisting with the reduction
in chronic inflammatory conditions [88]. Spirulina incorporated into skin cream showed
promising results as an anti-inflammatory and a wound-healing agent [89].

Figure 3. Antioxidant and anti-inflammatory effects of SP (created with BioRender.com, accessed on
17 November 2021).

Spirulina against HIV-1 demonstrated its ability as an antiviral compound. Studies
have demonstrated the ability of SP in the inhibition of HIV-1 replication in human T-cell
lines, peripheral blood mononuclear cells (PBMC), and Langerhans cells (LC). The inhibi-
tion of the viral production by spirulina extract (between 0.3 and 1.2 µg/mL) was found
to be approximately 50% in PBMCs [57]. More studies are needed to fully understand the
mechanism behind the inhibition of HIV by SP.

3.3. Mechanism of Action

SP contains several vital antioxidant and anti-inflammatory compounds as mentioned
above, such as chlorophyll, phycocyanin, and carotenoids (β-carotene). The antioxidant
and anti-inflammatory properties of phycocyanin have been determined in numerous
studies [28,83–86,90–97]. Phycocyanin is responsible for reducing oxidative stress and
NADPH oxidase [28]. It scavenges free radicals, such as alkoxy, hydroxyl, and peroxyl
radicals, and decreases nitrite production and inducible nitric oxide synthase (iNOS)
expression. Phycocyanin also inhibits liver microsomal lipid peroxidation [28,83–86,90–97].

Phycocyanin has been proven to inhibit the formation of the pro-inflammatory cy-
tokine TNF-α and cyclooxygenase-2 (COX-2) expression. Additionally, it decreases
prostaglandin E(2) production [28,83–86]. Phycocyanin prevents the degradation of cytoso-
lic IκB-α, which suppresses the activation of nuclear factor-κB (NF-κB) [28]. Furthermore,
the inhibitory activity of phycocyanin is associated with the suppression of TNF-α forma-
tion in the macrophages [86]. In addition, phycocyanin exerts regulatory effects on mitogen-
activated protein kinase (MAPK) activation pathways, such as the p38, c-Jun N-terminal
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kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) pathways [98–100]. The
second compound of SP, carotenoids, β-carotene to be specific, is an antioxidant that has
anti-carcinogenic, antioxidant, and anti-inflammatory activities [101–103]. As a membrane
antioxidant, β-carotene protects against singlet oxygen-mediated lipid peroxidation [101].
Beta carotene inhibits the production of nitric oxide and prostaglandin E(2) and suppresses
the expression of inducible nitric oxide synthase (iNOS), COX-2, TNF-α, and IL-1β. The
suppression of inflammatory mediators by β-carotene results from its’ ability to inhibit NF-
κB activation by preventing nuclear translocation of the NF-κB p65 subunit [102,104,105].
Studies have shown that β-carotene suppressed the transcription of inflammatory cy-
tokines such as IL-1β, IL-6, and IL-12 in vitro [103]; this takes place in the macrophages.
The third compound of spirulina, chlorophyll, can perform antioxidant and antimutagenic
activities [59,60]. Spirulina’s mechanism of action is a concert of compounds, but it is not
clear whether they all act simultaneously during demanding events.

SP promotes the activation and expression of heme oxygenase 1 (HO-1) and endothelial
nitric oxide synthase (eNOS) [104,105]. HO-1 is suggested to play an important part in
the adaptive reprogramming which could result in Nrf-2 activation, but this pathway is
unclear, and more studies are required. Moreso, SP causes the activation of the Nrf2/HO-1
pathway [106]. Nrf-2 activation by SP results in the production and increased expression of
antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT) [100].

4. Common Highly Active Antiretroviral Therapy (HAART) Combinations

HAART has several classes: nucleoside/nucleotide reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) [48,107–114], protease
inhibitors (PIs) [114–117], integrase strand transfer inhibitors (INSTIs) [118–123], fusion
inhibitors (FIs) [124], and chemokine receptor antagonists (CCR5 antagonists) [125–127].
HAART is a specifically selected combination of NRTI and NNRTI, PI, or INSTI drugs re-
sponsible for the inhibition of viral replication by multiple virus targets [113,128–136]. How-
ever, HAART can cause adverse drug reactions. Furthermore, 2′,3′-dideoxy-3′-thiacytidine
(3TC), 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC), TDF (Tenofovir Disoproxil Fumarate),
ZDV (Zidovudine), and d4T (Stavudine) are associated with mitochondrial toxicity and
oxidative stress [137–140]. Additionally, NNRTIs are linked to toxic hepatitis, and PIs are
implicated in insulin resistance and hyperlipidemia [114]. Chronic side effects linked to
HAART include ROS-induced insulin resistance [141,142], lipodystrophy, gastrointestinal
disorders [143], and cardiovascular disease [11,144]. Primarily, HAART is used for the
treatment and prevention of HIV-1. These primary functions of HAART are achieved by
attacking different components of the virus lifecycle which ensures inhibition regardless of
the virus being resistant to one of the drugs [113,128–136]. A combination of two NRTIs
(mostly FTC and TDF) and one NNRTI (e.g., EFV; Efavirenz) is a more favorable choice
due to the convenience to dose, effectiveness, and less toxic effects compared to other
drug combinations [114,145,146]. A combination of three NRTIs is less effective than two
NRTIs with an NNRTI [147]. The d4T/ddI combination is associated with high toxicity
and hence it is not often recommended [148]. The most popular NRTIs are cytidine analogs
(XTC), FTC, 3TC, and TDF, which form part of the first-line therapy [149–153]. FTC and
3TC are similar in chemical structures with different pharmacokinetic and pharmacody-
namic properties, and they have required deoxynucleosides for HIV DNA synthesis. They
undergo phosphorylation through intracellular kinases to become FTC 50 -triphosphate
(FTC-TP) and 3TC-TP; triphosphate metabolites with FTC-TP are more efficiently incor-
porated during HIV DNA synthesis than 3TC-TP [145,154–157]. Moreover, 3TC-TP has a
shorter intracellular half-life compared to FTC-TP [155]. The TDF and FTC combination
has a synergistic effect, increasing intracellular metabolites, and they are recommended
for pre-exposure prophylaxis (PrEP) [155,158–161]. Contraindications (Table 1) on HAART
treatment are antiretroviral medication-specific and can be overcome by a change in the
HAART combination to suit the individuals own treatment [107,108,119–121,131,162–165]
or the supplementation and treatment of the symptoms.
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Table 1. HAART drugs mechanism and their adverse effects.

HAART Mechanism Example Adverse Effect
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NRTIs require intracellular phosphorylation via
host enzymes before they can inhibit viral
replication. These agents are nucleoside or
nucleotide analogs with an absent hydroxyl at
the 3′ end that are incorporated into the growing
viral DNA strand. They competitively bind to
reverse transcriptase and cause premature DNA
chain termination as they inhibit 3′ to 5′

phosphodiester bond formation.

abacavir, didanosine,
lamivudine, stavudine,
tenofovir, emtricitabine,
atazanavir, and
zidovudine

Mitochondrial toxicity, bone marrow suppression,
anemia, and lipodystrophy.
NRTIs inhibit mitochondrial DNA polymerase.
Tenofovir may cause kidney injury or decreased
bone mineral density or osteoporosis.
Abacavir is associated with a CD8-mediated
hypersensitivity reaction in patients with the
HLA-B*5701 mutation.
Didanosine is associated with a high risk of
pancreatitis and hepatomegaly.
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NNRTIs bind to HIV reverse transcriptase at an
allosteric, hydrophobic site. These agents cause a
stereochemical change within reverse
transcriptase, thus inhibiting nucleoside binding
and inhibition of DNA polymerase.

delavirdine, efavirenz,
nevirapine, rilpivirine

Temporary rashes but may progress to
Stevens–Johnson’s syndrome.
Hepatitis may progress to liver failure.
Efavirenz may cause teratogenicity
Risk of neural tube defects.
NNRTIs (mostly rilpivirine) may result in QT
prolongation.
Numerous interactions with hepatic cytochrome
P450 enzymes.
Efavirenz is linked to various psychiatric and CNS
effects, including, but not limited to: vivid dreams,
delusions, sleep disturbances, dizziness,
headaches, increased suicidality, psychosis-like
behavior, and mania.
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PIs competitively inhibit the proteolytic cleavage
of the gag/pol polyproteins in HIV-infected cells.
These agents result in immature, noninfectious
virions. PIs are administered with boosting
agents such as ritonavir or cobicistat to patients
that are failing their initial HAART combination.

atazanavir, darunavir,
indinavir

Hepatotoxicity, insulin resistance, hyperglycemia,
hyperlipidemia, lipodystrophy, and PR interval
prolongation.
Other PIs are inefficient and have a high resistance
and increased risk of nephrolithiasis, hence
indinavir and saquinavir are no longer used.
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Integrase inhibitors bind viral integrase and
prevent viral DNA from being incorporated into
the host cell chromosome.

dolutegravir,
elvitegravir, raltegravir

Some patients may experience dizziness, sleep
disturbances, or depression.
Raltegravir and dolutegravir can cause
rhabdomyolysis and myopathy.
Dolutegravir can block the secretion of creatinine
and occasionally cause a decrease in the GFR. It
can also have interactions with several
medications, including those that inhibit/induce
CYP3A4 enzymes, metformin, rifampin, and
antiepileptics.
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)

Fusion inhibitors bind to the envelope
glycoprotein gp41 and prevent viral fusion to the
CD4 T-cells.

enfuvirtide
Enfuvirtide is generally well tolerated though
some patients may experience injection site
reactions.
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CCR5 antagonists selectively and reversibly
block entry into the CD4 T-cells by preventing
interaction between CD4 cells and the gp120
subunit of the viral envelope glycoprotein.

maraviroc

Some patients may experience dizziness or skin
rashes.
There is a risk of hepatotoxicity with allergic
features, high risk of hepatic dysfunction.
Drug–drug interactions should be a consideration
if patients are taking concurrent CYP3A4
inhibitors or inducers.

Abbreviations: HLA—human leucocyte antigen; CNS—central nervous system; GFR—glomerular filtration rate.
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5. Mechanism of HAART-Induced Oxidative Stress, Inflammation, and
Mitochondrial Dysfunction

The exact mechanism of HAART-induced oxidative stress has not been completely
explored; however, studies have demonstrated the link between HAART use and oxidative
stress. HAART is linked with lipid metabolism dysfunction through the induction of pe-
ripheral lipodystrophy. Lipodystrophy results from the impaired cytoplasmic retinoic-acid
binding protein type 1 (CRABP1)-mediated cis-9-retinoic acid stimulation of peroxisome
proliferator-activated receptor type gamma (PPAR-γ), leading to impaired differentiation
and increased apoptosis of peripheral adipocytes. HIV-1 protease-inhibitors further inhibit
the cytochrome P450 3A-mediated synthesis of cis-9-retinoic acid, one of the key activa-
tors of PPAR-γ [166]. Insulin resistance occurs following impaired fat storage and lipid
release [141,142,166], which impacts the oxidant profile. The depletion of ATP production
and mitochondrial dysfunction [8,9], and the depletion of mitochondrial DNA [167–169],
are some of the ways HAART induces oxidative stress. HIV increases oxidative stress, and
HAART increases lipid oxidation, which amplifies the ROS imbalance leading to increased
oxidative stress complications [10,170].

Chronic exposure to HAART induces increased oxidative stress in endothelial cells
and mononuclear cell recruitment, which leads to cardiovascular diseases in HIV patients
on ARV therapy [12]. Inducing oxidative stress is common for protease and reverse
transcriptase inhibitors [171]. HAART drugs induce oxidative stress in various ways,
which include inhibiting DNA pol-γ activity and leading to mitochondrial dysfunction,
and also through the depletion of mitochondrial DNA [167–169]. Studies have shown that
patients on HAART have abnormally high levels of free oxygen radicals in sera compared
to untreated HIV patients and HIV-uninfected participants [10,11,168,170,172,173].

Adverse drug reactions vary; TDF and lopinavir cause acute and chronic renal
dysfunction [174–178]. TDF inhibits mitochondrial DNA-polymerase gamma, hence lead-
ing to the impaired function of energy-dependent transporters [179,180]. NRTIs are associ-
ated with the inhibition of mitochondrial DNA polymerase, lactic acidosis, subcutaneous
lipoatrophy, peripheral neuropathy, and pancreatitis. The level of mitochondrial toxicity
depends on the drugs; it is low with 3TC, FTC, and TDF, followed by ZDV, and higher with
d4T. NNRTIs are associated with life-threatening skin reactions and toxic hepatitis. PIs are
associated with insulin resistance and hyperlipidemia [7,114].

6. Combined and Synergistic Therapeutic Actions of HAART and SP

Studies have shown that the possible therapeutic effects of antioxidants may provide
strategies in suppressing oxidative stress-induced comorbidities that emerge with the use
of HAART therapy in HIV-infected individuals [12]. The combination of HIV and HAART
has been associated with increased oxidative stress and lipid peroxidation. Furthermore,
HIV or HAART induces ROS by inducing NADPH oxidase [181,182]. Interestingly, SP
is a potent antioxidant [26,27] with anti-inflammatory activities [34], which makes it a
potential supplement in the mitigation of oxidative stress induced by HAART adverse
drug reactions. Moreover, SP can inhibit NADPH oxidase which is considered one of the
main sources of ROS and free radicals in HIV-infected persons on HAART [34,181,182],
resulting in reduced oxidative stress [28]. Moreover, β-carotene from SP protects against
singlet oxygen-mediated lipid peroxidation [101]. Among HAART complications, TDF and
lopinavir cause acute and chronic renal dysfunction [174–178]. Herein, phycocyanin from
SP can normalize urinary and renal oxidative stress markers and inhibit NADPH-dependent
superoxide production in renal mesangial cells [25], ameliorating renal dysfunction. Lately,
SP has been an effective therapeutic approach to preventing diabetic nephropathy through
the inhibition of oxidative stress [25]. These properties indicate SP as a potential agent
to mitigate renal dysfunction caused by HAART. As mentioned above, NRTIs can inhibit
mitochondrial DNA polymerase [179,180]. Studies in vitro showed that SP can enhance
cell nucleus enzyme function, repair DNA synthesis [57], and enhance mitochondrial
health [30–33,80]. Mitochondrial toxicity presented as peripheral neuropathy and lactic
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acidosis can be corrected by SP through providing trace minerals for the synthesis of
antioxidant enzymes [87] and reducing chronic inflammatory conditions [88].

NNRTIs are associated with life-threatening skin reactions and toxic hepatitis [114],
these conditions may be ameliorated by SP. Phycocyanin from SP can inhibit liver micro-
somal lipid peroxidation [28,83–86,90–97], and hence reducing toxic hepatitis. Moreso,
SP incorporated into skin creams showed promising results as an anti-inflammatory and
a wound-healing agent [89]; this can be beneficial in the mitigation of NNRTI-induced
skin reactions. PI therapy induces insulin resistance and hyperlipidemia [7]. Additionally,
HAART may be associated with a higher risk of myocardial infarction [114,183,184]. SP
has a therapeutic effect against vascular diseases, cancer, diabetes, and neurodegenerative
diseases [66]. In addition, the Spirulina family has also shown central neuroprotective
effects in rodents [69] and may exert its neuroprotective activities through antioxidant
and anti-inflammatory effects [79]. Therefore, SP is a recommended antioxidant to use as
a supplement; the list of benefits is evident. It also has antiallergic effects [54], prevents
cellular aging and infectious diseases, and promotes a strong immune system [57]. Herein,
promotion of a strong immune system by SP can help increase CD4 cell counts, lower HIV
viral loads, and slow down the progression to AIDS. Moreover, SP prevents FR-induced
apoptotic cell death [65]; this may help decrease apoptosis of peripheral adipocytes in-
duced by HAART. Chemically, SP is a recommended source of proteins, vitamins, and
minerals [57], important nutrients for individuals on the HAART program. Finally, SP can
assist HAART in the inhibition of HIV-1 replication because it has been shown to inhibit
viral production in PBMCs.

There has been a number of clinical studies to investigate whether SP improves the
quality of life in HIV-infected individuals. Marcel (2011) reported that insulin sensitivity in
HIV patients improved more when a spirulina nutritional supplement was used instead
of soybean [185]. Another study demonstrated for the first time that spirulina improves
antioxidant capacity in people living with HIV [186]. Spirulina supplementation combined
with a qualitative balanced diet showed potential to inhibit lipid abnormalities [187],
significantly increase CD4 cells, and reduce the viral load in HIV-infected antiretroviral-
naive patients [187–189]. However, there is limited information on the investigation of SP
confirming the mechanism of antioxidant and anti-inflammatory effects and the impact on
the quality of life in the HIV-positive population taking HAART. Thus far, it has been shown
that supplementation with Spirulina platensis could improve the immune status of HIV
patients on ART and decrease inflammatory and pro-oxidant levels [190]. The development
of more clinical studies to confirm the SP protective effect in this population will answer
many questions. The recommended concentrations of SP for daily supplementation varies,
as studies have successfully used 19 g [185], 5 g [186], and 10 g [190,191].

7. Conclusions

HIV continues to be a major global cause of mortality. Besides the therapeutic benefits
of HAART in HIV treatment, HAART has been linked to numerous adverse drug reactions
which include oxidative stress, inflammation, and the disruption of mitochondrial function.
SP as an antioxidant, anti-inflammatory, anticancer, and nutritional supplement possesses
various corrective properties against attacks from viruses and bacteria. The corrective
health properties of SP are largely attributed to antioxidant pigments found in SP. These
pigments include chlorophyll, carotenoids, and phycocyanin which facilitate antioxidant,
anti-inflammatory, and anticancer properties. The corrective properties of SP indicated in
this review highlight its potential in the mitigation of HAART adverse drug reactions and
MetS. The SP supplement potential is also supported by its ability to assist HAART in the
inhibition of HIV-1. This review highlighted the corrective properties of potent antioxi-
dant SP potential as a supplement for individuals on lifelong HAART experiencing MetS.
Furthermore, this review highlights the need for more studies on SP and HAART synergy.



Nutrients 2022, 14, 3076 10 of 17

Author Contributions: Conceptualization, T.S., T.G., A.C.; writing—original draft preparation, T.S.;
writing—review and editing, T.G. and A.C. All authors have read and agreed to the published version
of the manuscript.

Funding: Grant sponsor: National Research Foundation Innovation Doctoral Scholarship; Grant
number: 130023; Grant sponsor: University of KwaZulu Natal, College of Health Sciences Masters
and Doctoral Research Scholarship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. HIV/AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 30 November 2021).
2. UNAIDS. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global Report: UNAIDS Report on the Global AIDS Epidemic 2021;

Global HIV & AIDS Statistics: Fact Sheet; Joint United Nations Programme on HIV/AIDS: Geneva, Switzerland, 2021.
3. UNAIDS. Global HIV & AIDS Statistics—2020 Fact. Available online: https://www.unaids.org/en/resources/fact-sheet

(accessed on 11 September 2021).
4. Release, S. Mid-Year Population Estimates 2021. Statistics South Africa. 2021. Available online: http://www.statssa.gov.za/

publications/P0302/P03022021.pdf (accessed on 18 November 2021).
5. UNAIDS. HIV and AIDS Estimates. Available online: https://www.unaids.org/en/regionscountries/countries/southafrica

(accessed on 11 September 2021).
6. National Institute on Drug Abuse (NIDA). What Is HAART? Available online: https://www.drugabuse.gov/publications/

research-reports/hivaids/what-haart (accessed on 30 November 2021).
7. Mohan, J.; Ghazi, T.; Chuturgoon, A.A. A Critical Review of the Biochemical Mechanisms and Epigenetic Modifications in HIV-

and Antiretroviral-Induced Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 12020. [CrossRef] [PubMed]
8. Manda, K.R.; Banerjee, A.; Banks, W.A.; Ercal, N. Highly active antiretroviral therapy drug combination induces oxidative stress

and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells. Free Radic. Biol. Med. 2011, 50,
801–810. [CrossRef] [PubMed]

9. Blas-Garcia, A.; Apostolova, N.; Esplugues, J.V. Oxidative stress and mitochondrial impairment after treatment with anti-HIV
drugs: Clinical implications. Curr. Pharm. Des. 2011, 17, 4076–4086. [CrossRef] [PubMed]

10. Ngondi, J.L.; Oben, J.; Forkah, D.M.; Etame, L.H.; Mbanya, D. The effect of different combination therapies on oxidative stress
markers in HIV infected patients in Cameroon. AIDS Res. Ther. 2006, 3, 19. [CrossRef]

11. Masiá, M.; Padilla, S.; Bernal, E.; Almenar, M.V.; Molina, J.; Hernández, I.; Graells, M.L.; Gutiérrez, F. Influence of antiretroviral
therapy on oxidative stress and cardiovascular risk: A prospective cross-sectional study in HIV-infected patients. Clin. Ther. 2007,
29, 1448–1455. [CrossRef]

12. Mondal, D.; Pradhan, L.; Ali, M.; Agrawal, K.C. HAART drugs induce oxidative stress in human endothelial cells and increase
endothelial recruitment of mononuclear cells. Cardiovasc. Toxicol. 2004, 4, 287–302. [CrossRef]

13. Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the
sustainable and ecofriendly spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 1–4. [CrossRef]

14. Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The potential therapeutic value of medicinal
plants in the management of metabolic disorders. Molecules 2020, 25, 2669. [CrossRef]

15. Kim, D.S.; Choi, M.H.; Shin, H.J. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and
antiobesity activities. J. Food Biochem. 2020, 44, e13282. [CrossRef]

16. Pérez-Torres, I.; Ruiz-Ramírez, A.; Baños, G.; El-Hafidi, M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol
as alternative medicinal agents against metabolic syndrome. Cardiovasc. Hematol. Agents Med. Chem. 2013, 11, 25–37. [CrossRef]

17. Mujawdiya, P.K.; Kapur, S. Mangiferin: A potential natural molecule for management of metabolic syndrome. Int. J. Pharm.
Pharm. Sci. 2015, 7, 9–13.

18. Kränkel, N.; Bahls, M.; van Craenenbroeck, E.M.; Adams, V.; Serratosa, L.; Solberg, E.E.; Hansen, D.; Dörr, M.; Kemps, H. Exercise
training to reduce cardiovascular risk in patients with metabolic syndrome and type 2 diabetes mellitus: How does it work? Eur.
J. Prev. Cardiol. 2019, 26, 701–708. [CrossRef] [PubMed]

19. Opie, L.H. Metabolic syndrome. Circulation 2007, 115, e32–e35. [CrossRef] [PubMed]
20. Marrone, G.; Guerriero, C.; Palazzetti, D.; Lido, P.; Marolla, A.; Di Daniele, F.; Noce, A. Vegan diet health benefits in metabolic

syndrome. Nutrients 2021, 13, 817. [CrossRef] [PubMed]
21. Bashandy, S.A.; El Awdan, S.A.; Ebaid, H.; Alhazza, I.M. Antioxidant potential of Spirulina platensis mitigates oxidative stress

and reprotoxicity induced by sodium arsenite in male rats. Oxidative Med. Cell. Longev. 2016, 2016, 1–6. [CrossRef] [PubMed]

https://www.who.int/news-room/fact-sheets/detail/hiv-aids
https://www.unaids.org/en/resources/fact-sheet
http://www.statssa.gov.za/publications/P0302/P03022021.pdf
http://www.statssa.gov.za/publications/P0302/P03022021.pdf
https://www.unaids.org/en/regionscountries/countries/southafrica
https://www.drugabuse.gov/publications/research-reports/hivaids/what-haart
https://www.drugabuse.gov/publications/research-reports/hivaids/what-haart
http://doi.org/10.3390/ijms222112020
http://www.ncbi.nlm.nih.gov/pubmed/34769448
http://doi.org/10.1016/j.freeradbiomed.2010.12.029
http://www.ncbi.nlm.nih.gov/pubmed/21193030
http://doi.org/10.2174/138161211798764951
http://www.ncbi.nlm.nih.gov/pubmed/22188456
http://doi.org/10.1186/1742-6405-3-19
http://doi.org/10.1016/j.clinthera.2007.07.025
http://doi.org/10.1385/CT:4:3:287
http://doi.org/10.1155/2017/3247528
http://doi.org/10.3390/molecules25112669
http://doi.org/10.1111/jfbc.13282
http://doi.org/10.2174/1871525711311010006
http://doi.org/10.1177/2047487318805158
http://www.ncbi.nlm.nih.gov/pubmed/30317879
http://doi.org/10.1161/CIRCULATIONAHA.106.671057
http://www.ncbi.nlm.nih.gov/pubmed/17242286
http://doi.org/10.3390/nu13030817
http://www.ncbi.nlm.nih.gov/pubmed/33801269
http://doi.org/10.1155/2016/7174351
http://www.ncbi.nlm.nih.gov/pubmed/26881036


Nutrients 2022, 14, 3076 11 of 17

22. Estrada, J.P.; Bescós, P.B.; del Fresno, A.V. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farm.
2001, 56, 497–500. [CrossRef]

23. Iyer Uma, M.; Sophia, A.; Uliyar, V.M. Glycemic and lipemic responses of selected spirulina-supplemented rice-based recipes in
normal subjects. Age Years 1999, 22, 1–8.

24. Serban, M.C.; Sahebkar, A.; Dragan, S.; Stoichescu-Hogea, G.; Ursoniu, S.; Andrica, F.; Banach, M. A systematic review and
meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin. Nutr. 2016, 35, 842–851. [CrossRef]

25. Zheng, J.; Inoguchi, T.; Sasaki, S.; Maeda, Y.; McCarty, M.F.; Fujii, M.; Ikeda, N.; Kobayashi, K.; Sonoda, N.; Takayanagi, R.
Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress.
Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2013, 304, R110–R120. [CrossRef]

26. Hu, Z.; Liu, Z. Determination and purification of beta-carotene in Spirulina maximum. Chin. J. Chromatogr. 2001, 19, 85–87.
27. Miranda, M.S.; Cintra, R.G.; Barros, S.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol.

Res. 1998, 31, 1075–1079. [CrossRef] [PubMed]
28. Riss, J.; Décordé, K.; Sutra, T.; Delage, M.; Baccou, J.C.; Jouy, N.; Brune, J.P.; Oréal, H.; Cristol, J.P.; Rouanet, J.M. Phycobiliprotein

C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression
induced by an atherogenic diet in hamsters. J. Agric. Food Chem. 2007, 55, 7962–7967. [CrossRef] [PubMed]

29. Abdelkhalek, N.K.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in
freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and oxidative stress. Environ. Sci. Pollut. Res.
2015, 22, 3023–3031. [CrossRef] [PubMed]
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